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Abstract: Chronic wounds impose a significant burden on individuals and healthcare systems all
over the world. Through clinical and preclinical investigations, inflammation and oxidative damage
have been established as the primary causes of chronic wounds. These skin sores are easily exposed
to microorganisms, which in turn cause inflammation and hinder the healing process. Additionally,
microorganisms may cause an infection that prevents collagen production and reepithelialization.
Curcumin’s antioxidant, anti-inflammatory, and anti-infectious characteristics, among others, have
been identified as useful for diabetic wound healing management. However, curcumin has a few
disadvantages, such as limited bioavailability, pH-dependent instability, water insolubility, slow
cell absorption, and fast intracellular metabolism. These constraints necessitates the development
of a suitable transporter to improve curcumin’s stability, bioavailability, therapeutic efficacy, and
solubility. In recent years, Electrospun nanofiber mats have been an excellent choice for drug delivery
because of their numerous advantages and inherent properties. Electrospun nanofibers have shown
considerable promise as wound dressing materials. This review highlights the potential properties
and recent advancements in using curcumin-loaded nanofibers for diabetic wound healing.

Keywords: curcumin; electrospinning; nanofibers; advanced delivery systems; skin tissue engineering;
diabetic wound healing

1. Introduction

The most prevalent metabolic illness, diabetic mellitus, is brought on by an inability to
secrete insulin, which leads to hyperglycemia by accelerating the loss of pancreatic cells.
This autoimmune condition causes several serious illnesses, resulting in lower extremity
amputations, organ failure, and death. Lower extremity abnormalities are among the
most prevalent and expensive consequences of diabetes [1,2]. These complications may
account for up to one-third of the direct costs associated with diabetes treatment, including
lower-limb amputations and diabetic foot ulcers. In the course of their condition, twenty-
five percent of persons who have diabetes will develop a diabetic foot ulcer, which is the
primary cause of hospital admission connected to diabetes. In addition, one in every five
diabetic foot ulcers will result in the amputation of the lower leg [3]. Major lower limb
amputation is a serious concern for patients who have diabetic foot ulceration and persistent
limb-threatening ischemia. There has long been concern about how late presentation and
delayed care might lead to higher amputation rates. Clinical risk factors for diabetic foot
ulcers include a history of diabetic foot ulcers, diabetic peripheral neuropathy, high plantar
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pressures, and foot deformities [4]. However, preventative interventions for first and
recurrent diabetic foot ulcers remain elusive. After a person has a foot ulcer for the first time,
their risk of a second one is forty percent in the first year and approximately one hundred
percent after ten years. Even though there are several recommendations for managing both
disorders, there is presently no agreed-upon window of time for implementing professional
care and therapy [5]. Therefore, a prevention-based approach is required to ensure the
remission of diabetic foot ulcers for sustainable and cost-effective diabetic foot treatment.

Curcumin was discovered in the root of the curcumin longa L. plant. In south and
southeast Asia, turmeric has been used in traditional culinary and medicinal arts for gener-
ations. Curcumin is a polyphenol used extensively as a spice, food preservative, flavoring,
and colouring ingredient in addition to its therapeutic use [6]. Traditional Indian medicine
practitioners believe curcumin powder suppresses several ailments, including biliary dis-
orders, diabetes, sinusitis, rheumatism, cough, anorexia, cancer, hepatic disorders, and
Alzheimer’s [7,8]. In the traditional and herbal medicine of south and southeast Asia,
turmeric has been used to cure several disorders for ages. Over the last three decades,
curcumin’s biological and pharmacological usefulness has been amply shown by an ex-
tensive research [9,10]. Curcumin’s antioxidant, anti-inflammatory, and anti-infectious
characteristics, among others, have been identified as useful for diabetic wound healing
management. However, curcumin has a few disadvantages, such as limited bioavailability,
pH-dependent instability, water insolubility, slow cell absorption, and fast intracellular
metabolism [11–13]. Curcumin has been the subject of numerous attempts to increase its
stability and bioavailability. The topical use of curcumin may enhance its strength, pharma-
cological activity, solubility, and therapeutic efficacy [14]. Research has been conducted to
enhance the bioavailability of curcumin utilising various drug carriers (Table 1) [15,16].

Current delivery systems, such as Electrospun nanofiber-based techniques made
from natural and synthetic materials, or both, to deliver therapeutic agents, might her-
ald a new era in which diabetes mellitus problems are avoided [17–19]. Both macro-
molecules and small molecules may be delivered successfully using such delivery fiber
carriers. Nanofibers may also provide a perfect milieu for skin tissue engineering using
nanofiber scaffolds [20–22]. Many research efforts have suggested the possible use of thera-
pies, including nanofiber mats, to proliferate, regenerate, and remodel the structural and
functional characteristics of diabetic skin ulcers [23–25]. This review aims to provide the
reader with a comprehensive overview of the most recent discoveries in curcumin-loaded
nanofibers, including studies and findings confirming their efficient involvement in diabetic
wound healing and their huge potential for diabetic wound healing applications.

Table 1. A summary of available curcumin-based wound dressing products and their benefits.

S. No Wound Dressing
Materials

Curcumin with
Composition

Method of
Formulation Outcomes Ref

1 Nanofibrous mats
Gelatin,
Trifluoroethanol,
Glutaraldehyde.

Electrospinning
method

Curcumin has a prolonged
release profile from the
formulation.
Curcumin/gelatin blended
nanofibrous mats promoted
faster and more effective
wound healing in
Sprague–Dawley rats.
Compared to the control
group, the epidermis layers in
the group that had significant
reepithelialization and
differentiation were
well-developed.

[26]
March 2017
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Table 1. Cont.

S. No Wound Dressing
Materials

Curcumin with
Composition

Method of
Formulation Outcomes Ref

2 Nanofibers PCL Electrospinning
method

It has the potential to be
biocompatible and
cytoprotective, according to
in vitro investigations. On the
third day, a release analysis
showed that fibres containing
3% and 17% curcumin
released 35 mg and 20 mg of
curcumin over an extended
period. Studies on in vivo
wound healing have shown
significant wound closure
capacity in addition to
antioxidant and
anti-inflammatory action.

[27]
December 2009

3

Nanocrystal
scaffolds
containing
curcumin-loaded
microspheres

Bovine gelatin,
Collagen

Emulsion solvent
evaporation
method

Curcumin release profile over
time enhanced dermal
regeneration and successfully
reduced local inflammation in
a rat full-thickness burn
infection model.

[28]
December 2017

4 Nanocomposite
hydrogel

MPEG-PCL
copolymer,
Oxidized alginate,
Chitosan

Thin-film
evaporation
method

Nanocomposite hydrogel
regulates and sustains the
release profile of curcumin.
On day 14, an in vivo
examination showed that the
wound had fully healed.
Improved collagen deposition,
reepithelization, and
granulation tissue
development

[29]
November 2012

5 Hydrogel film
Sacran,
2-hydroxypropyl
g-cyclodextrin

Solvent
evaporation
method

Curcumin release is slow and
persistent. Enhanced
curcumin antioxidant activity
Faster healing of wounds
relative to other groups

[30]
May 2017

6
Hydrogel system
containing micellar
curcumin

PEG-PCL micellar
curcumin,
PEG-PCL-PEG
copolymer
hydrogel

Curcumin micelle
by solid dispersion
method and
hydrogel by
crosslinked
methods

Wound dressing exhibited
more significant cutaneous
wound healing, increased
collagen content, improved
granulation, and increased
wound maturity. 60%
sustained release of curcumin
during 14 days

[31]
September 2013

7 Collagen films
Collagen from
bovine achilles
tendon

Crosslinking

The in vitro release kinetics
demonstrated more than 60%
curcumin release after 12 days
of investigation. High
expression of collagen and
granulation tissue
development with the
application of collagen films
containing curcumin

[32]
May 2004
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Table 1. Cont.

