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Abstract

Introduction—Parasitic diseases that pose a threat to human life include leishmaniasis – caused 

by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side 

effects like teratogenicity, high cost and drug resistance. These call for the need to have an insight 

into the therapeutic aspects of disease.

Areas covered—We have identified different drug targets, via. molecular, imuunological, 

metabolic as well as by system biology approaches. We bring these promising drug targets into 

light so that they can be explored to their maximum. In an effort to bridge the gaps between 

existing knowledge and future prospects of drug discovery, we have compiled interesting studies 

on drug targets thereby paving the way for establishment of better therapeutic aspects.

Expert opinion—Advancements in technology sheds light on many unexplored pathways. 

Further probing of well established pathways, led to the discovery of new drug targets.This review 

is a comprehensive report on current and emerging drug targets, with emphasis on several 

metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome, etc. 

Identification of new targets can contribute significantly towards strengthening the pipeline for 

disease elimination.
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Introduction

Leishmaniasis is a group of manifestations ranging from cutaneous to most severe visceral 

forms, caused by protozoan parasite Leishmania species. Visceral form of disease, caused by 

Leishmania donovani, characterised by prolonged fever (>2 weeks), weight loss, anemia, 

and splenomegaly. India, Bangladesh, Sudan, South Sudan, Brazil and Ethiopia together 

contribute for more than 90% of the global disease burden with 0.3 million new VL cases 

reported each year. Leishmania parasites cycle between two hosts- human and sandfly, in 

two distinct life stages, as flagellar promastigote or amastigote form. The promastigotes 
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from sandfly are injected into the human upon blood feeding where they are phagocytosed 

by circulating monocytes, dendritic cells and/or neutrophils. Once inside the phagosome 

these parasites undergo differentiation to non-flagellar amastigote. These amastigotes divide 

several times until bursting of host cells to infect another cell.

There was a collaborative association of the governments of India, Bangladesh and Nepal for 

elimination of this disease in 2005[1, 2]. This memorandum was later renewed in 2014, 

upon consideration of several underestimated parameters while reporting new cases. With 

the main focus on early case detection, diagnosis, treatment, as well as vector management. 

VL elimination program has been extended to 2020 with the establishment of new taskforce 

to facilitate attainment of the set goal [2]. There are several challenges to make the target a 

realistic goal including the drug resistance, toxicity issues related with current therapeutic 

options, asymptomatic carriers, inadequate knowledge on vector biome and non-availability 

of vaccine. Therefore, coordinated monitoring at different levels of implementation, proper 

case management, social awareness, active case detection and strong partnership among 

stakeholders could serve to make the way easy.

Recent years have experienced changes in terms of flow of funds to support drug discovery. 

The complex life cycle of the parasite also includes several checkpoints that might be 

exploited towards drug development. Additionally, technological advances in the field of 

clinical research and the availability of complete genome sequence of Leishmania [4], have 

further strengthened the way towards the drug discovery. This review is an effort towards 

comprehensive understanding of current chemotherapeutic options, its limitations and recent 

developments in drug designing and discovery. An insight into the proteins from different 

biological pathways attribute towards the identification of potential drug targets.

Current therapeutic option

The current treatment option for leishmaniasis relies solely on chemotherapy, indeed, the 

lack of effective and affordable drugs has led the attention of the scientific community 

towards drug research and development of therapeutic options. The WHO approved 

treatment regimen for antimonial was a 30-day treatment that costed between 120USD to 

150USD with cost effective disease intervention strategy [5-7]. However, later the long 

hospitalization period, cardiotoxicity [8], cirrhosis, pancreatic toxicity [9] and emergence of 

high proportions of drug resistant cases [10-12] led to the use of pentamidine in early 1980s 

as a second line therapy for refractory cases but it remained unaffordable for most patients. 

The high costs and toxicity issues raised public health concerns for safe and cost effective 

option [13], leading towards the emergence of amphotericin B and its lipid formulation as 

the second line therapy. However, the failure of antimonials and pentamidine along with the 

emergence of drug resistancen made amphotericin B as the first line drug in Bihar in 1990s.

Indeed, limited number of registered drugs for leishmaniasis with the high costs of 

treatment, toxicity and drug resistance remain significant challenges for health authorities. 

This led to the concept of drug repurposing, where the clinically approved drugs used for 

treatment of other diseases can be used for leishmaniasis. Repurposed drugs included the 

conventional drugs- amphotericin B, paromomycin, and miltefosine. Amphotericin B 
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deoxycholate (AmBD) has been used as antifungal agent later used for treatment of visceral 

leishmaniasis (VL) in India [14, 15]. The liposomal formulation (AmBisome; Gilead 

Sciences) of the drug has been efficacious for several fungal infections and beneficial in 

patients with renal impairment as well as neutropenia [16], later in 1997 it was approved for 

the treatment of leishmaniasis [17].

Miltefosine, only approved oral drug for leishmaniasis [18] was originally discovered for its 

anti-cancer properties [19, 20]. However, its use was limited due to the high cost, teratogenic 

potential and differential drug susceptibility in different clinical isolates [21]. Paromomycin, 

a broad spectrum aminoglycoside antibiotic, has been used for treatment of bacterial 

infections, also found effective against protozoal infections as giardiasis, amoebiasis [22] 

and later against leishmaniasis in 1960s [23-25] It is approved in India for the treatment of 

VL. However, being aminoglycoside, it poses the risk of development of drug resistance, if 

used as monotherapy. Drug repurposing has also provided us with delamanid, approved anti-

tubercular drug, with good efficacy in experimental leishmaniasis [26-28]. Multi-centre 

phase III trial suggested for use of paromomycin as registered drug for VL in India [29], but 

its efficacy was poor in Sudanese population where parasite clearance was below 50% [29]. 

Sitamaquine was another orally administrable drug with good efficacy in Indian[30] and 

Kenyan[31] population but significant nephrotoxicity, associated with the drug, abandoned 

its use. The growing issue of drug resistance called upon the use of combination therapy 

(miltefosine, antimonials, AmB and parmomycin in different combinations) which has been 

known to act synergistically and efficacious at lower doses.

Inspite of the large population suffering from disease, the funds for the research and 

development of treatment options has been limited. One or the other limitations associated 

with current chemotherapeutic options calls for an urgent need for development of newer 

therapeutic options. Therefore, significant research in the field of therapeutic development 

has led towards the study of several target molecules for disease intervention.

Novel therapeutic options and drug discovery

Despite the remarkable researches for development of drug targets, chemotherapy remains to 

be the mainstay of successful treatment. As leishmaniasis affects poorest of poor with 

meagre returns on investments, pharmaceutical industry has low interest in development of 

new antilieshmanial drugs. In 2000, only 0.1% contribution in health research was reported 

for malaria, leishmaniasis, trypanosomiasis and tuberculosis, while the estimated global 

burden for these diseases was 5% [32]. A sense of urgency for disease management led the 

policymakers to frame objective for assessment of new options. The drug discovery process 

from identification of active compound to its establishment as clinical candidate has been an 

arduous task; however, it remains to be the main goal of VL elimination programme. This 

section of the review aims to look into the researches in determining the novel candidates as 

drug targets.
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Ongoing developments:Phytoproducts/Compounds as therapeutic agents

Phytotherapy is the study of the use of extracts from natural origin as medicines or health 

promoting agents. There has been growing interest in utilization of medicinal plants for 

treatment of different diseases [33]. Medicinal plants have further been a choice amongst 

general masses as a safe and inexpensive option for different ailments.

