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Although clinical trials of molecular therapies targeting critical biomarkers (mTOR, epidermal growth factor receptor/epidermal
growth factor receptor 2, and vascular endothelial growth factor) in endometrial cancer show modest e�ects, there are still
challenges that might remain regarding primary/acquired drug resistance and unexpected side e�ects on normal tissues. New
studies that aim to target both genetic and epigenetic alterations (noncodingmicroRNA) underlyingmalignant properties of tumor
cells and to speci�cally attack tumor cells using cell surface markers overexpressed in tumor tissue are emerging. More importantly,
strategies that disrupt the cancer stem cell/epithelial-mesenchymal transition-dependent signals and reactivate antitumor immune
responses would bring new hope for complete elimination of all cell compartments in endometrial cancer. We briey review the
current status ofmolecular therapies tested in clinical trials andmainly discuss the potential therapeutic candidates that are possibly
used to develop more e�ective and speci�c therapies against endometrial cancer progression and metastasis.

1. Introduction

Endometrial cancer (EC) is the most common gynecological
malignancy amongwomenworldwidewith 287000 new cases
and estimated 74000 deaths per year [1].

EC has been dichotomized into two types with distinct
underlying molecular pro�ling, histopathology and clinical
behavior: less aggressive type I and highly aggressive type II.
Most ECs are type I (approximately 75%) and are estrogen-
dependent adenocarcinomaswith endometrioidmorphology
[2]. 
ey are usually diagnosed at an early stage and have
a good prognosis (a 5-year survival rate of 80–85%) a�er
surgery [2, 3]. In contrast, type II ECs with poorly di�eren-
tiated endometrioid and serous histology are associated with
myometrial invasion, extrauterine spread, and a lower 5-year
survival rate (35%) [3–6]. Although patients with advanced
or recurrent disease typically receive adjuvant chemotherapy
and radiation, they have an extremely poor prognosis. A
potential strategy for the treatment of these cases is to target
EC cells by blocking key signaling pathways that are necessary
for tumor development.

2. Therapeutic Targets for EC

Type I EC frequently exhibits altered PI3K/PTEN/AKT/
mTOR signal pathway [7–11]. Type II cancer predominantly
shows mutations in p53 [12] and epidermal growth factor
receptor 2 (HER-2) overexpression [13]. 
e upregulation
of epidermal growth factor receptor (EGFR) [14, 15] and
vascular endothelial growth factor (VEGF) [16], dysregu-
lated microRNA (miRNA) [17], and activation of cancer
stem cell (CSC)/epithelial-mesenchymal transition (EMT)
programs are involved in oncogenesis and progression of
both cancer types [18–20]. Owing to the high-frequency

activation of PI3K/AKT/mTOR, EGFR/HER2 and VEGF-
related pathway and their important roles in promoting EC

growth and metastasis, new drug targeting these signals

would be valuable to a very large number of patients with

EC. Recently, clinical trials assessing the e�cacy of mTOR
inhibitor, EGFR/HER2 inhibitor, and antiangiogenic agent
for EChave been conducted and demonstratedmodest e�ects
[21, 22] (Figure 1).
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Figure 1: 
erapeutic molecular targets for endometrial cancer. Type I endometrial cancer (EC) frequently exhibits altered
PI3K/PTEN/AKT/mTOR signal pathway, whereas type II EC frequently showsmutations in p53 andHER-2 overexpression.
e upregulation
of EGFR and VEGF, dysregulated microRNAs, and activation of cancer stem cell (CSC)/epithelial-mesenchymal transition (EMT) programs
are involved in oncogenesis and progression of both cancer types. Currently, clinical trials assessing the e�cacy of mTOR inhibitor,
EGFR/HER2 inhibitor, and antiangiogenic agent for EC have been conducted and demonstrated modest e�ects.

3. Challenges in the Molecular Therapeutics of
Human Tumor

Although the therapeutic potential of targeted drugs for
the treatment of human tumors appears promising, the
clinical success of such drugs has been limited by key
challenges, including primary/acquired drug resistance [23–
25] and unexpected side e�ects on normal tissues due to
nonspeci�city [26] (Figure 2).