S. No Wound Dressing
Materials

Curcumin with
Composition

Method of
Formulation Outcomes Ref

8 Chitosan–alginate
sponge

Curcumin,
Alginate, Chitosan

Ionic interaction
and crosslinking

The in vitro studies
demonstrated enhanced water
absorption and
biodegradability. 40% to 80%
sustained release of curcumin
in vitro for up to 20 days.
In vivo wound healing tests
showed superior healing
efficacy due to fast wound
contraction and collagen
deposition.

[33]
September 2009

9 Nanostructured
lipid carriers

Curcumin,
Glyceryl
monostearate,
Stearic acid,
Caprylic/capric
triglyceride, Soya
lecithin

Emulsion
evaporation–
solidification
method

Significant skin permeability
ability in comparison to
standard formulations.
Significant anti-inflammatory
efficacy accelerated skin
regeneration and enhanced
skin thickness.

[34]
October 2016

10 Polymeric bandage
Curcumin, Oleic
acid, Alginate,
Chitosan

Ionic interaction
and crosslinking

For a protracted period of
10 days, there was a release of
curcumin that was more than
40%. 10 days after application,
control, empty bandage, and
curcumin bandage-treated
wounds contracted 70%, 80%,
and 94%.

[35]
October 2012

11 Nanoparticle/
hydrogel

Curcumin,
Polyethylene
glycol, Polyvinyl
alcohol,
PLA–10R5–PLA
copolymer

w/o/w double
emulsion solvent
evaporation
method

In vitro drug release
behaviour with low
cytotoxicity with an increase
in granulation tissue
development, collagen
deposition, and angiogenesis
demonstrated good wound
healing efficacy in vivo.

[36]
August 2016

12 Curcumin
nanoparticles

Curcumin,
Chitosan,
Tetramethyl
orthosilicate,
Polyethylene
glycol 400

Sol–gel-based

Curcumin releases slowly
over time. Significantly
improved collagen deposition,
granulation tissue
development,
re-epithelization, and tissue
regeneration

[37]
January 2015

13
Polymeric
bioadhesive
emulsion

Neem and
turmeric extract,
Shellac, Casein and
Polyvinyl alcohol
and Maleic
anhydride

Emulsion method
It has antibacterial qualities, is
harmless, and degrades
naturally.

[38]
December 2005
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Table 1. Cont.

S. No Wound Dressing
Materials

Curcumin with
Composition

Method of
Formulation Outcomes Ref

14

Methoxy
poly(ethylene
glycol)-graft-
chitosan composite
film containing
curcumin
nanoformulation

Curcumin, Poly (e-
caprolactone)-Poly
(ethylene glycol)
methyl ether
(MPEG-PCL)
copolymer,
Linoleic acid,
Tween1 20,
Chitosan

Casting/solvent
evaporation
method

8.4% of the curcumin was
released early on day 1 and
continued throughout the
next five days. When the
wound area was less than 10%
at day 14, an in vivo wound
healing research showed
quicker healing. Rapid
reepithelialization, collagen
synthesis, and wound healing
were seen after
administration.

[39]
March 2012

15
Hyalurosomes, a
nanovesicle and
liposomes

Curcumin, Soy
Phosphatidyl-
choline, Sodium
hyaluronate,
ultrasonic
disintegrator

Sonication

Human keratinocytes in vitro
were shielded from oxidative
stress damage by
biocompatible materials.
Compared to other groups,
in vivo data demonstrated
improved skin restoration
activity in terms of decreased
edema, myeloperoxidase
activity, and early skin
reepithelization.

[40]
December 2015

16
Gel-core
hyalurosome
(nanovesicle)

Curcumin, Lipoid1
S100, Tween1 80,
Hyaluronic acid

Film hydration
technique

After two hours of in vitro
testing, there was a 50%
release of curcumin. At day
10, the wound had healed
properly and early with no
scars. Compared to other
groups, improved granulation
tissue development, collagen
fibre deposition,
re-epithelization, and tissue
regeneration

[41]
May 2015

17 Nanovesicles
Curcumin, Lipoid1
S75, PEG400,
Oramix1

Sonication method

It is spherical, multi- or
oligolamellar, compact, and
biocompatible. Application
on skin injured by tissue
plasminogen activator (TPA)
revealed decreased oxidative
inflammation. Data from
histology showed significant
re-epithelization with several
thick epidermal layers.

[42]
March 2014
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Table 1. Cont.

S. No Wound Dressing
Materials

Curcumin with
Composition

Method of
Formulation Outcomes Ref

18

Curcumin-loaded
poly
(lactic-co-glycolic
acid) (PLGA)
nanoparticles

Curcumin, Poly
(lactic-glycolic
acid), Polyvinyl
alcohol

Oil/water
emulsion– solvent
evaporation
technique

Over the period of eight days,
there was a steady release of
curcumin, from 40.5% to
75.7%. Angiogenesis and
wound healing were
enhanced by lactate produced
from PLGA. Studies using
histology and RT-PCR
showed that PLGA-curcumin
had more potential for
reepithelialization,
granulation tissue
development, and
anti-inflammatory effects.

[43]
October 2013

2. Potential of Curcumin in Skin Disorders

Acute skin infections may be caused by several microorganisms, such as bacteria,
fungi, viruses, and parasites. S. aureus is responsible for many skin diseases, including
folliculitis, impetigo, boils, and cellulitis. Propionibacterium acnes and S. epidermidis are
both constituents of the microbiota of human skin, and both have a direct role in the
formation of acne vulgaris. Corynebacteria, Propionibacteria, and Staphylococci are the most
prevalent bacterial genera responsible for this sickness. These bacteria, which ordinarily
reside on the skin as commensals and are essential for maintaining skin homeostasis, may
also cause acute skin infections as opportunistic pathogens [44]. Immunocompetent people
are not often afflicted with invasive primary skin infections.

However, as the number of germs resistant to numerous medications continues to
increase, bacterial skin infections may continue to be challenging to treat. Some staphy-
lococcal bacteria have evolved resistance to beta-lactamase-resistant penicillins that are
both naturally occurring and semisynthetic, i.e., methicillin, dicloxacillin, and oxacillin.
Propionibacterium acnes is naturally resistant to antibiotics such as sulfamides, amino-
glycosides, mupirocin, and 5-nitroimidazole while being sensitive to many antibiotics.
Propionibacterium acnes antibiotic resistance has progressively risen over the last decade,
becoming a global concern, with erythromycin and clindamycin showing the most sig-
nificant resistance and tetracycline resistance occurring less frequently, concurrent with
the most common topical treatment of macrolides [45–47]. In addition to bacteria, several
fungal species may cause superficial mycoses. Dermatophytes are the most prevalent
fungal pathogens responsible for skin diseases. Trychophyton rubrum has become the most
pervasive dermatophytic fungi globally, mainly causing tinea pedis and tinea unguium [48].
Like bacteria, fungi have resisted traditional antimycotic medications in recent years. In
addition, the treatment of cutaneous mycotic infections is often complicated owing to
the scarcity and toxicity of available antifungal medications. Treating these diseases by
creating innovative antifungal agents capable of targeting particular cellular and molecular
pathways implicated in fungal pathogenicity is vital [49]. S. aureus bacteria are sensitive
to the inhibitory action of curcumin, according to in vitro investigations. In addition, the
effectiveness of curcumin against Methicillin-resistant staphylococcus aureus (MRSA) has
been shown either alone or in combination with conventional medicines [50].

This concern should restrict the long-term use of topical and systemic antibiotics
in treating skin conditions such as acne vulgaris. Consequently, innovative therapeutic
techniques are necessary to treat skin infectious illnesses. In recent years, scientists have
prioritized the creation of natural products produced from plants as an alternative or
supplement to conventional treatment. Indeed, it has been shown that the bioactive
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aromatic components extracted from several medicinal plants offer potential antimicrobial
effects. In this context, the antimicrobial activity of curcumin has been intensively studied
owing to its wide range of applications and safety profile, even at the high dosages used in
clinical studies [51–53].