Historically, use of medicines for treating different diseases began with the use of herbs. 

During ancient times, in Mediterranean civilization, healing was associated with the use of 

herbs. Later advances in chemical sciences provided a platform for isolation and extraction 

of components of plant origin. Phytomedicines are the medicinal products derived from the 

plant extracts. These phytomedicines usually have complex chemical composition attributed 

to the presence of chemical groups including-alkaloids, phenylpropanoid, flavonoids, 

terepenoids and sterols [34-36]. Phytotherapy, these days is flourishing in search for low cost 

anti-leishmanial agents with fewer side effects and chemical diversity of plant extracts make 

them pharmacologically relevant for use as drug. Many research communities have 

discovered anti-parasitic drugs, however, leishmaniasis has received less attention. 

Therefore, search of novel therapeutic options remains to be of high priority for treating this 

neglected tropical disease. In last few decades, many new evidences for the use of medicinal 

plants for treatment of leishmaniasis have been reported. The noteworthy researches in this 

field remain to be the use of Kalanchoe pinnata, with triterpenes, sterols and flavonoids as 

the major constituents [37]; table 1 summarizes the major secondary metabolites/compounds 

with potent antileishmanial activity. The leishmanicidal activity was reported [38] to be 

similar to the meglumine antimoniate upon oral administration without any toxic side 

effects. The anti-parasitic activity has been attributed to macrophage mediated elevated 

levels of nitric oxide [39]. Studies from human CL model have reported significant reduction 

in lesion size without any alteration in serum transaminases, urea, alkaline phosphatase[40].

Naphthoquinone are another class of secondary metabolite from plant with potential anti-

leishmanial activity. Plumbagin, naphthoquinone has been reported to inhibit trypanothione 

reductase from L.donovani and induces mitochondria mediated cell death [41]. Aloe vera 

leaf exudate has also been established to have potential antileishmanial activity against 

different Leishmania spp. by triggering programmed cell death [42]. The list of 

antileishmanial compounds does not end here; there are plethoras of plant derived products/

chemical compounds which have shown potential antileishmanial activity that remains 

beyond the scope of current article.

Nanotechnology based therapeutic options

In recent years nanotechnology has revolutionized the field of drug designing and 

development. It has been a promising tool in parasitic diseases where the parasite 

recrudescence against conventional chemotherapeutic options. Nanotechnology has provided 

a platform for drug development in two ways: design of drug delivery systems and nano-

formulation of drugs which are easy targets for phagocytosis by macrophages therefore, 

causing targeted delivery of drug. Nanotechnology has managed to invent nanoparticles for 

drug delivery as carriers, liposomal formulation of amphotericin B reduces its toxicity 

Sundar and Singh Page 4

Expert Opin Ther Targets. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profile [43] Their biodegradability and non-immunogenic properties make them suitable 

candidate for research and therapeutic applications. Initially, nanotechnology approach for 

drug delivery used nanodisks impregnated with amphotericin B, polymeric nanoparticles 

loaded with pentamidine etc. Gold nanoparticles conjugated with quercetin was found to 

effective in sodium stibogluconate and paramomycin resistant parasites [44]. 

Nanotechnology has further improved the conventional leishmanization approach utilizing 

the liposome-protamine-DNA nanoparticle with immunostimulatory CpG for inducing TH1 

type immune response in BALB/c during L.major infection [45]. On the other hand, the 

conventional autoclaved parasite formulation of vaccine has been modified with the nano-

formulation, where autoclaved L.major with PLGA and CpG showed highest IgG2a/IgG1 

ratio and IFN-γ production induced strong immune responses against parasite in BALB/c 

mice [46]. Also, there are several micro- and nano-immunostimulatory adjuvants which have 

been used to enhance vaccine delivery and served as candidate leishmaniasis vaccine [47]. In 

this context, plasmid DNA encoding KMP-11 with poly(lactic-co-glycolic acid)(PLGA) 

nanoparticle elicited strong cellular and innate immune responses in the form of high levels 

of IFN- γ and TNF-α and significantly decreased parasite loads at infection site therefore, 

encouraging nano-based systems for vaccine development in mice model enhancing innate 

immune responses [48, 49]. Additionally, chitosan nanoparticles in combination with 

superoxide dismutase increased TH1 immune response therefore, providing a great option 

for development of single dose nanovaccine against leishmania infection [50]. One of the 

remarkable breakthroughs has been the high efficacy of nanoformulation of amphotericin-B 

with good safety profile and low production cost establishing it as a better alternative to 

conventional amphotericin B [51]. Recently, amphotericin B formulation with engineered 

poly (propylene-imine) dendrimeric nanoconjugate has been reported to have higher 

parasiticidal activity with reduced toxicity for macrophages as reported from in vitro and in 
vivo assays [52]. Nanoliposomal formulation of 1,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP) with soluble leishmania antigen (SLA) has been documented to enhance TH1 type 

of immune response and induces protection against L.major infection. Similarly, engineered 

DOTAP has been reported as conjugated nanoparticle with amastigote class I nuclease, 

second generation vaccine candidate improved the TH1 response and therefore, serving as 

promising candidate for vaccine development against CL [53]. Thus, nanotechnology has 

illuminated the way towards vaccine and drug development by improving its therapeutic 

proficiency.

Ongoing developments and emerging targets

Metabolic pathways as therapeutic target

Current chemotherapeutic drugs are known to target various metabolic pathways. 

Pentavalent antimonials interfere with DNA replication, fatty acid oxidation, ADP 

phosphorylation and glycolysis. Amphotericin B acts to target ergosterol in parasite cell 

membrane. Miltefosine induces apoptosis, parmomycin inhibits cytochrome C in 

mitochondria and pentamidine reduces membrane potential and inhibits topoisomerase in 

mitochondria. However, currently, available options suffer from limitations of high cost, side 

effects and drug resistance and calls for alternative options. The conventional drugs target 

different biomolecules, indeed, drugs with greatest efficacy are directed against protein 

Sundar and Singh Page 5

Expert Opin Ther Targets. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets [54]. Indeed, the major concern for therapeutic target remains the identification of 

degree of homology between the host and parasite proteins and therefore, selecting 

inhibitors which reacts with parasite protein without damaging the host system [55]. The 

drugs directed against the energy metabolism remained to be the choice that included many 

protein targets for therapeutics. Figure 1 provides an overview of five decades of studies 

targeting different metabolic pathways in Leishmania. Glycosome and mitochondria are 

main energy production houses being the sites for glycolysis and Kreb’s cycle as well as 

oxidative phosphorylation, respectively.

