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Abstract
Background—Acute kidney injury (AKI) represents a common and devastating problem in clinical
medicine. The lack of early biomarkers for AKI has led to a delay in initiating potentially effective
therapies.

Objective—Identification of novel urinary biomarkers for AKI that have progressed to the clinical
phase of the biomarker discovery process.

Methods—A literature review (PubMed, MedLine) from 2000 to the present.

Results/conclusions;—The most promising AKI biomarkers include neutrophil gelatinase-
associated lipocalin, IL-18, kidney injury molecule-1 and liver-type fatty acid binding protein.
Studies to validate the sensitivity and specificity of these biomarkers in clinical samples from large
cohorts and from multiple clinical situations are in progress, facilitated by the development of
commercial tools for their measurement.
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1. The urgent need for acute kidney injury biomarkers
Acute kidney injury (AKI) represents a complex disorder that occurs in a wide variety of
clinical settings, with manifestations ranging from a minimal elevation in serum creatinine to
anuric renal failure. AKI is a term proposed recently to reflect the entire spectrum of acute
renal failure (ARF), and is characterized by ‘an abrupt (within 48 h) reduction in kidney
function defined as an absolute increase in serum creatinine by either > 0.3 mg/dl or an increase
of > 50% from baseline or oliguria of < 0.5 ml/kg/h for > 6 h’ [1,2]. AKI represents a common
but under-recognized problem in clinical medicine, with devastating immediate and long-term
consequences [3–6]. The incidence of AKI varies from ~ 5% of hospitalized patients to > 30%
of patients in intensive care units. There is substantial evidence that this incidence is increasing
at an alarming rate, and the associated mortality and morbidity have remained unacceptably
high despite technical improvements in clinical care [7–9]. Once established, there is no
effective treatment for AKI, and the clinician can provide only supportive care with dialysis.
Although the worst outcomes in AKI are encountered in patients requiring dialysis [10,11],
even mild degrees of AKI as evidenced by small increases in serum creatinine foretell an
increase in mortality and morbidity rate [12–15]. Although recent advances have suggested
novel therapeutic approaches in animal models, translational efforts in humans have yielded
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disappointing results. A principal reason for this is the paucity of early biomarkers for AKI,
leading to a delay in initiating potentially effective therapies [16–19].

In current clinical practice, AKI is typically diagnosed by a rise in serum creatinine.
Unfortunately, creatinine is an unreliable indicator during acute changes in kidney function
[20–23]. First, serum creatinine levels can vary widely with age, gender, muscle mass, muscle
metabolism, medication and hydration status. Second, serum creatinine concentrations may
not change until a substantial portion of kidneyfunction has already been lost, owing to a large
renal reserve. Third, at lower rates of glomerular filtration, the enhanced tubular secretion of
creatinine results in overestimation of renal function. Fourth, during acute changes in
glomerular filtration, serum creatinine does not accurately depict kidney function until steady-
state equilibrium has been reached, which may occur only 2–3 days after the initiating injury.
However, animal studies have shown that although AKI can be prevented and/or treated by
several maneuvers, these must be instituted within a narrow window of opportunity, well before
the serum creatinine even begins to rise [16–19]. Not surprisingly, the use of serum creatinine
as a therapeutic trigger has resulted in the failure of landmark clinical trials investigating
promising interventions for AKI in humans [24,25].

In addition to aiding in early diagnosis and prediction, biomarkers may serve several other
purposes in AKI [26–29]. Thus, biomarkers are also needed for: i) identifying the primary
location of injury (proximal tubule, distal tubule, interstitium, or vasculature); ii) pinpointing
the duration of kidney failure (AKI, chronic kidney disease, or ‘acute-on-chronic’); iii)
discerning AKI subtypes (prerenal, intrinsic renal, or postrenal); iv) identifying AKI etiologies
(ischemia, toxins, sepsis, or a combination); v) differentiating AKI from other forms of acute
kidney disease (urinary tract infection, glomerulonephritis, interstitial nephritis); vi) risk
stratification and prognostication (duration and severity of AKI, need for renal replacement
therapy, length of hospital stay, mortality); vii) defining the course of AKI; and viii) monitoring
the response to AKI interventions.

Desirable characteristics of clinically applicable AKI biomarkers include; i) they should be
non-invasive and easy to perform at the bedside or in a standard clinical laboratory, using easily
accessible samples such as blood or urine; ii) they should be rapidly and reliably measurable
using a standardized assay platform; iii) they should be highly sensitive to facilitate early
detection, and with a wide dynamic range and cutoff values that allow for risk stratification;
iv) they should be highly specific for AKI, and enable the identification of AKI subtypes and
etiologies; and v) they should exhibit strong biomarker properties on receiver-operating
characteristic (ROC) curves.