Curcumin’s effectiveness against skin infection illnesses (Figure 1) has also been
explored in vivo and in vitro [54–57]. Over the last three decades, extensive research has
conclusively shown curcumin’s efficacy against skin infections and diseases. Curcumin
may be an effective option for treating bacterial and fungal skin disorders and conquering
multidrug-resistant infections.
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3. Biomedical Applications of Curcumin

The potent anti-microbial, anti-inflammatory, antioxidant, and other qualities of cur-
cumin make it a particularly apt molecule for treating wounds and many inflammatory
disorders, including diabetes, arthritis, inflammatory bowel disease, atherosclerosis, neuro-
logical disorders, and Alzheimer’s disease (Table 2) [58,59]. Due to its excellent pharma-
cological qualities, Curcumin has a promising future in biological applications (Figure 2),
such as cardiovascular disorders, chemotherapeutics, radiosensitizing, chemosensitizing,
and wound healing, as shown by many in vitro and in vivo investigations [60,61]. Cur-
cumin’s antioxidant properties are demonstrated by its capacity to shield fibroblasts and

BioRender.com
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keratinocytes from damage brought on by hydrogen peroxide and to lessen oxidative stress
in Alzheimer’s patients [62].

Table 2. Curcumin’s potential for biomedical applications.

S. No Target Disease Mechanism of Action Ref

1 Liver Diseases

Curcumin down-regulates expression of TGF-β1 to enhance
VE-cadherin, DDAH1 and Nrf2 levels, and diminish
MMP-9 and ERK1/2 levels. Consequently, TGF-b-mediated
EndMT is inhibited to suppress endothelial cell fibrosis

[63]

2 Skin cancer
Inhibits pAKT, pS6, p-4EBP1, pSTAT3 and pERK1/2
Improved skin penetration, deposition and antimelanoma
activity of curcumin

[64]

3 Osteoarthritis Decreases Visual Analog Score (VAS), CRP, CD4+ and CD8+
T cells, Th17 cells and B cells frequency [65]

4 Multiple sclerosis
Enhancing expression of anti-inflammatory factors such as
IL-4, IL-5 and TGF-β is a promising strategy in multiple
sclerosis therapy

[66]

5 Asthma The inhibitory effect on the expression and level of TGF-β is
critical in asthma therapy. [67]

6 Vulvovaginal candidiasis

By lowering the level of IL-1β (a pro-inflammatory factor)
in comparison to TGF-β (an anti-inflammatory factor),
Vulvovaginal candidiasis improves, paving the way for
effective treatment of this infection.

[68]

7 Diabetic cardiomyopathy

Curcumin down-regulates the expression of TGF-β1 via
inhibition of JAK/STAT signaling pathway, leading to
reducing inflammation and improving diabetic
cardiomyopathy.

[69]

8 Psoriasis

Inhibits phosphorylase kinase activity and decreases the
epidermal CD8+ T-cell density resulting in reduced
autoimmune-mediated cell damage and resolution of
psoriasis

[70]

9 Scleroderma
Inhibits the TGF-β-mediated phosphorylation of smad2 by
upregulation of TGF-β-induced factor (TGIF) which is a
negative regulator of TGF-β signalling

[71]

10 Antihypertensive

Inhibits ACE thereby preventing overexpression of RAAS,
curcumin scavenges superoxide anion (O2-) generated
under the diabetic conditions, thereby preventing its
reaction with potent vasodilator nitric oxide (NO) to form
the much more powerful oxidant peroxynitrite (ONOO-);
curcumin prevents cadmium-mediated inhibition of
catechol-O-methyltransferase by its chelating effect which
decreases adrenaline and noradrenaline level.

[72]

11 Antidiabetic

Decreases hepatic glucose level, increases glucose uptake by
upregulating GLUT2, GLUT3 and GLUT4 gene expressions,
enhancing secretion of insulin from pancreatic cells,
decreases insulin resistance.

[73]

12 Diabetic foot ulcer Inhibits the growth of bacteria that are associated with the
onset of foot infections in patients with diabetes [74]

14 Alzheimer
Improves memory due to its antioxidant effect which
decreases degradation of neurons, beta-amyloid plaques
and microglia formation

[75]

15 Ulcerative colitis Decreases TNF-α, IL-6 [76]
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4. Safety Profile of Curcumin

The Food and Drug Administration (FDA) has acknowledged curcumin as a safe
substance. Researchers evaluated this drug’s safety in several preclinical and clinical trials
(Table 3) [77–79]. In a clinical investigation, curcumin was not found in the serum of healthy
volunteers given up to 8000 mg per day. Only meager quantities were found in two subjects
given 10,000 or 12,000 mg. Daily consumption of 12,000 mg is considered safe in healthy
persons since no adverse effects were seen in participants [13]. Patients with internal organ
pre-malignant lesions and cardiovascular risk who took curcumin at doses ranging from
500 to 8000 mg per day for three months also had a favorable safety profile [80]. This safety
has also been shown in advanced pancreatic malignancy patients receiving 8000 mg per
day of curcumin for two months and advanced breast cancer patients receiving radiation
while taking up to 6000 mg per day of curcumin [81–83].

BioRender.com


Appl. Nano 2022, 3 211

Other trials in healthy participants and patients with various illnesses, including
ulcerative colitis, cholangitis, and advanced colorectal cancer, showed moderate and con-
trollable gastrointestinal complications with daily consumption of up to 8000 mg of cur-
cumin [14,84–86]. In addition to these findings, a small proportion of individuals with
sclerosing cholangitis receiving up to 1400 mg per day of curcumin experienced only moder-
ate effects like headache or nausea [87]. Intriguingly, individuals with advanced pancreatic
cancer receiving gemcitabine have also reported experiencing severe stomach discomfort
after starting curcumin at a dosage of 8000 mg daily [88]. A clinical investigation of healthy
volunteers found that short-term IV administration of liposomal curcumin was safe up to a
dose of 120 mg/m. In contrast, a dose escalation study on patients with metastatic cancer
found that the highest tolerable amount was 300 mg/m2 over 6 h [89,90].

It is important to note that researchers carried out the bulk of research evaluating the
safety profile of curcumin over brief periods. No reliable data is currently available concern-
ing the effects of long-term usage of this compound. Although the quantities suggested for
over-the-counter curcumin are often smaller than those in the clinical research listed above,
supplements containing this substance are readily accessible to the general population
and are growing in popularity. Curcumin may be harmful to the liver, as shown by new
cases of liver disorders [91]. Curcumin’s precise contribution to the emergence of these
illnesses is still unclear, and lead contamination of supplements has been theorized. Until
further information is available, monitoring is necessary, particularly for long-term usage,
over-the-counter medications, and in patients with liver disorders. Topically, curcumin
may alleviate these problems associated with long-term use, over-the-counter drugs, and
liver disease patients. This limitation would require the creation of a suitable transporter to
enhance curcumin’s bioactivity.

Table 3. Safety Profile of Curcumin.

S. No Safety Profile of Curcumin Ref

1 The Food and Drug Administration has acknowledged
curcumin as a safe substance. [77–79]

2 Daily consumption of 12,000 mg is considered safe in healthy
persons since no adverse effects were seen in participants. [13]

3
Healthy patients given up to 8000 mg per day did not have
curcumin in their blood serum. Two persons given 10,000 or
12,000 mg had low levels.

[13]

4
Curcumin at 500 to 8000 mg per day for three months was
safe for patients with internal organ pre-malignant lesions
and cardiovascular risk.

[80]

5

Advanced pancreatic cancer patients taking 8000 mg per day
of curcumin for two months and advanced breast cancer
patients receiving radiation while taking up to 6000 mg per
day of curcumin have also shown this safety.

[81–83]

6

In healthy participants and patients with ulcerative colitis,
cholangitis, and advanced colorectal cancer, up to 8000 mg of
curcumin daily caused moderate and controllable
gastrointestinal complications.

[14,84–86]

7
A tiny proportion of sclerosing cholangitis patients receiving
up to 1400 mg per day of curcumin experienced headache or
nausea.

[87]

8
Individuals with advanced pancreatic cancer taking
gemcitabine reported severe stomach discomfort after starting
8000 mg of curcumin daily.