A portion of patients unfortunately do not respond
to targeted agents (primary resistance), and the remainder
might eventually acquire the resistance to targeted therapy
despite an initial response. Various mechanisms of resistance
have begun to be elucidated. 
e most frequently reported
mechanism of primary resistance is genetic heterogeneity.
For example, mechanisms of resistance to EGFR inhibitors
are involved in point mutations, deletions, and ampli�cations
of genomic areas of EGFR [23]. In addition to genetic
alteration, epigenetic changes, such as DNA methylation at
CpG islands, have been linked to the development of resis-
tance to multiple molecular drugs [27, 28]. 
e generation
of a population of cancer cells with stem-cell properties
might provide another possible reason of resistance to EGFR
inhibitor [29]. Common mechanisms of acquired resistance
include secondary mutation in the target gene, activation of
alternative pathway or feedback loop, and induction of EMT
[23, 30]. 
erefore, new therapy that concurrently attacks

multiple critical pathways, inhibits the cross talk between
diverse signals, and suppresses the CSC and EMT properties
may be e�cacious to overcome the resistance to molecular
agents in EC.

Moreover, the administration of antiangiogenic agents,
particularly antibodies against VEGF, leads to amore hypoxic
tumor microenvironment [31], which enhances tumor cell
invasion and metastasis by inducing the EMT- and CSC-
like phenotype [32–34]. 
ese works clearly suggest the need
to combine antiangiogenic treatment in human tumors with
new drugs targeting speci�c signaling pathways linked to the
CSC/EMT phenotype.

Another challenge is toxicity or the side e�ects associated
with targeted therapies, such as harmful immune responses.

ese include “O�-target” adverse e�ects caused by a drug
binding to an unexpected target and “On-target” adverse
e�ects as a result of a drug binding to its intended target that
is not only present in tumor cells, but also found in normal
tissue [26].

4. Potential miRNA-Based Therapies in EC

Di�erent from gene mutations, epigenetic changes that are
associated with global gene regulation such as chromatin
remodeling open a new �eld of cancer research [35]. Epi-
genetic silencing of tumor suppressor genes or epigenetic
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Figure 2: Challenges in the molecular therapeutics of human tumor. 
e clinical success of targeted drugs has been limited by key
challenges, including primary/acquired drug resistance and unexpected side e�ects on normal tissues due to nonspeci�city.
emost frequent
mechanisms of primary resistance are genetic/epigenetic heterogeneity and the existence of cancer stemcell. Acquired resistance can be caused
by the secondary mutation in the target gene, activation of alternative pathway or feedback loop, and induction of EMT. Treatment of tumor
cells with antiangiogenic agents can lead to a more hypoxic tumor microenvironment and enhance tumor cell invasion and metastasis by
inducing the EMT- and cancer-stem-cell-like phenotype.

activation of oncogenes plays the important roles in the pro-
motion of carcinogenesis and tumor progression [35]. Two
common epigenetic changes are methylation at the promoter
region andhistone acetylation,which can bemodulated using
inhibitors of DNA methyltransferase (DNMT) and histone
deacetylase (HDAC), respectively. Tumor suppressor genes
including PTEN [36], DNA mismatch repair gene hMLH1
[37], adenomatous polyposis coli (APC) [38], RAS-associated
domain family member protein 1 (RASSF1A) [39], and E-
cadherin [40] are more frequently silenced in type I tumor
than in type II tumor. DNMT and HDAC inhibitors are
already in clinical use for myelodysplasia and cutaneous T-
cell lymphoma [41, 42]. Preclinical study has shown that
DNMT and HDAC inhibitors induce cell apoptosis and
suppress the growth of EC in vivo [43]. 
e combination of
epigenetic modi�ers with chemotherapy, hormonal therapy,
and targeted therapy, has been proposed [44], and this may
achieve better e�ect than single epigenetic agent for the
treatment of EC.

Another important mechanism for epigenetic regulation
of gene expression is involved in noncoding RNAs, speci�-
cally small regulatory microRNA (miRNA). MiRNAs post-
transcriptionally control gene expression by base pairingwith
the 3� untranslated region of target mRNAs, which triggers
either mRNA translation repression or RNA degradation
[45].