2. The search for novel acute kidney injury biomarkers
The biomarker development process has typically been divided into five phases [30]. The first
phase is the preclinical discovery phase, which requires high-quality, well-characterized tissue
or body fluid samples from carefully chosen animal or human models of the disease under
investigation. Typically, tissue analysis uses genomic approaches, whereas body fluids are best
analyzed by proteomic techniques. Identifying biomarkers in the serum or urine is most
desirable, as these samples are easily obtained and allow for non-invasive testing. Urine is
more likely to contain biomarkers arising from the kidney, more applicable for easy patient
self-testing, and more amenable to proteomic screening because of the limited number of
protein species present. However, urine samples are more prone to protein degradation, and
biomarker concentrations may be confounded by changes in urine flow rate. Serum samples
are readily available, even in anuric patients, and serum biomarkers may exhibit better stability.
On the other hand, serum markers may reflect the systemic response to a disease process rather
than specific organ involvement, and the presence of a large number of normally abundant
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proteins (such as albumin and immunoglobulins) in blood renders proteomic approaches
difficult. The widespread availability of enabling technologies such as functional genomics
and proteomics has accelerated the rate of novel biomarker discovery. Transcriptome profiling
studies have identified several genes whose protein products have emerged as AKI biomarkers
[31]. However, microarray-based methods cannot be used for the direct analysis of biological
fluids, and usually require downstream confirmation by proteomic techniques before clinical
use. Proteomics is the study of both the structure and function of proteins by a variety of
methods, such as gel electrophoresis, immunoblotting, mass spectrometry, and enzymatic or
metabolic assays. Advancing technologies have radically improved the speed and precision of
identifying and measuring proteins in biological fluids, and proteomic approaches are also
beginning to yield new AKI biomarkers [32–34].

Phase II is the assay development phase, during which a reliable and reproducible assay is
developed, optimized and tested on existing samples of an established disease state. In the case
of AKI, this has typically involved generating antibodies to identified biomarkers and testing
biomarker concentrations in the urine or plasma of patients with established AKI using
standardized platforms such as ELISA. Phase III is the retrospective study stage, in which the
biomarker is tested in samples from completed clinical trials, to differentiate populations of
interest and to test whether the biomarker can detect the disease before existing gold standards
(in this case, before an increase in serum creatinine). Phase IV is the prospective screening
stage, during which the biomarker is used to screen a population to identify extent and
characteristics of the disease and the critical biomarker properties (including sensitivity/
specificity and area under the ROC curve). Phase V is the final stage, which determines the
impact of screening on reducing disease burden and improving the outcome.

The quest to improve the early diagnosis of AKI is an area of intense contemporary research
[26–29]. Conventional urinary biomarkers such as casts and fractional excretion of sodium
have been insensitive and nonspecific for the early recognition of AKI. Other traditional urinary
biomarkers such as filtered high molecular mass proteins and tubular proteins or enzymes have
also suffered from lack of specificity and a dearth of standardized assays. Fortunately, the
application of innovative technologies such as functional genomics and proteomics to human
and animal models of kidney disease has uncovered several new candidates that are emerging
as biomarkers of AKI. Several of these candidates have now progressed through the first three
stages of the biomarker development process, and have entered Phase IV This review updates
the reader on the current status of new urinary biomarkers of AKI that hold the greatest promise
and potential to reach Phases IV and V in the biomarker development process. At present, the
main contenders include neutrophil gelatinase-associated lipocalin (NGAL), IL-18, kidney
injury molecule-1 (KIM-1) and liver-type fatty acid binding protein (L-FABP).

3. Neutrophil gelatinase-associated lipocalin as an acute kidney injury
biomarker

The preclinical discovery phase of the AKI biomarker development process has been facilitated
by transcriptome profiling technologies. Several investigators have used molecular techniques
such as cDNA microarrays and subtractive hybridizations combined with downstream
proteomic analysis to identify new biomarkers in AKI. The first detailed mouse kidney
microarray analysis performed at early time points after AKI revealed the gene encoding
neutrophil gelatinase-associated lipocalin (Ngal, also known as lcn2) to be one of the most
upregulated transcripts in the kidney [35], a finding that has now been confirmed in several
other transcriptome profiling studies [36–39). Downstream proteomic studies have also
revealed NGAL to be one of the earliest and most robustly induced proteins in the kidney after
ischemic or nephrotoxic AKI in animal models, and NGAL protein is easily detected in the
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blood and urine soon after AKI [40–43]. These robust and reproducible findings have spawned
several translational proteomic studies to evaluate NGAL as a new biomarker in human AKI.

The initial assay development phase of NGAL as an AKI biomarker was pioneered by the
development of a reproducible ELISA assay for human NGAL [44]. The assay was found to
be sensitive down to the picomolar range, and usable for both urine and plasma with excellent
inter- and intra-assay coefficient variations in the 5–10% range, thus setting the stage for Phase
III studies. An ELISA assay for NGAL is now commercially available from Antibody Shop
(Grusbakken, Denmark).