[88]

9 Short-term IV liposomal curcumin administration to healthy
volunteers was safe up to 120 mg/m. [89]
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5. The Effects of Curcumin on Wound Healing

Curcumin has been demonstrated to heal dermal wounds by reducing reactive oxygen
species (ROS), which are chemically reactive molecules containing oxygen and the leading
cause of inflammation, including lipid peroxyl radicals (LOO•), superoxide radicals (O2•),
nitrogen dioxide radicals (NO2•) and hydroxyl radicals (•OH). These forms are associated
with the onset of oxidative stress, which limits granulation tissue development and remod-
elling as a crucial element in wound healing [92–94]. Curcumin therapy in diabetic mice
increases granulation tissue growth, neovascularization, and the manufacture of collagen,
a protein in the extracellular matrix. Additionally, it has been shown that curcumin may
help wound healing in diabetic mice. Due to its ability to increase fibroblast and vascular
density in wounds while also squelching free radicals, it has been extensively utilized to
speed up wound healing and decrease healing timeframes. These qualities have established
curcumin as a unique substance for treating diabetic wounds and inflammatory illnesses.
Curcumin’s remarkable antioxidant, anti-inflammatory, and anti-infectious properties,
as shown in (Figure 3), have been discovered to be effective in treating diabetic wound
healing [95–97].
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5.1. Inflammation

Inflammation is often considered the first phase of optimum wound healing since
it is one of the most crucial [98]. Because tissue injury induces acute inflammation early,
reducing inflammation may enhance wound healing. Curcumin is well-known to contain
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anti-inflammatory properties, and various research efforts, including clinical trials, have
shown that it interacts with various inflammatory cytokines in multiple disorders [99,100].
Curcumin’s most significant effect in controlling inflammation is suppressing the gener-
ation of tumor necrosis factor (TNF) and interleukin1 (IL1), two essential cytokines that
govern inflammatory responses generated by monocytes and macrophages [101]. Cur-
cumin also inhibits the nuclear factor kappa light chain enhancer of activated B cells (NFB),
a transcription factor that controls many genes implicated in inflammatory responses.
Curcumin influences the pathways involved in the activation of NFB via several kinases.
Notably, NFB is also implicated in response to oxidative stress; thus, curcumin may influ-
ence oxidative stress and inflammation [102]. According to the research, wound healing
is enhanced by enhancing the natural inflammatory response generated by curcumin. By
lowering the inflammation of the injured skin, the damaged skin can increase and rebuild
more rapidly and advance to subsequent stages of healing [103].

Curcumin controls the levels of protein kinase C (PKC), protein kinase C-2 (PKC-2),
and mitogen-activated protein kinase (MAPK) [104]. By suppressing vascular endothelial
growth factor (VEGF), NF-B, and activator protein-1 (AP-1), it reduced the rapid buildup of
advanced glycation end-products (AGE) and cross-linking of collagen in the tail tendons of
diabetic rats [105]. In high glucose-induced microvascular endothelial cells of diabetic rat
hearts, curcumin decreased both endothelial nitric oxide synthase (eNOS) and inducible
nitric oxide synthase (iNOS) levels [106,107]. Its antioxidant activity alleviated endothelial
cell dysfunction and PKC inhibition in Streptozotocin (STZ)-induced diabetic rats and
mice [108]. It also reduced the vascular dysfunction brought on by diabetes in STZ rats
by decreasing COX-2, NF-B, and PKC activity [109]. By lowering TNF and aortic Reactive
Oxygen Species (ROS) and activating heme oxygenase (HO-1) in diabetic rats, curcumin
improved dysregulated vascular contractility [110].

5.2. Antioxidant

ROS are crucial for cellular and metabolic activities, such as intracellular communi-
cation, differentiation, immunity, and death. The immune system also employs reactive
oxygen species (ROS) to defend against bacteria in a wound [111]. However, prolonged
exposure to high amounts of ROS results in oxidative stress, which is harmful to cells.
Oxidative stress is a crucial element in the wound healing process, often working to impede
skin regeneration. Oxidative stress causes lipid peroxidation, DNA degradation, and en-
zyme inactivity and is the primary cause of wound inflammation. When applied topically,
antioxidants can promote wound healing and neutralize free radicals [112,113]. Antioxi-
dant effects of curcumin have been shown in clinical settings. In vitro, a collagen matrix
embedded in curcumin showed radical-scavenging action against peroxy radicals [114].
In another investigation, the application of the curcumin in vivo rat model resulted in a
considerable decrease of H2O2 induced damage to fibroblasts and keratinocytes. In similar
research, curcumin was shown to eliminate H2O2 from keratinocytes and fibroblasts [115].

5.3. Fibroblast Proliferation

Fibroblast infiltration into the wound area is required to form granulation tissue and
collagen synthesis and deposition [116,117]. According to research, dermal wounds that do
not heal within the expected time frame have reduced fibroblast migration and proliferation
within the wound site [118]. Numerous research efforts have been conducted to assess
fibroblast penetration in curcumin-treated wounds; it has been demonstrated that four
days after the lesion was excised, myofibroblasts were seen at the location of the wound
cured with the COP. It is essential to keep in mind, nevertheless, that curcumin’s ability to
increase fibroblast penetration in wounds treated with it is only possible at lethal doses.
Curcumin promotes apoptosis in vitro fibroblast models at high concentrations (25 M),
owing to oxidation and the formation of free radicals. Lower dosages (5 and 10 M) did not
affect fibroblast shape, and no apoptosis has been seen in curcumin-treated fibroblasts [119].
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5.4. Angiogenesis

Angiogenesis is a critical phase in wound healing; it is essential for oxygen and nutri-
ents to be delivered to cells by forming new blood vessels at the wounds’ locations [120].
Curcumin’s topical application to burned wounds in rats has considerably enhanced angio-
genesis and expedited wound healing [121]. Curcumin stimulated the neovascularization
at the diabetic wound site directly by the increased expression of angiogenic factors such as
VEGF, TGF-β1, and other factors such as HIF-1a, SDF-1α, and HO-1, as well as indirectly,
by anti-inflammatory and antioxidant action [122].

5.5. Granulation Tissue Formation

Granulation tissue is distinguished by the creation of tiny capillaries, which occurs
in tandem with fibroblast infiltration (about 4 days postinjury), allowing for the genera-
tion of ECM [123]. Granulation tissue promotes reepithelialization by providing a stable
foundation for epithelial cell migration to the wound site. Excision injuries on the backs
of treated rats with curcumin embedded with chitosan alginate formed more granulation
tissue than wounds treated solely with sterile gauze reported that, compared to the control
group, exposure with curcumin encapsulated into collagen matrix enhanced the amount
of hydroxyproline in wounds [32,33]. During the creation of granular tissue, fibroblasts
differentiate into myofibroblasts, and the presence of hydroxyproline indicates the existence
of myofibroblasts.

5.6. Collagen Deposition

ECM is required for wound reorganization and remodeling. It is a supporting base
for the injured area cells, containing various proteins and polysaccharides. However,
collagen accounts for 70–80% of skin ECM [124]. A substantial portion of collagen should
be generated and deposited on the injured area to promote wound healing and scar tissue
formation [125]. In the curcumin-treated group, the collagen is denser and more aligned
reported. When researchers covered wounds with curcumin-based bandages, they had
more collagen than the control group; the suggestion that this group made collagen was
strongly crosslinked [126,127].

5.7. Apoptosis

To proceed wound healing to the proliferative phase, apoptotic processes must occur
to destroy inflammatory cells in the injured area [128]. Although the precise mechanism
of apoptosis caused by curcumin is unknown, it has been proposed that curcumin could
cause apoptosis because of its propensity to generate free radicals [129]. The amount of
apoptosis rose on the 11th day following wound therapy in the reference group as opposed
to wounds that had received curcumin treatment. This finding establishes wounds that
haven’t been treated are still in the first stage of healing, while wounds that have been
treated with curcumin have moved on to the next stage, called proliferation [35].