As miRNAs are able to bind to their mRNA targets
with either perfect or imperfect complementary, one miRNA
may possibly have multiple target genes and concurrently
inuence di�erent cellular signaling pathways [45]. Some
miRNAs can function as either promoter or suppressor
participating in a wide variety of biological functions of
tumor, including cell proliferation, di�erentiation,migration,
apoptosis, and recently EMT/cancer-stem-cell-like features

[46]. 
erefore, modulation of dysregulated miRNAs could
be a powerful tool to correct abnormal signaling pathways
related to EC.

Altered expression pro�les of microRNA have been
observed in EC compared with normal endometrium
[47]. Several miRNAs are di�erentially expressed between
endometrioid and serous papillary EC, indicating that they
could infer mechanisms that are speci�c to individual tumor
subtypes [48]. Among those miRNAs elevated in endometri-
oid EC, the expression of miR-7 can be downregulated
by using anti-miRNA oligonucleotides, leading to repressed
migration and invasion of EC cells [49]. On the other hand,
the level of miR-194 was signi�cantly lower in EC patients
with more advanced stage, and lower expression of this
miRNA was associated with worse survival [50]. We found
that overexpression of miR-194 by transfection with pre-
miRNA molecule inhibited EMT phenotype and EC cell
invasion by targeting the oncogene BMI-1 [51]. We also
identi�ed miR-130b as one of the mutant p53-responsive
23 miRNAs, which is decreased in EC relative to adjacent
normal tissue and directly targets the key EMT promoter
gene ZEB1 to revert p53-mutations-induced EMT features
of EC cells [52]. MiRNAs are stable in various tissues
and bodily uids [53]. 
is property greatly facilitates the
delivery of miRNAs to recipient cells via the blood or other
compartments. Collectively, targeting those miRNAs that are
deeply involved in ECprogressionwould provide a promising
therapeutic option for EC.

Forced expression of tumor suppressor miRNA and sup-
pression of oncogenic miRNA are two strategies to achieve
the goal of miRNA-based cancer treatment (Figure 3).
Although previous results demonstrated that restoration
of tumor suppressor miR-152 e�ectively inhibited EC cell
growth in vitro and in vivo [54], obvious challenges of
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Figure 3: Potential miRNA-based therapies in EC.
e use of antibodies against cell surfacemarkers overexpressed in EC tissuemight deliver
targeted drugs to EC cells more speci�cally with fewer side e�ects on normal tissue. 
e nanotechnology can be used to develop a more
e�ective delivery system for targeted agents, especially miRNA that might simultaneously modulate multiple signal pathways necessary for
malignant phenotype of EC.

obtaining e�cient delivery systems and tumor cell speci�city
must be resolved to allow clinical implementation.


e biochemical similarity between miRNA and siRNA
suggests that the same delivery reagents developed for use
with siRNA could be applied to the delivery of miRNA
[55, 56]. Many e�orts have been made to develop more
e�ective and stable delivery systems [57]. Among them,
nanoparticles confer greater miRNA stability, and the con-
jugation of nanoparticles to antibodies or cancer-speci�c
ligands can notably improve their interactions with cancer
cells [57]. By using the modi�cation of GC4 single-chain
fragment (a tumor-targeting human monoclonal antibody),
nanoparticles injected intravenously showed greater accu-
mulation in the tumor nodules rather than in liver and
kidney. Moreover, the codelivery of three siRNAs together
with miR-34a resulted in a more signi�cant inhibition (80%)
of metastatic melanoma than that obtained with siRNAs
or miRNA alone [58]. 
ese data demonstrate that the use
of antibody targeting cell surface marker allows a selective
delivery of miRNA into the tumor, and the combination of
siRNA and miRNA could additively inhibit tumor growth
and metastasis.

As mentioned, another major issue for molecular cancer
therapy is toxicity. To avoid potential side e�ects on normal
tissue, increasing attention has been directed to the identi�-
cation of tumor-speci�c surface markers including receptors
and epitopes that are highly expressed in cancer cells, but
not or minimally expressed in normal cells. Some potential
tumor cell surface markers overexpressed in EC compared

with normal endometriummight be used for targeted therapy
(Figure 3).