In a cross-sectional study, subjects in the intensive care unit with established AKI displayed >
100-fold increase in urine NGAL by western blotting when compared with normal controls
[42]. Urine NGAL levels correlated highly with serum creatinine levels. Kidney biopsies in
these patients showed intense accumulation of immunoreactive NGAL in 50% of the cortical
tubules. These results therefore identified NGAL as a widespread and sensitive response to
established AKI in humans.

In a prospective study of 71 children undergoing cardiopulmonary bypass, AKI (defined as a
50% increase in serum creatinine) occurred in 28% of the subjects, but the diagnosis using
serum creatinine was possible only 1–3 days after surgery [44]. In marked contrast, NGAL
measurements by western blotting and by ELISA revealed a robust 10-fold or more increase
in the urine and plasma, within 2 – 6 h of the surgery in patients who subsequently developed
AKI. Both urine and plasma NGAL were powerful independent predictors of AKI, with an
area under the receiver-operating characteristic curve (AUC) of 0.998 for the 2 h urine NGAL
and 0.91 for the 2 h plasma NGAL measurement [44], The 2 h urine NGAL level represented
a strong independent predictor of clinical outcomes such as duration of AKI among cases
[45]. In a subsequent limited prospective validation study, urine NGAL was measured at 4, 12
and 24 h after cardiac surgery in 40 children, out of which 21 subjects developed AKI 2–3 days
after the operation [46]. The area under the NGAL ROC curve at 4 h post surgery was 1.000.
Derived sensitivities and specificities for a urine NGAL cutpoint concentration of 100 ng/mg
creatinine yielded both perfect sensitivity (1.000) and perfect specificity (1.000) for the
prediction of AKI [46]. Thus, NGAL emerged as a sensitive, specific and highly predictive
early biomarker of AKI in the urine and plasma, after cardiac surgery in children. These
findings have now been confirmed in a prospective study of adults who developed AKI after
cardiac surgery, in whom urinary NGAL was significantly elevated 1 – 3 h after the operation
[47]. AKI, defined as a 50% increase in serum creatinine, did not occur until the third
postoperative day. However, patients who did not encounter AKI also displayed a significant
increase in urine NGAL in the early postoperative period, although to a much lesser degree
than those who subsequently developed AKI. The AUC reported in this study was 0.74 for the
3 h NGAL and 0.80 for the 18 h NGAL, which is perhaps reflective of the confounding variables
typically encountered in adults.

NGAL has also been evaluated as a biomarker of AKI in kidney transplantation. Biopsies of
kidneys obtained 1 h after vascular anastomosis revealed a significant correlation between
NGAL staining intensity and the subsequent development of delayed graft function [48]. In a
prospective multicenter study of children and adults, urine NGAL levels in samples collected
on the day of transplant clearly identified cadaveric kidney recipients who subsequently
developed delayed graft function and dialysis requirement (which typically occurred 2–4 days
later). The ROC curve for prediction of delayed graft function based on urine NGAL at day 0
showed an AUC of 0.9, indicative of an excellent predictive biomarker [49]. In a recent
retrospective study of kidney transplant patients undergoing either protocol biopsies or
clinically indicated biopsies, urine NGAL measurements were found to be significantly
increased in subjects with tubulitis or other tubular pathologies [50]. Urine NGAL also tended
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to be increased in subjects with subclinical tubulitis (p = 0.06), raising the possibility of NGAL
representing a non-invasive screening tool for the detection of tubulo-interstitial disease in the
early months following kidney transplantation.

Several investigators have examined the role of NGAL as a predictive biomarker of
nephrotoxicity following contrast administration, with promising results [51–54]. In a
prospective study of children undergoing elective cardiac catheterization with contrast
administration, both urine and plasma NGAL predicted contrast-induced nephropathy (defined
as a 50% increase in serum creatinine from baseline) within 2 h of contrast administration
[54]. Using a cutoff value of 100 ng/ml, the AUC for prediction of contrast nephropathy was
excellent for the 2 h urine NGAL (0.92) as well as the 2 h plasma NGAL (0.91). By multivariate
analysis, the 2 h NGAL concentrations in the urine and plasma were found to be powerful
independent predictors of contrast nephropathy [54]. In studies of adults administered contrast,
early rises in both urine (4 h) and plasma (2 h) NGAL were documented, in comparison with
a much later increase in plasma cystatin C levels (8–24 h after contrast administration),
providing further support for NGAL as an early biomarker of contrast nephropathy [51–53].