5.8. Wound Contraction

Wound contraction is one of the final steps of wound healing. It needs communication
between cells, the extracellular matrix, and cytokines. When fibroblasts differentiate into
myofibroblasts two weeks after wound surgery, wound contraction begins. Myofibroblasts
promote wound contraction by increasing smooth muscle actin expression in granulation
tissue [130]. By means of planimetric wound measurement, it was discovered that ad-
ministering curcumin to the wounds considerably accelerated wound closure (by 20%) as
compared to the control; researchers found that wounds in rats treated with curcumin-
loaded sponges healed at a rate of 90% after 12 days, compared to 74% in the control group.
TGF is a type of cytokine that is released by many cells, including fibroblasts. It helps heal
wounds and build up collagen [131,132]. Curcumin-treated wounds had more TGF than
the control, which provided a higher number of fibroblasts [133]. Furthermore, the soft
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tissue in diabetic mouse wounds showed increased TGF expression in the curcumin-treated
group [134].

5.9. Re-Epithelialization and Remodeling

The epidermis is the skin’s outer layer and is a protective barrier against physical,
chemical, and microbiological penetration and harm [135]. Epithelialization is the process
by which keratinocytes move up from the bottom layers of the skin and multiply. As the last
steps in healing a wound, reepithelialization and remodeling are essential for the epidermis
to form a strong barrier. Compared to the control group, curcumin-treated wounds in a
rat model were epithelialized, and the epithelialization period was decreased from 23 to
11 days [126]. Curcumin exhibits multiple biological activities in treating various aspects
of diabetic wound complications (Figure 4).
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6. Nanofibers

In combat, various diabetes mellitus-related problems and various delivery strategies
based on nanostructures were investigated (Table 4) [136,137]. As a result, nanofibers-based
systems have shown incredible potential as delivery mechanisms and synthetic scaffolds for
the delivery of medicinal drugs. Nanofibers may provide a sufficient matrix to encapsulate
and incorporate therapeutic compounds into a high-efficiency delivery system or reservoir
with minimal side effects [138–140]. They can also prevent degradation before therapeutic
molecules reach their target areas. Such structures can convey their content, have a high
drug-loading capacity, are very efficient at encapsulating, and may produce a variety of
morphologies [141–143].
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Different techniques are used to incorporate therapeutic agents into the fibers, such as
blending the agent with the polymer solution before spinning, coaxial spinning to create
core/shell structures, attaching active agents to the fibers’ surfaces, post-fabrication surface
modification, and surface grafting. Researchers may use these techniques to achieve timely
release of therapeutic substances and more exact control over release kinetics, in addition to
supporting the essential processes of cells, and artificial scaffolds may be employed to build
3D fibers that closely resemble the natural extracellular matrix [144,145]. An enormous
surface area for cell-scaffold interaction/adherence and efficient exchange for oxygen and
nutrient delivery may be provided by nanofibers scaffolds with architectural resemblance
to native ECM. Nanofibers may be combined with ECM proteins, growth factors, and
nanomaterials for tissue-engineered implantation and transplantation to facilitate the
development of tissue-like structures [146].

Nanofiber materials have been extensively used in various medicinal applications, as
shown in (Figure 5) [147–149]. Create nanofiber structures for diabetes foot ulcer therapy,
several natural materials and synthetic polymers were used. In general, synthetic poly-
mers can be Electrospun considerably more efficiently and have mechanical strength and
excellent flexibility, but natural polymers demonstrated improved biocompatibility, good
biodegradation, and much-reduced immunogenicity. Utilizing a combination technique is
advised in order to get the most benefits out of those materials. Recent years have seen a
significant increase in nanofiber-based systems for treating chronic wounds. One of the
most notable characteristics of nanofiber-based structures for the treatment of diabetic foot
ulcers is the delivery of biomacromolecules, growth factors, and small interfering RNA,
as well as anti-diabetic pharmacological agents [25,150–153]. In the case of lower plasma
glucose levels, insulin may be mixed into or coated on nanofiber patches and applied der-
mally, topically, or in other ways, such as sublingually. For example, dressings containing
insulin may encourage the development of a wound matrix [154].
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Table 4. The benefits and drawbacks of the various types of nanocarriers.

S. No Nanocarrier Advantages Disadvantages Ref

1 Fibers

• Nonadherent, nontoxic, nonallergenic,
• Allows gaseous exchange
• Removes excess exudates
• Barrier against microbes
• Sustain release
• Maintain humidity
• Tensile strength
• Increased bioavailability
• Fibroblast attachment and proliferation
• Keratinocyte attachment and proliferation
• Tunable porosity
• ECM mimicking
• Biocompatibility
• Electro-catalytic properties
• Thermal conductivity
• Electrical conductivity
• Structural stability
• Loading efficiency
• High surface area to volume ratio
• Mechanical strength

• Unsuitable for third degree,
eschar, and dry wounds; if
the wound is highly
exudative, a secondary
dressing is required

[155]

2 Polymeric
nanoparticles

• Biocompatible
• Low toxicity
• Biodegradable
• Cost-effective
• Possible surface functionalization
• Avoids leakage of the drug

• Difficult to scale up [156]

3 Liposomes

• Ability to carry either hydrophilic or
hydrophobic drugs

• Biocompatible
• Biodegradable
• Stable
• Possibility of surface functionalization

• Toxic, because the drug can
be leaked or displaced into
the blood stream

• High production cost
[157]

4 Films

• Impermeable to bacteria
• Allows the healing process to be

monitored
• Painless removal

• Hard to handle
• Non-absorbent
• Adhere to the wound bed

and cause exudate
accumulation

[158]

5 Sponges

• High porosity
• Thermal insulation
• Sustain a moist environment
• Absorb wound exudates
• Enhance tissue regeneration

• Mechanically weak
• May provoke skin

maceration
• Unsuitable for third degree

burn treatment or wounds
with dry eschar

[159]

6 Hydrogels

• High absorption properties
• Provide a moist environment at the

wound site
• Water retention
• Oxygen permeability
• Ensure the solubility of growth

factor/antimicrobial agents

• Weak mechanical
properties

• Need a secondary dressing
[160]
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Table 4. Cont.

S. No Nanocarrier Advantages Disadvantages Ref

7 Hydrocolloids

• Non-adherent
• High density
• Painless removal
• High absorption properties

• Can be cytotoxic
• Have an unpleasant odor
• Low mechanical stability
• Maintain acidic pH at the

wound site

[161]

7. Curcumin Embedded Electrospun Nanofibers for Wound Healing

Merrell et al. developed Polycaprolactone (PCL) nanofibrous scaffolds incorporated
with curcumin to treat diabetic wounds. Advantages of FDA-approved polymers in skin
tissue engineering are shown in Table 5. The amount of PCL employed in the nanofiber
preparation process impacted how beads developed along the nanofibers. Nanofibrous
scaffolds with an average diameter of between 300 and 400 nm were produced utilizing the
electrospinning technique incorporating 15% (w/v) PCL. The in vitro drug release charac-
teristics of curcumin from the nanofibers were maintained for 3 days under physiological
circumstances and could be designed to transport a quantity considerably lower than the
reported cytotoxic concentration while still being therapeutically effective. The human
foreskin fibroblast (HFF-1) cells in vitro cytotoxicity experiments showed a cell viability of
more than 70%, supporting the idea that curcumin-loaded PCL nanofiber scaffolds are not
cytotoxic. In contrast to plain PCL, which showed only 60% wound closure in the in vivo
wound healing experiment, the curcumin-loaded nanofibrous scaffolds demonstrated an
accelerated 80% wound closure in the STZ-induced diabetic rats [27]. (Table 6) shows
the effect of curcumin-loaded nanofiber diameters and release profiles on electrospinning
parameters and polymer/solvent combinations.

Table 5. List of FDA approved polymers used in the formation of Electrospun nanofibers.