Indeed, blocking of any step of glycolysis causes an arrest of the glycolytic influx and thus, 

parasite killing. This was also demonstrated in T.brucei where glucose starvation or 

incubation with glucose transporter inhibitor led to parasite death within minutes. Similarly, 

pentalactone or bromopyruvate, inhibitors of glyceraldehyde-3-phosphate dehydrognase and 

inhibitors of pyruvate killed the parasite but these studies suffered limitation since, these 

inhibitors blocked the human counterpart. Despite the major contribution of mitochondria-

mediated breakdown of fatty acids in Leishmania life cycle, glycolysis remains an important 

process. Structure of enolase has not been deciphered while few atypical residues have 

reported which could serve as drug target. Pyruvate kinase structure has been determined in 

L.mexicana with unambiguous selectivity feature which makes it a candidate for drug 

targeting. Similarly, glyceraldehyde-3-phosphate dehydrogenase has been depicted with 

30% homology with human counterpart making it an important candidate for drug 

designing. Most of the enzymes of glycolytic pathways are localised inside glycosomes and 

this compartmentalisation promotes parasite survival, and thus, inhibitors designed for 

preventing their transport by blocking membrane transporters responsible for glucose flux 

through the glycosome can serve as a drug target.

Mitochondria, vital organ for parasite survival, serves as target for several drugs. The insight 

into the mechanism of action of drugs emphasises the role of this organelle as a key 

determinant for disease pathogenesis. The proteins in mitochondria have been derived from 

two sources- nucleus and small part encoded by mitochondria itself. Currently available 

studies on trypanosomatid mitochondria are scarce, however, the available set of findings 

established the essential role for this organelle and its peculiarities as compared to human 

counterpart making it an attractive candidate for drug development. Experimental evidences 

suggest mitochondria targeting by conventional chemotherapeutic approaches. Amphotericin 

B results in membrane permeability and rapid decline in mitochondrial membrane potential, 

likewise, pentamidine also destroys membrane potential [56], miltefosine inhibits 

cytochrome C oxidase [57]. On the other hand, Leishmania transmembrane redox system 

differs from mammalian cells in being less sensitive to cholroquine and more sensitive 

towards niclosamide [58] therefore, suggesting the possibility of membrane electron 

transport and proton pumping to act as an attractive therapeutic target.

A number of researches for the antileishmanial agents led to establishment of chalcones as 

potential drug which targets ultrastructure and functions of mitochondria [59, 60], later its 

ability to inhibit fumarate reductase[61] has established it as potential drug target. Endochin-

like quinolones (ELQs) has been another potent inhibitor of cytochrome bc 1 in Plasmodium 
[62]. It has been shown to have toxic effects on amastigotes of L.donovani and L.mexicana, 
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however, hydroxynaphthoquinone buparvaquone acts as more potent inhibitor of electron 

transport, ATP production and parasite growth [63] raising concern for targeting cytochrome 

bc1 as potential therapeutic option.

Other inhibitors of mitochondria included benzophenone-derived bisphosphonium salt 

which targeted complex II [64]; and anti-malarial compound artemisinin, have shown anti-

leishmanial activity by inducing apoptosis [65] Hydroxynapththoquinone atovaquone 

inhibits L.infantum [66]; tafenoquine, analogue of primaquine, causes mitochondrial 

dysfunction by inhibiting cytochrome c reductase (complex III) decreasing oxygen 

consumption and mitochondrial membrane potential and ultimately apoptosis [67].

Mitochondria remains to be the principal site for fatty acid metabolism where 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reductase from L.donvani [68] has been established as 

potential drug target. Similarly another drug target, fatty acyl-CoA ligase regulates cellular 

homeostasis of lipid, differentially regulated in antimony resistant L.donovani [69] affirming 

its potential as a drug target. Sterol biosynthesis has been important constituent for cellular 

functions and maintenance of cell structure. The major sterols in trypanosomatids are 

ergosterol and 24-methyl sterol, essential for growth and viability. This makes, sterol and 

fatty acid metabolic pathway, attractive drug targets. Several other enzymes involved in 

sterol biosynthesis has been reported for their potential as drug target including- squalene 

synthase [70], squalene epoxide [71], farnesyl diphosphate synthase [72, 73], sterol methyl 

transferase[74, 75], sterol 14 alpha demethylase[76, 77] and many more as demonstrated in 

different chemical inhibition studies. Recent reports have suggested combination targeting 

where two steps in sterol biosynthesis are targeted at once using imipramine and 

miconazole[78].

Edelfosine has recently been demonstrated as target drug for disrupting the mitochondrial 

membrane potential by recruiting F0-F1 ATPase in the lipid raft, driving DNA disruption 

and thus serving as novel drug target for the treatment of leishmaniasis[79].

Polyamine metabolism remains another important candidate pathway for the drug designing. 

Polyamines are strongly associated with cell survival, growth and proliferation. Arginase is 

the first enzyme in polyamine biosynthetic pathway [80]. Other enzyme as potent drug 

targets include ornithine decarboylase[81, 82], S-adenosylmethionine decarboxylase(S-

AdoMet inhibitor CGP40215A, 1996) [83], spermidine synthase [84], trypanothione 

synthetase [85, 86], trypanothione reductase [87], tryparedoxin peroxidase [88], 

deoxyhypusine synthase [89], and deoxyhypusine hydroxylase[90].Polyamine transporters-

putrescine transporters, DAB, LmPOT1 etc. [91-93].

Folate metabolism constitutes another crucial biochemical pathway essential for parasite 

survival [94]. The potential drug targets from folate pathway include pteridine reductase, 

dihydrofolate reductase-thymidylate synthase [95, 96], folylpolyglutamate synthetase [97] 

and serine hydoxymethyl transferase [98].
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Antimicrobial peptides as therapeutic target

Antimicrobial peptides (AMPs) are multifunctional, cationic protein weapons of innate 

immune system in wide range of species. These are usually expressed at low levels but 

upregulated upon infection or inflammation [99]. It constitutes the most primitive but 

important immune defense armory because of its rapid action, broad target range, 

amphipathicity and flexibility of utilization in conjunction with existing regimens [100]. The 

AMPs serves many functions as chemotactic agents for leukocytes, interact with the 

microbial membrane inducing autophagic [101], necrotic or apoptotic cell death [102]. 

These are structurally diverse peptides, with high content of basic amino acid residues while 

certain subsets are also rich in cysteine allowing for their functionality[103]. In spite of its 

wellknown role to destabilize the membrane, it also penetrates intracellular organelles and 

has pleiotropic effect on bioenergetic function of cells [104, 105]. Several AMPs have 

antileishmanial activity including dermaseptin[106], phylloseptin [107], bombinins[108], 

temporins [109], spinigerin [110] and magainins[111]. Other class of AMPs expressed in 

mammals include cathelicidin (Protegrin-1,SMAP-18,-27) [101] and defensin [112] which 

influence host inflammatory responses by serving as chemokines or inducing chemokine 

secretion by other cells leading to migration of neutrophils, monocytes and macrophages. 