Urine NGAL obtained early during the hospitalization has also been shown to predict the
severity of AKI and dialysis requirement in a multi-center study of children with diarrhea-
associated hemolytic uremic syndrome, with high sensitivity but low specificity [55]. Using a
cutoff of 200 ng/ml, NGAL in urine obtained soon after hospitalization was significantly
increased in those children who subsequently developed severe AKI requiring dialysis.
Recently published results also suggest that urine NGAL measurements represent early
biomarkers of AKI in the intensive care setting, being able to predict this complication about
2 days before the rise in serum creatinine [56]. Early urine NGAL measurements were also
predictive (albeit weakly) of duration of AKI as well as worsening of AKI in critically ill
subjects [56]. Thus, NGAL is a useful early AKI marker that predicts development and severity
of AKI even in a heterogeneous group of patients with unknown timing of kidney injury.

All results described thus far were obtained using research-based assays, which is not a practical
option in the clinical setting. The availability of validated clinical tools for NGAL
measurements could revolutionize renal diagnostics. In this regard, a standardized point-of-
care kit has been devised for the measurement of plasma NGAL (Triage® NGAL device,
Biosite Incorporated). In a pilot study with 40 plasma samples and 12 calibration standards,
NGAL measurements by research ELISA and by the Triage® NGAL device were highly
correlated (r = 0.94). In a subsequent study of 120 patients undergoing cardiopulmonary bypass
surgery (CPB), AKI (50% or greater increase in serum creatinine) developed in 45 patients,
but the diagnosis using serum creatinine was delayed by 2–3 days after CPB [57]. In contrast,
mean plasma NGAL levels measured by the Triage® NGAL device increased threefold within
2 h of CPB, and remained significantly elevated for the duration of the study. By multivariate
analysis, plasma NGAL at 2 h postCPB time was the most powerful independent predictor of
AKI (p < 0.0001). For the 2 h plasma NGAL measurement, the area under the curve was 0.96,
sensitivity was 0.84 and the specificity was 0.94 for prediction of AKI using a cutoff value of
150 ng/ml. The 2 h postoperative plasma NGAL levels correlated strongly with change in
creatinine (r = 0.46, p < 0.001), duration of AKI (r = 0.57, p < 0.001) and length of hospital
stay (r = 0.44, p < 0.001), The 12 h plasma NGAL correlated strongly with mortality (r = 0.48,
p = 0.004) and all measures of morbidity mentioned above, Thus, accurate measurements of
plasma NGAL are obtained using the point-of-care Triage® NGAL device. The assay is facile
and performed on the Triage meter with quantitative results available within~ 15 min, and
requires only microliter quantities of whole blood or plasma. The assay is auto-calibrated and
includes reactive internal controls that run with every sample applied. The assay is deployable
directly to the point of patient care. Using this device, plasma NGAL was found to be an early
predictive biomarker of AKI, morbidity and mortality after CPB [57].
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In addition, a urine NGAL immunoassay has been developed for a standardized clinical
platform (ARCHITECT® analyzer, Abbott Diagnostics). The development of the Abbott
ARCHITECT® urine NGAL assay has progressed through research assay prototype testing
and has successfully met all research assay performance requirements developed by an expert
panel of nephrologists and laboratory personnel. As a result of the assay performance observed
in these studies, the assay design has transitioned into Abbott’s formal product development
process. In a pilot study with 136 urine samples and 6 calibration standards, NGAL
measurements obtained by research ELISA and by the ARCHITECT assay were highly
correlated (r = 0.99). In a subsequent study, 196 children undergoing CPB were prospectively
enrolled, and serial urine NGAL measurements obtained by ARCHITECT assay [58]. AKI
developed in 99 patients but the diagnosis using serum creatinine was delayed by 2–3 days
after CPB. By contrast, mean urine NGAL levels increased 15-fold within 2 h, and 25-fold at
4 and 6 h after CPB. For the 2 h urine NGAL measurement, the area under the curve was 0.95,
sensitivity was 0.82 and the specificity was 0.90 for prediction of AKI using a cutoff value of
100 mg/ml. The 2 h urinary NGAL levels were found to be highest in subjects who had either
an earlier rise in serum creatinine (3689 ± 294 ng/mg creatinine) or needed renal replacement
therapy (5081 ± 320 ng/mg creatinine). The 2 h urine NGAL levels correlated highly with
severity of AKI (r = 0.66, p < 0.0001), duration of AKI (r = 0.73, p < 0.0001), length of hospital
stay (r = 0.42, p < 0.0001), dialysis requirement (r = 0.38, p = 0.01) and death (r = 0.53, p =
0.01). Thus, accurate measurements of urine NGAL are obtained using the ARCHITECT
platform. This assay is easy to perform with no manual pretreatment steps, a first result
available within 35 min, and it requires only 150 μl of urine. The 2 h urine NGAL measured
by ARCHITECT assay was found to be an early predictive biomarker of AKI severity and
mortality after CPB [58].