Eph receptor tyrosine kinases and their ephrin ligands
inuence central nervous system development, stem cell
niches, and cancer cells [59]. Upon the binding of EphrinA1,
the EphA2 receptor becomes tyrosine phosphorylated and
interacts with several proteins to elicit downstream signaling,
which regulate cell adhesion, proliferation, migration, and
angiogenesis [60]. Overexpression of EphA2 was found in
a high proportion of endometrioid EC and correlated with
advanced disease and poor prognosis, whereas its expression
is present at low levels in benign endometrial tissue [61].

emicrotubule inhibitor conjugated to EphA2 antibodywas
shown to be speci�cally internalized by EphA2-positive EC
cells, resulting in signi�cant growth inhibition of EC cells
both in vitro and in vivo [62].


e tight junction proteins claudin-3 and claudin-4 are
highly expressed in endometrioid, serous papillary, and
clear-cell EC [63], but less frequently found in normal
endometrium [64]. Importantly, the intratumoral injection
of cytotoxic Clostridium perfringens enterotoxin (CPE) that
interacts with claudin-3 and claudin-4 in subcutaneous
serous EC xenogra�s led to tumor disappearance and
extended survival of animals [65], indicating that targeting
claudin-3 and claudin-4 by CPE or other targeted treatment
may e�ciently suppress the progression of EC.

Folate receptor alpha (FOLR1, a membrane-
bound molecule) and mesothelin (MSLN, a glycosyl-
phosphatidylinositol-linked cell surface antigen) that are
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Figure 4: Targeting the CSC/EMT signaling pathways in EC. Tumor cells that undergo EMT not only increase their invasion ability, but also
concurrently acquire cancer stem cell (CSC) properties. On the other hand, CSCs are associated with enhanced capacity to metastasize. At a
molecular level, several signaling pathways involved in the self-renewal of CSCs, including Wnt/�-catenin, Hedgehog, and Notch signaling,
can also induce EMT programs. Speci�c inhibitors targeting these CSC and EMT pathways e�ciently suppress the malignant phenotype of
EC cells. Other potential therapeutic candidates for EC treatment include Stattic (inhibitor of STAT3), Rapamycin (mTOR inhibitor), and
CD133.

upregulated in ovarian carcinoma [66] are also upregulated
in serous EC more frequently than in endometrioid EC [67].

e expression of FOLR1 cannot be observed in normal
endometrium tissue [67], suggesting that FOLR1 may serve
as a good tumor cell surface marker for targeted therapy,
and antibodies against FOLR1 may facilitate tumor-speci�c
cellular uptake of molecular drugs.

Trophoblast cell surface marker (Trop-2, a cell surface
glycoprotein) is o�en overexpressed in various late stage
epithelial tumor types with low or no expression in normal
tissues [68]. Trop-2 is highly expressed in serous [69] and
endometrioid EC [70]. Serous EC cell lines overexpress-
ing Trop-2 show increased sensitivity to immunotherapy
with hRS7, a humanized anti-Trop-2 monoclonal antibody
[69]. 
us, Trop-2 would be an attractive target for EC
immunotherapy.

Epithelial cell adhesion molecule (EpCAM) is overex-
pressed on malignant cells from a variety of di�erent tumors
and is considered as a reliable marker for tumor-initiating
cells [71]. 
e cell surface expression of EpCAM is signif-
icantly higher among serous EC specimen compared to in
normal endometrial tissue [72]. Serous EC cell lines that
are positive for EpCAM exhibit high sensitivity to EpCAM
antibody-mediated cytotoxicity, suggesting that EpCAMmay
represent a novel therapeutic target for serous EC.

In normal epithelium, the expression of L1 cell adhesion
molecule (L1CAM) is undetectable. However, overexpression

of L1CAM has been reported in many types of carcinomas
[73]. L1CAM has been de�ned as a key driver for tumor cell
invasion and EMT [73]. Of interest, L1CAM was absent in
normal endometrium and the vast majority of endometrioid
EC, but it was strongly expressed in serous and clear-cell EC
[74]. 
e combined treatment with L1CAM antibodies and
chemotherapeutic drugs in pancreatic and ovarian carcinoma
model systems in vivo reduced tumor growthmore e�ciently
than treatment with the cytostatic drug alone [75], indicating
the value of L1CAM as a target for chemosensitizer in
anticancer therapy for aggressive EC.