Chemokines have also been known for their antimicrobial peptide activity on pathogens 

termed as kinocidins [113-115]. Further, several other AMPs from different species have 

been known to effect Leishmania [116]. However, the clever parasite overcomes this innate 

barrier of AMPs by employing leishmanolysin (gp63) as documented from knock-out 

studies in mice [117]. It is unlikely that leishmanolysin has significant effect on Leishmania 
resistance against AMPs as the parasite resides in phagolysosome. These AMPs have been 

known for inducing cell death in the parasite using different mechanisms. These AMPs 

break the membrane potential, equilibrate the internal as well as the external pH without 

perturbing the cell membrane and alters ATP content as documented from in vitro as well as 

in vivo studies [105, 111, 118]. The AMPs have less activity in LPG-deficient as well as late 

stationary phase parasites (LPG enriched) suggestive of the LPG mediated alteration in the 

membrane as regulator of AMP activity. They induce formation of vacuoles without any 

alteration in their activities upon caspase-blocking indicating for their ability to cause 

autophagy mediated cell death in parasites [101]. While other class of AMPs from human 

salivary gland causes disruption of mitochondrial membrane potential, decreased oxygen 

consumption and ATP depletion[119]. Therefore, it is well understood that different classes 

of AMPs disrupts parasite membrane, target mitochondria [119] and delocalize intracellular 

calcium crucial for inducing cell death by affecting mitochondrial activity. Intracellular 

AMPs affect calcium reserves in parasites (acidocalcisomes, glycosomes and/or 

endoplasmic reticulum) [120]. These researches have provided reasonable basis for the 

development of AMP based therapeutic targets as suggested from the preliminary evidences 

from animal studies [112, 121].

However, there are a number of AMPs which have been screened against Leishmania, the 

picture of development of AMPs based anti-leishmanial agent still remains elusive because 

of limited studies on amastigote form of parasite and intracellular nature of the parasite 

making it difficult for access by AMPs. Additionally, given the differences in surface 

Sundar and Singh Page 8

Expert Opin Ther Targets. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



architecture of two forms of parasite, there always remains a need for developing/screening 

AMPs against the amastigotes. However, studies from mice model reported the absence of 

cathelicidin-AMP associated with exacerbated infection [122], therefore, augumentation of 

intracellular AMP expression may serve as novel therapeutic approach. AMPs can also be 

targeted in the vector where parasite grows and differentiates [123] so, understanding of role 

of vector AMPs in parasite dissemination remains a crucial checkpoint for intervention of 

parasite transmission from insect to humans and therefore, this could serve as a major 

breakthrough in controlling the number of new cases and asymptomatic carriers of disease.

Proteasome and cell cycle as therapeutic target

Proteasome is multi-subunit protein complex in the cytoplasm and nucleolus, which 

regulates cellular protein turnover and degradation of misfolded proteins. It has two main 

components- the core particle and the regulatory subunit. Proteins destined for degradation 

are conjugated with ubiquitin (in eukaryoes) or ubiquitin-like protein (pup) (in prokaryotes) 

[124]. These proteins are then recognised by regulatory proteins flanking the proteolytic 

core of proteasome. These proteins then unfold polyubiquitinated proteins, threading it 

through the narrow opening of the core subunit upon the removal of ubiquitin and pup 

chains [125] [126]. The ubiquitin-proteasome system from protozoans has been widely 

studied [127]. The study of proteasome as drug target dates back to the 90s when use of 

proteasome inhibitors altered the cell growth, development and differentiation of the parasite 

in concentration-dependent manner [128]. In vitro assays in L.donovani with 2 1M MG-132 

or 5 1M suggested for induction of programmed cell death in parasite while the surviving 

parasites were short with rounded apical ends and damaged mitochondria [129]. Treatment 

with conventional proteasome inhibitor, lactacystin, caused sharp decline in the parasite 

viability in the macrophages [130]. Phenotypic screening of three million compounds and 

hit-to-lead optimization against Leishmania donovani, Trypanosoma cruzi and Trypanosoma 
brucei identified efficacious compound for VL, CL, Chagas disease and trypanosomiasis 

targeting parasite proteasome [131]. A high-throughput proteomic study at Genomics 

Institute of the Novartis Research Foundation (GNF), led to the identification of a compound 

termed GNF5343, GNF6702 with good efficacy for L.donovani, T.brucei and T.cruzi 
cultures [131].

There are reports from mitochondrial protein, Ufm1 from Leishmania, has been suggested as 

a protein drug target [132] which has shown remarkable similarities between mammalian 

and Leishmania conjugation system. This has fueled the idea for use of anticancer drugs that 

target ubiquitin pathway as a key for development of the antiparasitic drug which has been 

suggested as protein drug target. The anti-parasitic effect of disruption of this pathway leads 

to decreased parasite survival therefore, increasing its recognition as a potential therapeutic 

tool. Deubiquitinases are another key regulator of ubiquitin-proteasome pathway, exploited 

as anti-cancer weapon has further been of interest for development of antileishmanial drug 

because of the ability of the parasite to obstruct host protein degradation system for its 

survival [133] provides impetus for utilizing this pathway as therapeutic option.

There are varieties of diseases with defective protein kinase signaling, which is usually 

required for progression of cell cycle therefore, paving the way for use of specific inhibitors 

Sundar and Singh Page 9

Expert Opin Ther Targets. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to target these molecules for drug development. Leishmania has tightly controlled cell cycle 

program regulated by cyclin-dependent kinases (CDKs). Several small chemicals targeting 

CDKs are currently under clinical trial including alvocidib[134], seliciclib [135] etc. Due to 

their pivotal role in cell cycle these proteins serves as attractive target for drug discovery. 

The studies from mammalian and parasite system have revealed for many homologues in 

parasites e.g. CRK3 [136]. The protein kinases from cyclin-dependent kinase, cAMP-

dependent kinase and mitogen activated protein kinase families are major target molecules 

from the parasite.

CRK3 in Leishmania is essential for proliferation and has been targeted for drug 

development with the use of chemical inhibitors [137]. The report from other cell cycle 

target from Leishmania is aurora kinases, essential for cell division has been established by 

bioinformatic as well as immunoproteomic approaches as drug target whose inhibition led to 

aberrant changes in cell cycle progression and parasite viability [138].

Histone acetyl transferase and histone deacetylases are another group of important 

molecules required for regulating gene transcription, cell cycle progression and essential for 

parasite survival. It has been reported to have therapeutic potential by pharmacological 

studies [139]. SIR2 family proteins are another interesting candidate for parasite survival 

and stage specific as documented in genetic deletion studies [140]. Recent findings on 

Leishmania glycogen synthase have revealed for its role in cell cycle progression therefore, 

drugs targeting this enzyme has therapeutic potential [141].