In summary, NGAL is emerging as a center-stage player in the AKI field, as a new predictive
biomarker, for prominent inclusion in the urinary ‘AKI Biomarker Panel’. It is acknowledged,
however, that the studies published thus far have been small, in which NGAL appears to be
most sensitive and specific in relatively uncomplicated patient populations with AKI. Plasma
NGAL measurements may be influenced by several coexisting variables such as systemic
infections [59], inflammatory conditions [60] and malignancies [61]; however, any relationship
between plasma and urinary NGAL requires further clarification. Any NGAL systemically
released from infection, inflammation, or malignantly transformed epithelia would be freely
filtered by the kidney glomerulus but would be largely reabsorbed by efficient endocytic
mechanisms in the proximal tubules [62,63]. Indeed, systemic injection of labeled exogenous
recombinant NGAL, even in microgram quantities, has been shown to be rapidly and almost
completely reabsorbed by the kidney, with minimal amounts if any appearing in the urine
[42,64]. Thus, any urinary excretion of NGAL is likely to be present only when there is
concomitant renal tubular injury that increases de novo NGAL synthesis and/or precludes
NGAL reabsorption, In strong support of this notion is the finding from gene expression studies
in AKI that rapid and massive upregulation of NGAL mRNA occurs in the thick ascending
limb of Henle’s loop and the collecting ducts, with resultant synthesis of NGAL protein in the
distal nephron (the renal pool) and secretion into the urine where it comprises the major fraction
of urinary NGAL [62,63]. In addition, AKI results in increased NGAL mRNA expression in
distant organs, especially in the liver and lung, and the overexpressed NGAL protein is released
into the circulation and constitutes the distinct systemic pool [62,63].

There is an emerging literature suggesting that NGAL is also a marker of chronic kidney disease
(CKD) and severity [65]. In one study of 33 subjects with CKD (from glomerulonephritides)
and 20 controls, the mean urine NGAL levels were higher in CKD patients (378.28 ±111.13
versus 7.38 ± 3.26 ng/ml; p = 0.01). Furthermore, NGAL levels were significantly correlated
with serum creatinine (r = 0.588, p-value = 0.02), glomerular filtration rate (GFR) (r = −0.528,
p-value = 0.04) and proteinuria (r = 0.294, p-value = 0.01) [66]. Both urine and plasma NGAL
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represent biomarkers of CKD severity in patients with autosomal dominant polycystic kidney
disease [67]. In these subjects, urine and plasma NGAL measurements correlated with residual
GFR, and those with greater severity of cystic disease (measured as number of cysts > 10)
displayed the highest NGAL values [67]. Urine NGAL has also been shown to represent an
early biomarker for the degree of chronic injury in patients with IgA nephropathy [68] and
lupus nephritis [69]. These observations are important to bear in mind when using NGAL as
a biomarker of AKI, since the risk of AKI is increased in patients with underlying CKD.

4. IL-18 as an acute kidney injury biomarker
IL-18 is a pro-inflammatory cytokine that is known to be induced and cleaved in the proximal
tubule, and subsequently easily detected in the urine following ischemic AKI in animal models
[70]. In a cross-sectional study, urine IL-18 levels measured by a sensitive commercially
available ELISA (Medical and Biological laboratories, Nagoya, Japan) were markedly elevated
in patients with established AKI but not in subjects with urinary tract infection, chronic kidney
disease, nephrotic syndrome, or prerenal azotemia [71], In a subsequent study, urinary IL-18
was found to be significantly upregulated before the increase in serum creatinine in patients
with acute respiratory distress syndrome who develop AKI [72]. On multivariate analysis, urine
IL-18 levels > 100 pg/mg creatinine predicted the development of AKI 24 h before the rise in
serum creatinine, with an adjusted odds ratio of 6.5 and an AUC of 0.73. Urine IL-18 on the
day of initiation of mechanical ventilation was also predictive of mortality in these patients,
independent of severity of illness scores and serum creatinine [72].

Both urinary IL-18 and NGAL were recently shown to represent early, predictive, sequential
AKI biomarkers in children undergoing cardiac surgery [45]. In patients who developed AKI
2 – 3 days after surgery, urinary NGAL was induced within 2 h and peaked at 6 h, whereas
urine IL-18 levels increased around 6 h and peaked at > 25-fold at 12 h post surgery (AUC
0.75). Both IL-18 and NGAL were independently associated with duration of AKI among
cases.

In subjects who undergo kidney transplantation, urine IL-18 and NGAL have emerged as
predictive biomarkers for delayed graft function (defined as dialysis requirement within the
first week after transplantation) [49]. In a prospective multi-center study of children and adults,
both IL-18 and NGAL in urine samples collected on the day of transplant predicted subsequent
delayed graft function and dialysis requirement with an AUC of 0.9 for both biomarkers. By
multivariate analysis, both urine IL-18 and NGAL predicted the trend in serum creatinine in
the post-transplant period after adjusting for age, gender, race, urine output and cold ischemia
time (p < 0.01).