S. No Polymers Advantages

1 PCL

• FDA approved
• Biocompatible, Biodegradable
• Mechanical stability
• Soluble in most of the organic solvents
• Good electrospinning properties

2 PLA

• FDA approved
• Good biocompatibility
• Biodegradability, Bioresorbability
• Good processability
• Good ductility

3 Cellulose Acetate

• FDA approved
• Biocompatible, Biodegradable
• Mechanical stability
• Cost-effectiveness
• Hydrophilic nature
• Purity

4 PEG • FDA approved
• Reasonable control over structural and compositional properties
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Table 5. Cont.

S. No Polymers Advantages

5 PHBV
• FDA approved
• Biocompatible, Biodegradable
• Oxygen permeable

6 Polyurethane

• FDA approved
• Good mechanical strength
• Creates a moist environment
• Suitable coverage for burns

7 PVP

• FDA approved
• Hydrophilic nature
• Soluble in water/most organic solvents
• Low toxicity
• Excellent biocompatibility

8 PVA

• FDA approved
• High solubility
• Biodegradability
• Relatively low-cost
• Long-lasting durability
• High-temperature stability

9 SF

• FDA approved
• Biocompatibility
• Water vapor transmission rate
• Water retention capacity
• Elasticity

Ramalingam et al. developed curcumin-loaded Electrospun poly(2-hydroxyethyl
methacrylate)p(HEMA) nanofibrous mats. The in vitro drug release profile of curcumin-
embedded nanofibrous mats revealed regulated and controlled curcumin release, proving
effective against wound microbial infections. Curcumin-loaded nanofibrous mats inhibited
the growth of MRSA and ESBL in vitro [162].

Nguyen et al. developed poly (lactic acid) (PLA) nanofiber scaffolds infused with
curcumin for wound treatment. Curcumin encapsulation inside nanofibers scaffolds re-
sulted in a considerable improvement in tensile strength of up to 3.5 MPa, making them
acceptable for wound dressing. In vivo wound healing investigations on rats and dorsal
wounds indicated 87% and 99% of wound closure on days 7 and 15, respectively [163].

Ravikumar et al. generated curcumin-loaded cellulose acetate (CA) phthalate Electro-
spun nanofibrous scaffolds. Between 1 and 12 h, the nanofibers loaded with curcumin and
the nanofibers without curcumin exhibited a 400% swelling capability, as determined by the
swelling analysis. The in vitro diffusion investigation revealed a delayed and prolonged
release of the wound-healing agent curcumin [164].

Ranjbar-Mohammadi et al. created PCL and gum tragacanth Electrospun nanofibers
embedded with curcumin. The fact that the curcumin-embedded nanofibrous scaffolds
were 99.9% and 85.14% effective against MRSA and extended spectrum beta-lactamase
(ESBL), respectively, demonstrates their use in the treatment of bacterially infected wounds.
In vivo wound healing investigations with injured diabetic Sprague Dawley rats revealed
that wound regions healed covered with curcumin-embedded nanofibrous scaffolds on
day 15 compared to the control group, in which the wound area decreased by 20.96% [165].

Ranjbar-Mohammadi et al. developed curcumin-embedded nanofibrous scaffolds
with outstanding biological characteristics. The nanofibrous scaffolds were free of beads,
and the addition of curcumin created a hydrophilic surface for cell adhesion and growth.
In addition, the nanofibers’ tensile strength was enhanced by a factor of two- to three-fold,
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enhancing their mechanical qualities. Curcumin also improved the nanofibers’ stability.
Over the course of 15 days, the nanofibers stimulated considerable cell growth and prolifer-
ation while preserving the cellular shape. The nanofibers’ in vitro drug release of curcumin
was maintained [166].

Ghaee et al. created PCL-based nanofibrous scaffolds incorporated with curcumin and
integrated with gelatin, and chitosan. The nanofibers’ porosity ranged from 90.43% and
71.48%, and their pore size was between 101 and 256 µm, making them appropriate for
skin tissue regeneration. The nanofibrous scaffolds were cytocompatible with L929 cells
and enhanced cell adhesion [167].

Moradkhannejhad et al. created PLA/PEG nanofibrous mats with infused curcumin
with a porous nanostructure shape suitable for gas exchange. The average fiber diameter
increased from 430 to 750 nm when the PEG1500 concentration rose from 0 to 20 wt%. A
regulated release of curcumin was seen in the nanofibers [168].

Mutlu et al. developed curcumin-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) nanofibrous mats. Depending on the amount of curcumin present, the mean fiber
diameter of the nanofibrous mats ranged from 207 to 519 nm. The modules’ elastic and tensile
strengths were 5.80 MPa and 6.10 Mpa, respectively. Following the introduction of curcumin,
the nanofibers’ swelling rate has risen from 50% to 320%. It supported cell adhesion and
proliferation in vitro and was biocompatible with L929 murine fibroblasts [169].

Bui et al. created PCL-PEG nanofibrous mats encapsulating curcumin. The manufac-
tured nanofibrous mats had a porous surface, which is essential for cell growth. Compared
to ordinary nanofibers, the curcumin-incorporating nanofibers inhibited S. aureus growth
better. On day 10, the curcumin-loaded nanofibers accelerated wound healing by 99%
compared to the plain PCL-PEG nanofibrous mats, which accelerated wound closure by
59% [170].

Mohammadi et al. created PCL-PEG nanofibrous scaffold encapsulating chrysin-
curcumin. In vivo investigations on injured male rats revealed that the wound-healing
process was dose-dependent and substantially impacted the inflammatory phase compared
to the other phases of wound healing. After 10 days in vivo, there was an increase in IL-6
gene expression, which plays a crucial role in inflammation. iNOS was downregulated,
and MMP-2 expression was decreased [171].

Perumal et al. created a curcumin-loaded PLA-hyperbranched polyglycerol nanofi-
brous scaffold. The fiber had a diameter of 601 nm, and the encapsulation of curcumin
into the nanofiber scaffolds caused an increase in the mean diameter of the nanofibers.
Compared to the nanofibers PLA alone, the hydrophilic nature of the nanofibers improved
regulated drug release, cell proliferation, and adherence. Within 24 h, the nanofibers’
swelling ratio increased to 108%. A regulated release pattern followed an early burst
release in the in vitro drug release profile under physiological settings. Swiss 3T3 fibroblast
cells were used for the in vitro cell viability investigation. The curcumin-loaded nanofibers
showed a considerably increased cell vitality of 109% compared to the control’s 96% and
the plain nanofibers’ 100%. Compared to curcumin-loaded PLA nanofibers, the curcumin-
infused PLA-hyperbranched polyglycerol nanofibrous scaffold showed a 100% wound
closure after 36 h of use [172].

Ramaswamy et al. created tetrahydro curcumin-embedded PCL-PEG Electrospun
nanofibers. Because of the enormous surface area, these nanofiber mats displayed high
loading effectiveness of 95% curcumin encapsulation into the nanofibers. The swelling
capacity of curcumin-embedded nanofiber mats was 205% and 215% for blank nanofibers,
indicating a reduction in swelling ability following the addition of curcumin. In vitro,
nanofibers maintained drug release profiles from nanofiber mats [173].

Shababdoust et al. created the regulated release of curcumin, an amphiphilic-block
segmented polyurethane nanofiber. The average diameter varied between 651 nm and
663 nm, while the porosity ranged between 80.1 ± 0.5% and 91.6 ± 0.4%. The quantity of
loaded curcumin influenced the diameter and porosity of the nanofibers. The nanofibers’
intense antibacterial activity against E. coli and S. aureus was shown by the in vitro an-
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tibacterial tests. The L929 fibroblast cells treated with the curcumin-embedded nanofibers
showed cell vitality ranging from 89% to 92%, demonstrating their cytocompatibility for
the wound area. Temperature, pH, and pressure all impacted the in vitro drug release
profile of curcumin from the nanofiber mats [174].

Fu et al. developed curcumin-loaded PCL-PEG nanofibers for cutaneous wound
healing management. Their sizes ranged from a few hundred nanometers to a few microns.
The nanofibrous scaffold demonstrated good cell viability when cultured with rat fibrob-
last cells, indicating minimal toxicity. Curcumin has an early burst release characteristic
followed by a persistent drug release profile in vitro. The curcumin-loaded nanofibrous
mats showed a considerable wound closure rate of 93.3% on day 21 compared to 80.4% and
76.9% wound closure rates for the plain and control nanofiber mats, respectively [175].