Metacaspases, known for their apoptotic function remains one the key components of the 

actively replicating amastigote and promastigote. However, its overexpression has been 

associated with growth retardation, changes in ploidy and impaired cytokinesis. Indeed, 

essentiality of metacaspases for segregation of the nucleus and kinetoplast apart from its role 

in programmed cell death, and absence of mammalian counterpart [142] makes this enzyme 

potential candidate with therapeutic application.

Secretory proteins/secretion pathway based therapeutic targets

Leishmania secretes a wide array of proteins in the extracellular milieu to cope with the 

hostile macrophage environment [143-146]. These secretory proteins are trafficked through 

eukaryotic secretion pathways where proteins are folded in endoplasmic reticulum and 

transported through the golgi for secretion outside the cell. So, processing and secretion of 

virulence factors remains crucial for parasite survival in the host [147].

Endoplasmic reticulum (ER) remains the key organelle for the secretory pathway, where the 

folding and packaging of the proteins is done for its delivery to respective sites. It also 

serves as the check point for the misfolded proteins which then is destined for the ubiquitin-

proteasome system for their degradation.

Any kind of insult to ER activates unfolded protein response (UPR), which leads to 

activation of transmembrane proteins-Atf6, Ire1 and PERK. Computational modeling 

analysis revealed the involvement of PERK in L.donovani infection without measureable 

changes in the UPR-specific expression of BiP (ER chaperone) and increased sensitivity 
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towards ER stress-inducing drugs as compared to host macrophage, and these findings 

indicate ER stress as a pathway of therapeutic interest [148]. In addition to the UPR, there is 

extremely well coordinated quality control machinery of ubiquitin-proteasome system in 

cytosol termed as the ER associated degradation (ERAD), which degrades misfolded 

peptides upon extraction from ER [149]. However, the protozoan parasites contain minimal 

ERAD network therefore, these parasites are highly sensitive to inhibition of protein quality 

control system components. Recently, ER stress on L.amazonensis infection was associated 

with TLR2 dependent XBP1 formation that ultimately induced IFN-β expression and altered 

the oxidative response of infected macrophages causing parasite proliferation [150]. Thus, 

targeting this transcription factor can have potential therapeutic implications.

The PERK/ATF4 pathway plays an important role in protein homeostasis and is exploited by 

the parasite to establish infection. PERK signalling also diminishes translation and induces 

ATF4 expression which drives cell survival or induces cell death. PERK/eIF2α/ATF4 

signaling is known to induce upregulation of cytoprotective autophagy genes, such as ATG5 

and ATG7, which promotes cellular survival [151] and parasite infection [152]. Chemical 

inhibition studies for screening of potential drugs identified GSK2606414 targeting the 

kinase domain of PERK. It has already been used as an anti-cancer agent [153], and 

targeting these pathways can have therapeutic implications.

There are significant numbers of secretory proteins produced by the parasite during host 

invasion. Some of these secretory products are important virulence factors, and processing 

and transport of these proteins outside the cell [147] comprises a crucial component of 

parasite life cycle in the host. A number of proteins involved in protein folding and quality 

control of ER-mediated chaperoning activity involves-calreticulin [154], BiP [155] and 

protein disulfide isomerase (PDI) [156]. Calreticulin constitutes critical players of ER 

quality control of secretory proteins. However, its overexpression is associated with 

decreased survival inside macrophage, and altering the function of ER chaperone [157] 

affects protein secretion and thus a potential candidate for drug discovery.

ER also remains an important constituent of parasitophorous vacuole (site of parasite 

residence) as documented by blocking the N-ethylmaleimide-sensitive factor attachment 

protein receptors (SNAREs) which causes fusion of early secretory vesicles. Blocking 

SNARE does not affect ER morphology but significantly reduced parasite replication [158] 

therefore, providing clues for utilizing SNARE complex as therapeutic option for targeting 

the disease.

On the other hand involvement of protein disulfide isomerase (PDI), a key molecule in 

regulating ER quality control process of protein processing [159] has also been suggested as 

one of the demanding drug targets whose depletion is associated with cytotoxic effects and 

ultimately apoptosis [160, 161]. Chemical inhibition studies has further shed light on the 

essential role of these chaperones as regulator of parasite survival [160]. Signal peptide 

peptidase (SPP) is amongst other important candidates, due to its high selectivity for 

misfolded/unstable proteins for degradation [162], and makes them a choice for drug target. 

As a pathway for identification of drug targets, the ER mediated pathway of protein 

processing has not been much explored therefore, there remains a need to study the role of 
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ER proteins which serves as the key regulators of parasite life cycle. This would be of great 

help in laying the base for the drug designing and therapeutic intervention.

Epigenetic manipulations as therapeutic option

Parasitic organisms have evolved the strategy to promote their survival in the host by playing 

with the host transcriptional machinery. Alteration in the host transcriptome and proteome 

profiles using different weapons of parasite origin leads to disease pathology.

In recent times, epigenetics has gained attention of scientists, where heritable changes in the 

gene expression does not involve modification of core DNA sequence but depends on 

alteration of either DNA/histones. This alteration of DNA/histone affects the chromatin 

structure and gene expression. These modifications in addition to the changes in DNA 

methylation subverts the host cellular responses and drives the expression of genes favoring 

the growth and survival of the pathogen. These heritable long term changes promote disease 

pathogenesis and persistence of the pathogen within the host. In this section we discuss how 

epigenetic changes are brought about by the parasite, its implications in immune regulation 

and as a therapeutic target. The changes in DNA methylation attenuated NFкB1-mediated 

pro-inflammatory signaling [163], inflammatory reposnses [164], apoptosis, pathogen 

induced signalling and changes in host behavior. However, limited evidences are available 

for epigenetic effects of Leishmania infection on host cell, with recent research suggesting 

for epigenetic reprogramming of macrophage during L.donovani infection [165].

Recent years have experienced a plethora of researches focusing on the epigenetic 

phenomenon in understanding disease biology. Epigenetic analysis provides fast, reversible 

and ready access to phenotypic changes which shapes the host-parasite interactions. These 

changes are brought about by the histone modifications, transcriptional and post-

translational regulatory circuits by altering the histone-DNA interactions. The remodelling 

of chromatin by T.gondii downregulated TNF-α [166], altered STAT1 mediated IFN-γ 
responses [167]. Moreover, the host epigenetics has also been known to be altered by 

microbial secretory products as reported from Listeria [168], influenza virus [169] and 

Legionella [170] studies. Diverse effectors from microbial agents have been known to inhibit 

cellular machinery including MAPK, IFN and transcription factor NF-кB signaling [171] as 

reported from Mycobacterium [172], influenza virus [169]. Therefore, providing compelling 

evidences for the pathogen mediated induction of epigenetic modification in the host.

Recently, non-coding RNA (nc RNAs) and miRNAs have also been reported as the 

regulators of epigenetic processes by DNA silencing by post-transcriptional regulation 

[173]. Epigenetic control of pathogen virulence has been well known from studies including 

Salmonella, where lack of DNA adenine methyltransferase led to impaired invasion 

capacities, envelope instability, reduced motility in the pathogen [174]; Plasmodium 
switches its protein expression to overcome host immune responses [175].