Recently published results also suggest that urine IL-18 measurements represent early
biomarkers of AKI in the intensive care setting, being able to predict this complication about
2 days before the rise in serum creatinine [73]. Early urine IL-18 measurements correlated with
the severity of AKI as well as mortality. Thus, urinary IL-18 rises before serum creatinine in
non-septic critically ill children, predicts severity of AKI and is an independent predictor of
mortality in this heterogeneous group of patients with unknown timing of kidney injury [73].

Thus, IL-18 may also represent a promising candidate for inclusion in the urinary ‘AKI
Biomarker Panel’. IL-18 is more specific to ischemic AKI, and largely not affected by
nephrotoxins, chronic kidney disease or urinary tract infections. It is likely that NGAL and
IL-18 will emerge as sequential urinary biomarkers of AKI. However, IL-18 measurements
may also be influenced by a number of coexisting variables, since renal IL-18 mRNA levels
are known to be induced in other disease states such as endotoxemia, immunologic injury and
cisplatin toxicity [74]. Furthermore, plasma IL-18 levels are known to be increased in various
pathophysiologic states, such as inflammatory arthritis, inflammatory bowel disease, systemic
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lupus erythetnatosus, psoriasis, hepatitis and multiple sclerosis. The relationship between
plasma and urine IL-18 remains largely unexplored.

5. Kidney injury molecule-1 as an acute kidney injury biomarker
Kidney injury molecule 1 (Kim-1) was first identified by subtractive hybridization screening
as a gene that is markedly upregulated in ischemic rat kidneys [75], a finding that has been
confirmed in several other transcriptome profiling studies. Downstream proteomic studies have
also shown KIM-1 to be one of the most highly induced proteins in the kidney after AKI in
animal models, and a proteolytically processed domain of KIM-1 is easily detected in the urine
soon after AKI [76–78]. Assays for KIM-1 (ELISA and microbead-based) have been developed
in research laboratories [79] but are not commercially available.

In a small human cross-sectional study, KIM-1 was found to be markedly induced in proximal
tubules in kidney biopsies from patients with established AKI (primarily ischemic), and urinary
KIM-1 measured by ELISA distinguished ischemic AKI from prerenal azotemia and chronic
renal disease [76]. Recent studies have expanded the potential clinical use of KIM-1 as a
predictive AKI biomarker. In a case-control study of 40 children undergoing cardiac surgery,
20 with AKI (defined as a 50% increase in serum creatinine) and 20 without AKI, urinary
KIM-1 levels were markedly enhanced, with an AUC of 0.83 at the 12 h time point for
predicting AKI [80]. In a larger prospective cohort study of 201 hospitalized patients with
established AKI, both urinary KIM-1 as well as urinary N-acetyl-β-(D)-glucosaminidase
(NAG) were found to be associated with adverse clinical outcomes, including dialysis
requirement and death [81]. However, the association between KIM-1 concentrations and the
composite end point (dialysis or mortality) was weak (odds ratio 3.2 for highest versus lowest
quartile), and was not significant after adjustment for covariates.

Thus, KIM-1 represents a promising candidate for inclusion in the urinary ‘AKI Biomarker
Panel’. It is likely that NGAL and KIM-1 will emerge as tandem biomarkers of AKI, with
NGAL being most sensitive at the earliest time points and KIM-1 potentially adding specificity
at slightly later time points. One advantage of KIM-1 as a urinary biomarker is the fact that its
expression seems to be limited to the injured or diseased kidney, and no systemic source of
KIM-1 has been described; however, urinary KIM-1 measurements may be influenced by some
other confounding variables. KIM-1 is induced in the kidney and upregulated in the urine by
a large number of nephrotoxins, including ciclosporin, cisplatin, cadmium, gentamicin,
mercury and chromium [82]. Similarly, KIM-1 in the kidney and urine is induced in a variety
of chronic proteinuric, inflammatory and fibrotic disease states in humans [83].