Lian et al. created nanofibrous scaffolds made of Silk fibroin (SF) and PLA-PCL
incorporated with curcumin. Following the addition of curcumin, the mean nanofiber
diameter, initially 461 ± 215 nm, subsequently shrank to 293 ± 110 nm with an average
elongation at a break of 117.4 ± 4 1.35% and tensile strength of 5.27 ± 0.34 MPa. An initial
12-h burst of curcumin from the scaffolds was seen in the in vitro drug release studies,
followed by a continuous release over the next 72 h. The DPPH-free radical scavenging
assay was used in invitro antioxidant experiments of curcumin-incorporated nanofiber
scaffolds, and the results confirmed the scaffolds’ excellent antioxidant activity. Scavenging
efficacy increased gradually with increasing curcumin concentrations, ranging from 2.0%
to 6.0% (w/w). Compared to plain nanofibrous, which had a growth inhibition of 15.8%
against S. aureus, the curcumin-infused nanofibers scaffolds had a high growth inhibition
of 99.7 ± 0.85% [176].

Tsekova et al. developed Electrospun fibrous materials made of cellulose acetate and
polyvinylpyrrolidone (PVP) embedded with curcumin for wounds affected by bacteria. Re-
searchers added the curcumin to cellulose acetate and PVP, and the viscosity study revealed
a significantly higher viscosity of 142 cP due to hydrogen bonding between the polymers
and curcumin. The curcumin-embedded nanofibers mats had a 121.8 ± 3.4 degrees water
contact angle. In vitro microbiological investigation of curcumin-loaded nanofibrous mate-
rials showed potent antimicrobial activity against S. aureus, indicating that these scaffolds
help treat bacterially infected wounds [177].

Celebioglu et al. created nanofibrous scaffolds based on hydroxypropyl-γ-cyclodextrin
and hydroxypropyl-β-cyclodextrin embedded with curcumin. The nanofibrous scaf-
folds had a homogeneous fibrous structure without beads. The nanofibrous scaffolds
were 165 ± 65 nm in diameter on average. In the nanofibrous scaffolds, the curcumin
encapsulation effectiveness (%) was 98.8 ± 1.6% and 99.3 ± 1.0%, respectively. When
curcumin-loaded nanofibrous material was subjected to an antioxidant study utilizing the
DPPH scavenging test, the curcumin-loaded hydroxypropyl-gamma-cyclodextrin webs
demonstrated significantly higher antioxidant effectiveness of 100% when compared to
the hydroxypropyl-β-cyclodextrin. The hydroxypropyl-γ-cyclodextrin nanofibrous webs
coated with curcumin have promise as wound dressings [178].

Saeed et al. created a curcumin-loaded PCL and PVA Electrospun three-layer nanofibers
scaffold. The water vapor transmission and water contact angle tests showed that the three-
layer nanofibrous mats had a greater water vapor transmission rate than the monolayer
mat owing to the hydrophilicity of the polyvinyl alcohol (PVA) layers (control). After two
days of incubation, the antimicrobial assessment of the multi-layer Electrospun nanofibers
revealed a more significant percentage inhibition against E. coli and S. aureus. Curcumin-
loaded three-layer nanofibrous mats have potential wound-healing applications [179].

Esmaeili et al. developed Polyurethane (PU) and cellulose nanofibers for treating
wounds co-entrapped with curcumin, silver nanocomposites, and graphene oxide. Com-
pared to drug-loaded nanofibrous mats, The co-loaded nanofibers showed a synergistic
solid antibacterial activity against Pseudomonas bacteria and S. aureus. Dual drug-loaded
nanofibers were used in in vivo wound closure tests. The results showed a significantly
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accelerated rate of wound healing, with 100% compared to 78% for the plain nanofibers,
90% for GO embedded nanofibers, and 93% for Ag-embedded nanofibers [180].

Pankongadisak et al. created a nanofibrous scaffold made of PLA that is incorporated
with curcumin. According to the TEM examination, incorporating curcumin in the fibrous
scaffold caused the average diameter of the plain scaffold to shrink from 386 ± 121 nm
to a diameter that ranged between 333 ± 124 and 380 ± 113 nm. The examination of
the mechanical properties showed that the curcumin-encapsulated fibrous scaffold had
tensile strengths of 2–3 MPa, Young’s modulus of 57–111 MPa, and elongation at break
of 40–49%. Curcumin was first released from the fibrous scaffold in a controlled manner
after an hour, according to the in vitro drug release profile physiological conditions. The
antioxidant assessment using the DPPH test revealed the antioxidant effects that varied
between 42.50% and 52.96% for fibrous scaffolds embedded with curcumin, indicating their
excellent antioxidant impact on wound management [181].

Mahmud et al. developed antimicrobial wound dressings comprised of Electrospun
fiber mats infused with curcumin. The nanofibrous mats-controlled temperature-dependent
curcumin drug release. Examining the mats’ potential to swell revealed a 332% expansion
rate. After six hours of incubation, the antibacterial tests against E. coli and S. aureus bacteria
demonstrated a decrease of 100 percent [182].

Suwantong et al. formulation of cellulose acetate nanofibers scaffold embedded with
curcumin demonstrated antioxidant activity ranging from 64 to 92% and cell viability of
97% on Human Dermal Fibroblasts (HDF), demonstrating outstanding cytocompatibility
of curcumin-embedded nanofibers scaffold [183].

Liu et al. created curcumin-infused PEG-SF nanofibrous mats. Compound curcumin
release was constant for 350 h, and drug release improved as fiber diameter decreased [184].

Zahiri et al. developed a PCL and gelatin nanofibrous scaffold incorporated with
curcumin-infused chitosan nanoparticles. When curcumin nanoparticles were added,
the plain nanofibrous scaffolds’ high tensile strength of 3.78 ± 0.17 MPa dropped to
1.84 ± 0.12 MPa. Curcumin-loaded nanofibrous scaffold’s water contact angle investi-
gations revealed that they were hydrophilic, with a contact angle of 48.9 ± 5.4. Once
compared to ordinary scaffolds and scaffolds with curcumin, the nanofibers had a low
rate of deterioration. Nanofibers showed high levels of wound closure in vivo wound
healing investigations using a PCL-gelatin scaffold coated with curcumin-infused chitosan
nanoparticles. On day 14, 82% of wounds were closed using the curcumin-infused scaffold,
but only 73.4% were closed using the plain nanofibrous scaffold [185].

Jonathan G. Merrell investigated the feasibility and potential of PCL nanofibres as a
vehicle for curcumin delivery in diabetic wound healing applications. The antioxidant activ-
ity of curcumin-loaded nanofibers was demonstrated using an oxygen radical absorbance
capacity assay and by the ability of the nanofibers to maintain the viability of HFF-1 cells
under conditions of oxidative stress. The nanofibers also reduced inflammatory induction,
as evidenced by low levels of interleukin-6 release from mouse monocyte–macrophages
seeded onto the nanofibers following stimulation by E. coli-derived lipopolysaccharide.
In a diabetic mouse model induced by streptozotocin, an increased rate of wound closure
demonstrated the in vivo wound healing capability of the nanofibers [27].

Han Tsung Liao et al. reported that in vitro, PLGA/curcumin provides additional
benefits, such as increased migration ability and induced oxidative stress protection in
HS68 fibroblast cells. An in vivo study indicated the PLGA/curcumin nanofibers exhibit
the fastest wound closure rate with accelerated re-epithelialization, higher angiogenesis,
and higher collagen deposition at the wound site [186].