In the light of limited data available for the effect of epigenetic changes in the host 

macrophages and most of the evidences, available till date, are correlational, and pathogenic 

proteins mediated changes in the host epigenetics are still to be described. The scope for 
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targetting the parasite-mediated changes in the host epigenome, and directly modulating the 

host epigenome, arresting the pathogen developmental switches inside host or limiting their 

virulency with the use of chemical inhibitors, RNAi (RNA intrerference), gene knockout, 

etc. could opens up new avenues for targeting histone modifying enzymes, DNA 

methyltransferases and chromatin therefore, providing the science with the new concept of 

“epigenetic therapy”, which may serve to deal with the issues related with drug resistance.

Iron homeostasis as therapeutic target

Iron is one of the crucial components of the cell which cycles between ferrous and ferric 

forms enabling the organisms for performing several life sustaining biological processes. 

Iron forms active part of diverse proteins such as aconitase, ribonucleotide reductase, 

cytochromes and Fe-S proteins of electron transport chain [176]. Additionally, it forms an 

active ingredient of collagen, tyrosine catecholamines [177] as well as immune responses in 

mammals. Iron homeostasis is stringently regulated in prokaryotes as well as eukaryotes. 

Leishmania has LIT1 (Leishmania iron transporter) as one of the crucial iron transporters 

[178], expressed in iron deficient environment and serves to increase iron flux. This serves 

as a trigger for parasite differentiation. Genetic deletion studies revealed the replication 

defect inside macrophages and avirulent state of the parasite[179]. Recently, LIT1 up-

regulation has been associated with increased super oxide dismutase activity and reactive 

oxygen species therefore, regulating parasite differentiation[180]. Genome researches have 

led to the identification of LFR1, membrane protein with heme, FAD and NADPH-binding 

sites in transmembrane regions. Together with LIT1 it equips Leishmania with inorganic 

iron acquisition pathway. LFR1 accounts for ferric reductase activity and deletion studies 

have reported its role in parasite differentiation [181]. These findings suggested for 

therapeutically targeting these transporters for disease intervention.

Iron is also a constituent of mitochondrial superoxide dismutase which mediates parasite 

protection and redox signalling as demonstrated by RNAi-studies. Genetic deletion studies 

further validated their role in driving susceptibility of parasite to ROS-induced stress and 

differentiation[182]. Thus, this molecule should be considered as drug target. Bioinformatics 

and florescence microscopy based study revealed LmABCB3 as important mitochondrial 

target molecule. It is ATP-binding cassette (ABC) half-transporter with metal binding 

domain responsible for mitochondria dependent heme and iron-sulfur cluster synthesis. 

Thus, LmABCB3 transporter is essential for parasite survival, and represents novel target for 

combating leishmaniasis [183].

LABCG2, another ABC subfamily transporter, plays vital role in parasite virulence. It is 

required for externalization of phosphatidylserine, as an adaptive strategy for macrophage 

invasion. Mutation studies from this transporter indicated for decreased pathogenesis as well 

as virulence of the parasite [184]. Moreover, evidences from susceptibility and biotinylation 

assays reported the overexpression of LABCG2 in antimony resistant isolates as documented 

by sequestering metal-thiol conjugates [185]. Similarly, LABCG1 was also found as the key 

player working hand in hand with LABCG2 in regulating metacyclogenesis, infectivity, 

oxidative stress and autophagy [186]. Thus, these transporters could be used as therapeutic 

targets, and with these, cure of drug resistance is also a possibility. LHR1 remains another 
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important target molecule of iron homeostatic pathway of parasite. Fluorescence tagging and 

genetic deletion studies has unveiled the role of this transporter in parasite survival [187, 

188] and virulency [189], targeting this transporter for therapeutic purpose can be effective 

in these intervention of trypanosomatid diseases.

LMIT1, mitochondrial iron transporter identified in Leishmania has been found to be crucial 

for parasite viability and differentiation. The parasites with reduced LMIT1 expression 

showed growth defects, severe defects in iron content and susceptibility for ROS. The 

involvement of this iron-dependent transporter in mitochondrial redox balance and parasite 

virulence opening horizon for targeting iron metabolism for therapeutic benefit [190].

Other host based iron homeostatic regulators include-DMT-1(Divalent metal transporter) 

[191], Tf/TfR (transferrin/transferring receptor)[192], hepcidin[193], ferroportin [194] and 

IL-6 receptor [195] which can be selectively targeted for therapeutic benefits.

Kinome based therapeutic targets

Kinome represents the complete set of protein kinases encoded by the genome. Protein 

kinases serve as an important arm of cellular programming. Post-genomic era has 

experienced technological advancements which has served as the landmark in understanding 

the disease biology and unraveled the relative contribution of parasite genes in disease 

progression [196, 197]. In-depth genomic and functional analyses have suggested 

phosphoinositol kinase (PIK) pathway as popular targets for development of drugs in the 

treatment of several diseases. Recent years have experienced a plethora of chemical and 

natural products targeting specific protein kinases, several are under clinical trials.

Protein kinases have a crucial role to play, in parasite life cycle as discussed in recent articles 

including mitogen-activated protein (MAP) kinases, PI3 kinases, NF-кB signalling 

[198-201]. On the other hand, complement receptors also play important role in activation of 

protein kinases in turn regulating host immune responses.

Cyclin-dependent kinases (CDK) are most studied amongst kinases as a target for 

leishmaniasis. As already discussed above, CDKs play important regulator of cell cycle, 

therefore, inhibitors targeting the ATP binding to the catalytic site of CDKs [202], could 

serve as potent drug targets. In this context, flavopiridol is worth mentioning as it is the first 

CDK inhibitor that reached clinical trial. Recently, Abl-family of kinases (discovered as 

oncogene in Abelson leukemia virus) have been reported by Wetzel et al. as non-receptor 

kinases[203]. These kinases have been known to play important role in cell-cell contact, 

cytoskeletal rearrangement during phagocytosis and cell motility [204]. The chemical 

inhibition studies and knock down studies has further elaborated the role of these kinases 

during infection. The combination of Imatinib (Abl-family kinase inhibitor) with 

conventional chemotherapeutic choices could have a potential role in controlling parasite. 