6. Liver-type fatty acid binding protein an as acute kidney injury biomarker
Liver fatty acid binding protein is a 14-kDa protein normally expressed in the kidney proximal
convoluted and straight tubules [84]. In a model of cisplatin-induced AKI, there was increased
shedding of urinary L-FABP within the first 24 h, whereas a rise in serum creatinine was not
detectable until after 72 h of cisplatin treatment [85]. A two-step sandwich ELISA method
using monoclonal antibodies to human L-FABP protein was established for quantification of
L-FABP in urine [86,87], and is now commercially available (CMIC Co. Ltd, Tokyo, Japan).
One pilot study examined the role of urinary L-FABP in contrast-induced AKI, defined as an
increase in serum creatinine of > 0.5 mg/dl or a relative increase of > 25% at 2 – 5 days after
the procedure [88]. Urinary L-FABP levels were significantly increased before the increase in
serum creatinine only in those patients that developed AKI post contrast dye (n = 13). In a
recent study involving 12 living-related kidney transplant patients immediately after
reperfusion of their transplanted organs [89], a significant direct correlation was found between
urinary L-FABP level and both peritubular capillary blood flow and the ischemic time of the
transplanted kidney (both p < 0.0001), as well as hospital stay (p < 0.05).
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In a recent prospective study of 40 children undergoing cardiac surgery, 21 developed AKI
(defined as a 50% increase in serum creatinine from baseline, which typically occurred 2–3
days post surgery). In this group, ELISA analysis showed increased urine L-FABP from levels
before surgery of 20 ± 4 to 1885 ± 500 ng/mg creatinine at 4 h [90]. Western blot analysis
confirmed the presence of urinary L-FABP. Urinary L-FABP levels at 4 h post cardiac surgery
was a powerful independent risk indicator for AKI. For concentration of urinary L-FABP at 4
h, the AUC was 0.810 for a cutoff value of 486 ng/mg creatinine.

Thus, L-FABP also appears to be a promising candidate for inclusion in the urinary ‘AKI
Biomarker Panel’. It is possible that NGAL and L-FABP will emerge as the earliest biomarkers
of AKI, with KIM-1 and IL-18 potentially adding specificity at slightly later time points.
However, urinary L-FABP measurements may also be influenced by several confounding
variables [91]. Several studies have documented increased urinary L-FABP levels in patients
with non-diabetic chronic kidney disease [92], early diabetic nephropathy [93], idiopathic focal
glomerulosclerosis [94] and polycystic kidney disease [95]. Another issue worth considering
is the fact that L-FABP is also abundantly expressed in the liver, and urinary L-FABP may be
influenced by serum L-FABP levels. As in the case of NGAL, any systemic L-FABP would
be freely filtered by the kidney glomerulus but would largely be reabsorbed by megalin-
mediated proximal tubular uptake [96], Encouragingly, studies have shown that in the presence
of chronic renal disease, a reduction in proximal tubular reabsorption results in increased
urinary L-FABP excretion, which does not quantitatively correlate with serum L-FABP levels
[97]. The estimated contribution of serum L-FABP to urinary L-FABP in chronic kidney
disease was only ~ 3%, suggesting that serum L-FABP levels do not influence urinary L-FABP
levels. Further evidence for this notion has recently been provided in patients who developed
AKI post cardiac surgery, who also developed significant early acute liver injury [90], In this
subgroup, there was a significant increase in serum L-FABP levels at 12 h post cardiac surgery,
but not at 4 h. By contrast, urinary L-FABP levels measured in this same subset of patients
were dramatically increased within the first 4 h post surgery, while urinary levels at 12 h had
actually begun to decline. These findings confirm the dissociation between plasma and urine
L-FABP levels in AKI, and suggest that increased urinary L-FABP levels at 4 h post cardiac
surgery in AKI patients represent an enhanced shedding of L-FABP from the proximal tubule
rather than reflecting increased filtration of high serum levels.

7. Conclusion
The tools of contemporary science are providing us with new biomarkers for the clinical
investigation of AKI in humans. The most promising of these are chronicled in this review and
summarized in Table 1. These include NGAL, IL-18, KIM-1 and L-FABP. As they represent
tandem biomarkers, it is likely that the AKI panels will be useful for timing the initial insult
and assessing the duration and severity of AKI. Based on the differential expression of the
biomarkers, it is also likely that the AKI panels will help distinguish between the various types
and etiologies of AKI, and predict clinical outcomes. However, they have hitherto been tested
only in small studies and in a limited number of clinical situations. Studies to validate the
sensitivity and specificity of these biomarkers in clinical samples from large cohorts and from
multiple clinical situations are now in progress, facilitated by the development of commercial
tools for the reproducible measurement of these biomarkers across different laboratories. Such
clinical laboratory tools will be indispensable for the early diagnosis and initiation of timely
therapeutic measures in AKI, a common clinical condition with a dismal prognosis.

8. Expert opinion
The incidence of AKI varies from ~ 5% of hospitalized patients to > 30% of patients in intensive
care units, and it is rising. The associated mortality and morbidity have remained high. Once
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established, there is no effective treatment for human AKI. Ironically, even tragically, animal
studies have shown that AKI can be prevented and/or treated by several maneuvers but these
must be initiated within a narrow window of opportunity. Therein lies the Achilles’ heel of
AKI management – the paucity of early biomarkers has led to a delay in initiating potentially
effective therapies in humans.