Taken together, antibodies against various tumor cell
surface markers would provide a possibility of delivering
drugs to EC cells, with fewer side e�ects on normal tissue.

e nanotechnology or other approaches might be used to
develop a more e�ective delivery system for targeted drugs,
especially miRNAs that might simultaneously modulate a
broad range of gene networks necessary for malignant phe-
notype of EC.

5. Targeting the CSC/EMT Signaling
Pathways in EC

CSC is de�ned as a rare population having the ability to
self-renew, initiate tumor growth, and give rise to the het-
erogeneous tumor cell mass [76]. Growing lines of evidence
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suggest that CSCs do exist and support tumor maintenance
during tumor formation [77]. CSCs of EC might be located

in the basal layer of endometrium and are responsible for
production of EC cells [78]. Sorted CD133 (+) subpopulations
from EC cell expressed higher levels of oncogene BMI-1
[51] and showed more aggressive potential and increased
tumorigenicity in nudemice than CD133 (−) cells [79]. Stem-
like cell subpopulations, referred to as “side population” (SP)
cells, have been isolated fromEC tissue and show self-renewal
capacity and enhanced tumorigenicity in vivo [80].
erefore,
these results suggest that selective killing of such CSCs is an
appealing therapeutic prospect for EC.

Tumor cells that undergo EMT can increase their inva-
sion ability and concurrently acquire CSC properties [81, 82].
Indeed, CSC fractions within pancreatic cancer [83] and
colon cancer [84] are associated with enhanced capacity to
metastasize, a process that requires considerable invasive
capacity. At a molecular level, these �ndings are consistent
with the fact that several signaling pathways involved in the
self-renewal of CSCs, including Wnt/�-catenin, Hedgehog
(Hh), and Notch signaling [85], can also induce EMT pro-
grams [86] (Figure 4), supporting a molecular link between
EMT and CSC program in human tumor [87]. 
erefore,
development of speci�c therapies targeted at these CSC and
EMT pathways raises a hope for eliminating recurrent and
metastatic disease and for improvement of patient survival.

In malignant human mammary stem cells, activation of
Hh signal components (SMO, PTCH1, and Gli1) increases
the expression of downstream transcription factor BMI-1 and
plays an important role in regulating stem cell self-renewal
[88]. 
e overexpression of Hh-signal-related molecules is
detected in EC tissue and involved in stimulated proliferation
of EC cells [89]. In the same study, cyclopamine (a speci�c
inhibitor of the SMO) has been shown to e�ciently suppress
the growth of EC cells [89].

Activation of Wnt/�-catenin pathway represented by
the nuclear staining of �-catenin was shown to be more
commonly detected in type I than type II EC [12]. More
recent evidence suggests that gene sets indicating activation
of Hh and Wnt/�-catenin signaling closely correlate with
more aggressive EC and worse survival [90]. Wnt/�-catenin
signaling was shown to induce the expression of downstream
targets EpCAM and CD44 in hepatocellular carcinoma and
EC, respectively [91, 92]. Salinomycin, a selective inhibitor
of breast CSCs [93], was shown to induce apoptosis, inhibit
Wnt/�-catenin signaling, and therefore repress the prolifera-
tion, migration, invasiveness, and tumorigenicity of SP cells
obtained from invasive EC cells [94]. 
us, it is important
to determine whether salinomycin alone, or in combination
with other agents such as EpCAM-speci�c monoclonal anti-
body, could e�ectively induce apoptosis in CSC-like EC cells.

High expression of Notch1 has been detected in EC
patients with poor prognosis, and treatment with a reported
Notch inhibitor DAPT [95] suppresses invasiveness of EC
cells [96].