Wounds treated with gelatin-infused curcumin nanofibers recovered faster and had
higher levels of transforming growth factor-beta (TGF-) expression in Western blot tests. The
reduced levels of pro-inflammatory markers interleukin-6 (IL-6) and tumour necrosis factor-
(TNF-) provided evidence for nanofiber treatment’s anti-inflammatory effects. Chronic
wounds treated with curcumin-based nanofibers achieved better performance, with a
58 ± 7% increase in recovery rate on the seventh day. Based on their anti-inflammatory



Appl. Nano 2022, 3 223

and wound-healing effects, the nanofibrous scaffolds can be potential materials for chronic
wound treatment [187].

Curcumin-loaded PCL and gelatin membranes increased collagen content in diabetic
wounds and were effective promoters of wound healing in the early stages, as well as
accelerating the healing process. The observed effect could be attributed to the scaffolds’
nanofibrous structure, which mimics natural ECM, the high biological properties of gelatin,
the sustained release of curcumin for 20 days, and the high physical-mechanical properties
of PCL, which cause scaffold stability in the presence of blood and fibrin. Histo-chemical
results showed much better healing performance for scaffold stem cells followed by acel-
lular scaffolds compared with control samples because of stem cells’ ability to regenerate
collagen and provide the signals needed for tissue building. Nanofibers decreased blood
glucose levels compared with control samples. In conclusion, the application of scaffolds
was effective in the healing of wounds in the diabetic rat models [165].

Table 6. The effect of curcumin-loaded nanofiber diameters and drug release profiles on electrospin-
ning parameters and polymer/solvent combinations.

S. No Curcumin &
Additives

Solvents Dosage
Electrospinning Setting Diameter

(nm)
Drug Release Profile Ref

kV cm mL/h

1 PCL CHCl3:
Methanol

3 & 17%
w/w 25 10 2 300–400 3%—20 µg at 3 d

17%—35 µg at 3 d
[27]
December 2009

2 p(HEMA) Ethanol:
H2O 3 & 5 wt% 25 17 0.5 20–110 63% at 120 h

72% at 240 h
[162]
January 2015

3 PLA CHCl3:
DMAc

0.125, 1.250,
6.250 wt% 11 12 1 300–1200 – [163]

June 2013

4 CA IPA: EA 5, 10, 15,
17.5, 20 wt% 12 15 1.5 300 309.02 µg/cm2 at 24 h [164]

September 2017

5 PCL/GT Acetic
acid 1, 3, 8, 24% 15 15 1 667 ± 33 42.6% at 10 d

65% at 20 d
[166]
March 2016

6 PCL Acetic acid:
Formic acid 0.5 wt% 11 10 0.4 499 80% at 2 h [167]

November 2019

7 PLA CHCl3:
Acetone 10 wt% 20 15 0.5 430–750 9 µg/cm2 at 24 h [168]

April 2020

8 PHBV CHCl3:
DMF

0.1, 0.3 0.5%
w/v 17 20 0.01 207–519 45%, 63%, 78% at 200 min [169]

February 2018

9 PCL DCM: DMF 0.5 wt% 8.5 16 0.8 300–1200 5, 4.1 µg at 24 h [170]
November 2014

10 PCL-PEG
-PCL

Acetone:
CHCl3
CH3OH

5%, 10%
w/w 28–30 10 2 50–300 59, 68, 81.5%, respectively [171]

December 2019

11 PLA CHCl3
10, 15
wt/wt% 13–15 12 0.5 516 32 µg/mL at 72 h [172]

March 2017

12 PCL-PEG CHCl3:
Acetone 8.7% 18 15 2 400 ± 20 95.11% at 24 h [173]

April 2018

13 PCL HFIP 5, 10 wt% 20 21 0.5 427–651 burst release at 24 h [174]
February 2020

14 PCEC DCM 20 wt% 18 12 6 535 burst release within the first
24 h

[175]
April 2014

15 PLLA-PCL HFIP 2.0%, 4.0%
6.0% w/w 10 15 1.2 293 ± 110 sustain released over 72 h [176]

Nov. 2014

16 CA-PVP Acetone:
H2O 10% 25 15 3 1560 ± 145 22% (1.2 µg/mL) at 120 min [177]

April 2017

17 PU-CA
DMF: THF
DMF:
Acetone

4.0 wt% 17 15 0.4 222 ± 44 – [180]
February 2020

18 PLLA DCM: DMF 0.2, 0.5, 1.0%
w/w 24 15 - 380 ± 113 22, 34, 58% at 50 h [181]

October 2019

19 CA Acetone:
DMAc

5, 10, 15, 20
wt% 17 15 1 340 ± 98 90 to 95% at 50 h [183]

December 2007

20 PCL HFIP 2.5 mg/mL 18 20 0.3 1548 µm 23% at 6 h
Until 106 h

[185]
June 2020
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8. Concluding Remarks and Future Perspectives

Diabetic wound healing is still a complex clinical issue, and wound treatment must be
done correctly and efficiently. Wound care has received much attention, focusing on inno-
vative treatment techniques and technological development for acute and chronic wound
management. One hundred pharmaceutical companies produce numerous curcumin for-
mulations for treating numerous illnesses, including cancer, diabetes, inflammatory bowel
disease, cardiovascular disease, and neurological disorders. Many of these formulations are
also undergoing clinical trials. However, curcumin has been found to have various phar-
macological effects, and its anti-inflammatory and antioxidant qualities notably support
its future use as a treatment for wounds. There are several curcumin-based dietary sup-
plements on the market right now, including CurcuMIND, Longvida RD CAVACURMIN,
CurcuVIVATM, TheracurminTM, BiocurcumaxTM, and BCM-95, and many more. Numerous
topical formulations of curcumin, including nano-architectures, have been created and
tested to improve the drug’s capacity to promote wound healing. The main benefits of
the topical nanoformulation of curcumin include its solubility, enhanced bioavailability,
and sustained release of curcumin in an active form, all of which are unquestionably very
advantageous for maintaining a steady dose of the medication over an extended period to
enhance wound healing. Before future clinical development, it is crucial to comprehend
the ideal dosage of curcumin for several targets, most notably its complicated involvement
in the inflammatory response during wound healing.

Over the last two decades, electrospinning technology has garnered a growing interest
as a very adaptable method for producing micro-nanofibers of different sizes. Electrospun
fibre material has an exceptionally high specific surface area, porosity, surface functionality,
and fiber morphological adjustability. These features provide the Electrospun fiber material
with an array of perfect properties that may satisfy the application needs of various sectors,
including biomedicine and tissue engineering. Moreover, Electrospun nanofibers may
transport a range of bioactive compounds and continually release medications which
are particularly advantageous for enhancing the diabetic wound’s overall effectiveness.
The literature reviewed here demonstrates that incorporating curcumin into Electrospun
nanofibers and topical application at the wound site has been investigated to prevent or
treat skin infections and to facilitate more effective skin regeneration by mediating the
distinct phases of wound healing.

However, this innovative dressing must be examined in many clinical studies before
its ultimate clinical use. The execution of clinical trials is essential for commercializing
Electrospun membrane-based drug delivery systems intended to promote skin regenera-
tion and improve patients’ quality of life. In addition, additional research is required to
determine the shelf life and optimal storage conditions of Electrospun mats. Before that,
Electrospun-based wound dressings must be improved in production and reproducibility,
wound healing research must be accelerated, and more clinical trials of Electrospun-based
wound dressings must be accelerated. Bioactive ingredients of antimicrobials, antibiotics,
anti-inflammatory agents, and traditional medicines might be incorporated into the Elec-
trospun solution to develop new bioactive Electrospun nanomaterials that can be released
into the wound site to accelerate the healing of diabetic wounds.

This review’s summary states that several topical Electrospun nanofiber formulations
of curcumin have been created to improve therapeutic benefits by steadily delivering cur-
cumin to the injury site. However, the research should take a systematic approach to explore
the molecular processes underlying its capacity to control cellular wound environment and
chronic inflammation. Although current research on several topical formulations of cur-
cumin seems encouraging, clinical studies are still required, since most published data are
generated from in vitro and in vivo tests. Therefore, shortly, experimental human clinical
studies should clarify the therapeutic wound-healing effectiveness of different nanofiber
topical formulations and answer concerns about their safety in biological systems.
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