Abl-family kinases during Shigella [205], Chlamydia [206] and Mycobacterium infection 

[207] have already been established. MAPKs are signal transducers that regulate cytoskeletal 

rearrangements, proliferation, differentiation, immune responses and diversity of other 

cellular responses.The MAPKs displays conserved residues for their regulatory roles. The 
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cascade of events initiates with MAPK activation, followed by its phosphorylation and 

involvement of different transcription factors that alters gene expression [208] and 

epigenetic modifications by affecting histone remodeling [209], JNK(c-Jun activated 

kinases) [210] and p38 stress-response MAPKs [211]. Although modest body of work has 

been reported, however, utilizing the phylogenetic differences between MAPKs of parasites 

and host as well as the upstream MAPK regulators can be of great relevance in developing 

new therapeutic options. LmaMPK7 is the only MAPK known for controlling the parasite 

virulence, in its active form [212] while decreased LdMAPK1 has been associated with 

antimony resistance [213]. Therefore, these studies lay the foundation stone for exploiting 

this MAPK for development of the noninfective parasite which can be of relevance as an 

immune boosting strategy for controlling parasite. Protein kinase regulated by RNA 

constitutes another class of kinases involved in promoting parasite burden during 

L.amazonensis infection [214] Similar studies from Mycobacterium infection [215] suggest 

designing of inhibitor based approaches for targeting this protein kinase towards therapeutic 

advantage. However, reports from L.major infection were contrasting with the 

L.amazonensis dataset [216], and this could be attributed to different host-parasite 

interaction and downstream signaling. Other kinases include casein kinase which remains 

important drug target due to its essence for parasite survival and virulency [217, 218]. NEK 

kinases [219, 220], CLK and DYRK are other protein kinases [221] are potential candidates 

as drug targets. Several CDK family members including cdc2-related kinases(CRKs) [222], 

tyrosine kinase[223], glycogen synthase kinase [224], PI3 kinase, Src kinases [225], JNK 

[226] are other potential drug target.

Calcium homeostasis as therapeutic target

Calcium remains an important component of cellular homeostatic machinery essential for 

cell viability for all organisms ranging from mammals to parasites and non-mammals [227, 

228]. Any kind of perturbation in the calcium homeostasis severely affects the cell viability, 

leading to cell death [120, 229]. Calcium also plays crucial role in protozoan parasites by 

regulating flagellar, ciliary movements [230], exocytosis and regulator of several enzymatic 

activities including adenylate cyclase [231], cAMP phosphodiestrase [232], protein 

kinases[233] and guanylate cyclase [234].

In trpanosomatids, the levels of calcium regulated at cytoplasmic level where the regulatory 

control is under: ER, mitochondria and acidocalcisome[235]. At the plasma membrane level, 

Ca+2-ATPase, membrane channel is regulated by calmodulin in trypanosomatids [236, 237], 

another transporter in internal membrane of mitochondria drives calcium-ion accumulation 

[236, 238]. All these system of homeostatic machinery work in coordination for maintaining 

the intracellular calcium equilibrium to serve as signalling messenger[227]. Calcium has 

also been known to play crucial role in differentiation of the parasite and its thermotolerance 

[239-241].

The alteration in the calcium levels are sensed by calcineurin which serves to activate the 

signaling cascade required for parasite differentiation and adaptation to cellular stress. 

However, genetic deletion of calcineurin led to devastating effects including changes in 

membrane fluidity, unfolded protein response along with the loss of virulence [242].
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ER remains the largest storage reservoir of calcium with different calcium influx and efflux 

pathways. Calreticulin is calcium storage protein in ER [232], SERCA (Sarcoplasmic 

reticulum Ca +2-ATPase) has been demonstrated in different trypanosomatids which serves 

as a virulence factor in Leishmania [243] could act as a potential therapeutic target. Calcium 

sensitive protein aequorin in the nuclear membrane has been known to mediate the flux of 

calcium in the nucleus of trypanosomatids[244]. Also, the nuclear membrane shows the 

presence of proteins that stain for BiP, calreticulin and TcSCA [245]. Mitochondria 

possesses calcium uniporter as already mentioned above, also, literature has evidences for 

calcium-uptake and release channels in trypanosomatids [238, 246, 247].

Acidocalcisome constitutes another important target site for the storage of calcium, 

pyrophosphates, polyphosphates and other elements [235, 248]. It has PMCA-type Ca +2-

ATPase responsible for calcium influx [235], while Ca +2/H+ exchanger has been 

demonstrated to be responsible for calcium efflux [249]. Calcium ionophores play important 

role in host-parasite interaction as demonstrated in T.cruzi infection, regulation of several 

protein kinases[221, 250] and parasite differentiation [251].

Noteworthy role of calcium in regulating parasite life cycle emphasizes for targeting calcium 

transporters could have therapeutic implications. In this regard, calcium channel blockers- 

fendiline, mibefradil and lidoflazine, etc. were found to have potent antileishmanial 

activities. However, the combination of these calcium blockers with the conventional 

chemotherapeutic options further elicited additive effect for clearing off the parasite by 

inducing mitochondrial depolarization, increased reactive oxygen species generation without 

plasma membrane disruption [252]. Therefore, use of calcium channel blockers has 

suggested for their utility as therapeutic candidates alone or in combination with 

chemotherapy for treating leishmaniasis. Likewise, bepridil has shown good 

efficacy[253],verapamil in combination with meglumine antimoniate has synergistic effect 

on parasite clearance[254].

Mitochondria remain the site for electron transport chain where four complexes coordinating 

the entire process. Rotenone-insensitive, NADH: quinone oxidoreductase constitutes the 

complex I in Leishmania and Trypanosoma without any human counterpart[255, 256]. The 

reports from various researches have suggested for the presence of complex II, and limited 

involvement of electron transport between complex I-III, makes succinate, primary electron 

donor for energy production. It has been characterised in Leishmania [257] and 

Trypanosoma [258], its absence in mammalian mitochondria makes it potential candidate for 

the drug designing.

Early efforts to target ETC dated back to the 90s when complex III (cytochrome bc 1 

complex) was analysed and amino acid differences in ubiquinone binding with the human 

counterpart made it an interesting target for drug development [259]. Complex IV has 

subunits encoded by nuclear and mitochondrial DNA [260], present in both Leishmania 
(Ldp27) [261] and Trypanosoma (Tb11.0400) [262], correlated with infectiousness of the 

parasite. Trypanosomatid ETC involves alternative oxidase as terminal electron acceptor in 

ETC, lost during evolution in mammals[263], does not participate in generating proton 

motive force across mitochondrial membrane [264].
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Other therapeutic targets

Leishmania undergoes preadaptation to the environmental conditions of the host 

macrophage. Autophagy constitutes an important component of parasite life cycle which 

involves cathepsins and cysteine peptidases for controlling protein turnover crucial step in 

parasite development and differentiation [265]. This established these molecules as 

therapeutic target for drug development.

Immunotherapy is the hottest area of research for disease intervention these days. It involves 

the host-directed immunotherapies, that targets the immune and inflammatory pathways for 

alleviating disease pathology [266]; cytokine based immunoregulatory therapy[267]; cell 

based therapy using dendritic cells, mesenchymal cell, etc. [268-271] and immune 

checkpoint blockade as well as monoclonal antibody based immunotherapy [272-274]. 

Combination therapy with monoclonal antibody has shown promising results in clearing off 

parasite burden even at a suboptimal dose of conventional chemotherapeutic approach [272]. 

Indeed, immunotherapy is in itself a broad research area which is beyond the scope of this 

article.