Other potential therapeutic candidates for EC treatment
might include Stattic, Rapamycin, and CD133. Signal trans-
ducer and activator of transcription 3 (STAT3) has been

shown to transcriptionally activate the expression of EMT
inducer TWIST1, resulting in promoted oncogenic properties
in breast cancer [97]. Stattic (an inhibitor of STAT3) can
suppress EGF-enhanced invasive behavior of EC cells [98].
Rapamycin (an mTOR inhibitor) has been used to counter
the e�ects of PTEN deletion and inhibit the development
of leukemia-initiating cells while preserving normal stem
cell populations [99]. Targeting CD133 (+) cells by CD133
antibody-cytotoxic drug conjugates e�ectively inhibits the
growth of hepatocellular and gastric cancer cells in vivo and
in vitro [100].


e most obvious concern is whether a therapy can
selectively target CSC, but not destroy normal stem cell that
could share many characteristics as CSC, such as the ability
to self-renew and di�erentiate. However, CSCs and normal
stem cells display di�erent biological behaviors, mainly
due to aberrant activation of several pathways involved in
proliferation, self-renewal, di�erentiation, and metabolism
in CSCs [101, 102]. 
erefore, exploiting these molecular
di�erences could be helpful to speci�cally target CSCs while
preserving normal stem cells. Furthermore, the combined
inhibition of Hh and EGFR signaling through the use of
speci�c inhibitors can lead to the increased rate of apoptotic
death and decreased invasiveness of prostate cancer cells
[103], suggesting that this treatment might be a�ecting the
CSCs.

6. Targeting Immunosuppressive Molecular
Pathways in EC

ECs are immunogenic tumors [104], and they mount potent
antitumor immune responses, which might be ine�ective at
rejecting tumor, but might be potentially harnessed thera-
peutically [105]. Immune escape has been considered as the
major malignant features of tumor cells. Several mechanisms
are responsible for tumor immune escape, including the
failure to recognize tumor cells by the immune system due
to reduced major histocompatibility complex class I (MHC-
I) expression, immunosuppression caused by tumor-cell-
released immunosuppressive factors such as TGF-�, inter-
leukin (IL)-10, VEGF, and cyclooxygenase-2 (COX-2), and
immunoresistance resulting from the induction of EMT/CSC
[104, 106, 107]. 
ese data indicate that in addition to
direct tumor cell killing, new targeted therapy might be also
designed to reactivate the body’s immune response against
tumor cells (Figure 5).

Tumor stem cells (CD133+) have been shown to express
low levels of MHC-I; however, the percentage of CD133-
positive CSCs that expressed MHC-I can be signi�cantly
increased by the treatment with interferon-gamma [108],
suggesting the possible use of MHC-I to generate anti-CSC
immunity for human tumor including EC [106].

Some signal pathways that are activated in tumor cells
are also dysregulated in immunosuppressive cells in cancer
microenvironment. Immunosuppressive molecules released
by tumor cells can activate STAT3 in immune cells, leading
to tumour-induced immunosuppression [109]. In gastric
cancer cells, oncogenicWnt/�-catenin pathways enhance the
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transcription of COX-2, an immunosuppressive molecule
[110]. Importantly, COX-2 is upregulated and associated with
VEGF expression in EC tissue [111], and selective COX-2
inhibitor etodolac exhibits antiproliferative e�ects on EC tis-
sue [112], indicating that targeting COX-2may boost immune
responses towards EC and repress EC progression [113].
Although the adverse e�ects on normal immune cells should
be avoided, targeting STAT3 or Wnt/�-catenin pathway by
speci�c inhibitor in tumor cells and immunosuppressive
cells, or along with other immunotherapy, might restore the
immunocompetence of EC patients.

7. Conclusion

Currently, targeted therapies have not entered clinical prac-
tice, and clinical trials involving genetic biomarkers (mTOR,
HER2, EGFR, and VEGF) administered to ECs only resulted
in modest e�ects. 
erapy targeting epigenetic regulatory
mechanisms such as miRNA will need to be developed
to achieve a broader impact on multiple signal pathways
necessary for EC development. 
e use of targeted cancer
therapy remains challenging because of the lack of speci�city
for cancer cells. Targeted agents that are speci�c to cell
surface markers overexpressed in tumor cells would avoid
potential side e�ects on normal tissue. More importantly, we
expect that new targeted therapies that speci�cally attack both
cancer cells and CSC-like cells can be used together with
immunotherapy that stimulates a host’s immune response
and with other traditional treatments to achieve better clini-
cal prognosis of EC patients in the near future.
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