Recently, nicotinamidase, enzyme involved in assimilation of nicotinamide, nicotinic acid, 

nicotinamide riboside to synthesize NAD+ by salvage pathway. It constitutes a key 

component of parasite development and virulence, add-back and mutational studies has 

attracted the scientific community for designing novel inhibitors and utilize this molecule as 

a therapeutic target [275]. Leishmania utilizes purine pathway from mammalian system 

using different nucleoside transporters. Phosphoribosyltransferases constitutes a key 

component of purine salvage pathway including three main enzymes: hypoxanthine-guanine 

phosphoribosyltransferase, xanthine phosphoribosyltransferase and adenine 

phosphoribosyltransferase [276, 277]. Leishmania has several enzymes for breakdown of 

host nucleosides, nucleotide and nucleic acid before incorporation into its purine pools. 

Cloning, expression and immunolocalization has led to characterization of several 

nucleoside hydrolases [278-280], several nucleases/nucleotidases that generates free 

nucleosides [281] thereby making the purine accessible for translocation through 

transporters into the parasite.

Several transporters designated for purine acquisition include: LdNT1 [285], LdNT2 [283, 

284], LdNT3 and LdNT4 [285]. Nucleobase/proton symporters transporters from L.major –
LmaNT3 and LmaNT4 [286], demonstrated for their important role in parasite viability 

inside macrophage therefore, providing clues for the necessity of targeting the salvage 

pathway and acquisition systems for therapeutic purpose.

Glycoconjugates, present another interesting target molecule for therapeutic intervention as 

they are the key player in parasite survival and infectivity. Lipophosphoglycan (LPG) and 

proteophosphoglycan (PPG) are phosphoglycans with host immune subversion properties 

[287, 288], genetic deletion and mutation studies [289] established their importance as 

therapeutic target. Therefore, the functional role of these glycosylphosphatidylinositol (GPI) 

molecules and their biosynthetic pathways served as an essential factor for parasite virulence 
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[290] opening avenues for their exploitation for drug designing and discovery. Tubulins are 

another target molecule of interest for therapeutic intervention [291].

DNA topoisomerases plays vital role in DNA replication, repair, transcription and 

recombination forms another candidate for drug discovery. It has gained attention in recent 

years after success of camptothecin for cancer treatment when camptothecin analogs –

topotecan, gimatecan and irinotecan were shown to exhibit anti-leishmanial activity [292].

Recent study by Abidin et al. reports the activation of hematopoietic stem cells by the 

parasite, which in turn promotes infection. These finding suggest hematopoesis as a potential 

therapeutic target in leishmaniasis [293].

Apoptotic pathway serves as regulator of multitude of physiological processes ranging from 

cell division to cell death. Several proteases, metacaspases and chemical inhibitors have 

been proven to possess anti-leishmanial activity [294-296], also they play roles in 

determinant of host-parasite interaction as well as disease pathogenesis[297]. Therefore, the 

apoptotic pathway can serve as interesting therapeutic target for drug development.

Multiscale mathematical modeling and simulation have also led to the discovery of IPC 

synthase, a sphingolipid synthase present in acidic macrophage phagolysosome. It forms an 

essential component of disease pathogenesis and serves as another vital candidate for drug 

discovery therefore, interactome analysis can serve for the drug designing [298].

Cholesterol forms another important therapeutic target for leishmaniasis as documented by 

cyclodextrin-based alterations in membrane cholesterol levels [299]. Sterol 14α-

demethylase also forms an important therapeutic target for antiparasitic chemotherapy [300].

Autophagy associated peptidases also constitutes the class of therapeutic targets involved in 

protein turnover and remodelling, therefore constituting an important component of 

development, differentiation and virulence of parasites[301].

The parasite derived toll-like receptors (TLRs) ligands also forms target for therapeutics and 

vaccine development. Several membrane protein transporters, glucose transporters, sugar-

nucleotide and purine transporters [302] are also potential targets for drug development. The 

list of candidate molecules does not end here there are many more under evaluation and 

others with unknown functions have yet to be explored.

Expert opinion and Conclusion

In this review we have analyzed the recent developments in search for the candidate 

molecules for their potential use as therapeutic targets. The drawback associated with 

current chemotherapeutic approach led to the introduction of the single dose liposomal 

amphotericin B which showed satisfying treatment outcomes. This was the major 

breakthrough in drug development as to overcome the issues related to the development of 

drug resistance because of suboptimal drug concentrations and patient non-compliance. 

Additionally, combination therapies [303] have been expected to be efficacious in preventing 

disease recrudescence and provide better patient compliance. It has paved the way for 
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targetting multiple pathways in the parasite by inducing synergistic effect for clearing off the 

infection. However, the identification of combination regimen with characteristic features of 

good tolerance, minimal need of clinical observation and ambulatory care will be the priority 

for drug development. Therefore, discovery and development of new therapeutic tools 

remain highest priority.

The technical advances in nanotechnology and system biology have contributed to 

development of the drug designing and delivery systems with fairly good treatment 

outcomes in different models. Plant products and chemical compounds have been raising 

flags as potential and inexpensive alternatives for different forms of leishmaniasis which has 

been expected to consolidate the needs of low-income patients. Similarly, 

immunomodulatory and host-directed immunotherapies have further expanded the horizon 

for the multifaceted approach for disease cure. It appears that systematic molecular and cell 

biology approaches, drug repurposing, screening of off-the-shelf drugs have served for 

identification of novel candidates for drug discovery. Last decade has experienced boom in 

the immunotherapy and immunochemotherapy defines the remarkable progress in the 

research for therapeutics. However, variability in the potency of host responses to different 

pathogens needs to be standardized which calls for heavy investments from government and 

industries. The search for new therapeutic targets continued and led to the study of metabolic 

pathway as drug targets for therapeutic benefit. There are several pathways as the targets for 

the development of therapeutic tool several of which have being documented for their ability 

to improve clinical symptoms and decrease parasite load. Mitochondrial targeted approaches 

have significantly gained the interest of the scientific communities however, there are many 

other potential pathways that have emerged in recent years. Therefore, there always remains 

an urgent need for the development of therapeutic option with potential of cure or reverse 

severity of clinical manifestation. Leishmaniasis elimination program in developing nations 

has got support from international community for ensured treatment of disease has been the 

helping hands for the local authorities for drafting the roadmaps for combating the disease. 

This has led to steep decline in the number of cases reported per year, however, the 

achievement of elimination goal still requires efforts at ground level for following up the 

past cases to monitor the proper clinical cure as well as prevention of disease transmission. 

In order to bolster the drug development, identification of new targets can contribute 

significantly towards strengthening the pipeline for disease elimination. This is expected to 

reap rewards in the form of leishmaniasis free nations in coming years.
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Highlights

• The conventional chemotherapy approaches are associated with toxic side 

effects which called for the development of alternative approaches.

• The technical advancement in the post-genomic era has explored many new 

drug targets.

• The advances in metabolomics, system biology and nanotechnology 

approaches has led to better understanding of parasite biology therefore, 

better chances for identification of drug targets and their therapeutic potential.
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Figure 1. 
Overview of different metabolic pathways studied in last five decades in Leishmania. The 

pie chart represents different researches in the field of Leishmania throughout the world 

targeting different metabolic pathways.
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