It is instructive to consider an analogous clinical situation, namely acute myocardial infarction
(AMI), the medical evaluation of which has progressed over the past few decades from
detection of Q-waves by electrocardiogram through a series of serum biomarkers with
increasing sensitivity and predictive value. Now widely available to the clinician is a panel of
tandem serum biomarkers that can not only establish the diagnosis with accuracy, but can also
provide information on severity and duration of disease (Figure 1). This has allowed for timely
institution of several therapeutic interventions, with a resultant 50% or so reduction in mortality
rate. In stark comparison, the diagnosis, treatment and and prognosis of AKI have not changed
appreciably in the last five decades. Utilizing serum creatinine measurements to institute
promising interventions for AKI in humans is futile, and is analogous to waiting for 2 – 3 days
before intervening in patients with ischemic acute myocardial infarction or acute neurologic
stroke. Identification of new AKI biomarkers has been designated as a top priority by the
American Society of Nephrology [98]. The concept of developing a new toolbox for earlier
diagnosis of disease states is also featured prominently in the NIH Roadmap for biomedical
research [99].

Fortunately, we are closing in on a proposed ‘AKI Urinary Biomarker Panel’. Incredibly, much
of the confusion surrounding the early diagnosis of AKI is being solved by the adaptive
response of the stressed kidney itself, with the rapid and robust induction of select genes whose
protein products have provided us with highly promising biomarkers [100]. This includes
NGAL, IL-18, KIM-1 and L-FABP, as illustrated in Figure 1. The availability of commercial
ELISA-based tools for the measurement of most of these candidate biomarkers has allowed
for widespread confirmation of the utility of these biomarkers in several AKI situations. All
of these may now be considered to have completed the Phase III stage, and entered Phase IV
(prospective screening stage) in the biomarker development process. Each individual
biomarker in the putative AKI panel has merits and demerits, as detailed.

Within this panel, NGAL represents the most extensively validated and promising biomarker
for AKI. As a result, robust and standardized clinical platforms for the accurate measurement
of human NGAL have been developed by industry. The NGAL assays have successfully met
all performance requirements and have transitioned into the formal product development
process. It is hoped that these tools will provide clinicians with new methods for the early
diagnosis of AKI, for the early initiation of potentially effective therapies, and for the
monitoring of the efficacy of therapy.

It is doubtful, however, that any single biomarker such as NGAL will suffice in AKI. The
reason for this is evident from the complex and heterogeneous nature of AKI, occurring in a
wide variety of clinical settings with multiple pathophysiologic mechanisms that interplay with
and amplify each other. It will probably require a panel of validated biomarkers to provide us
with all the desired information. In addition to early diagnosis and prediction, biomarkers may
serve to discern AKI subtypes. For example, the combination of NGAL and IL-18 may be
useful for the diagnosis of contrast-induced nephropathy, because NGAL (but not IL-18) is
induced early in this condition. Furthermore, urinary biomarker panels could identify
etiologies, predict clinical outcomes (duration and severity of AKI, need for renal replacement
therapy, length of hospital stay, mortality), allow for risk stratification and prognostication,
and monitor the response to interventions,
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The availability of such information has the potential to revolutionize renal and critical care,
and allow for the practice of personalized and predictive medicine at an unprecedented level.
At the very least, clinicians informed of changes in urinary biomarkers would be aware of the
potential for development of clinical AKI, and biomarkers could add substantively to existing
clinical scoring systems for AKI prediction. Such patients would deserve closer monitoring
with respect to blood pressure, urine output and renal perfusion. Every effort to monitor
intravascular status and to optimize hydration and renal perfusion would be deployed. These
subjects would benefit from the diligent avoidance of nephrotoxins. The ability to predict which
patients will develop AKI could enable early initiation of potential interventions. For example,
earlier intervention with renal replacement therapy may be strongly considered for subjects
with elevated biomarker levels who are developing fluid overload but will not display increased
serum creatinine for several days due to hemodilution and time required for re-establishment
of a steady-state. The availability of promising early biomarkers may allow the timely initiation
of interventions such as atrial natriuretic peptide and insulin-like growth factor that have been
successful in smaller, Phase II-level efficacy studies but not in larger Phase III trials. Possibly,
these interventions would have been successful if they had been initiated at the onset of AKI
(as determined by predictive biomarkers}, rather than waiting several days for serum creatinine
to rise. In addition, animal studies have identified, and continue to reveal, new therapies such
as growth factors, antiapoptotic, anti-inflammatory and antioxidant approaches that are
effective in early AKI, before the rise in serum creatinine. The availability of standardized
commercial platforms for urinary biomarker determination may allow these promising agents
to be investigated in humans with AKI.
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Figure 1. Proposed panel showing the temporal pattern of urinary biomarkers for the early
diagnosis of AKI following defined events such as cardiac surgery and kidney transplantation, in
analogy with cardiac markers in the plasma
AKI: Acute kidney injury; CPK-MB: Creatine phosphokinase; KIM-1: Kidney injury
molecule-1; L-FABP; Liver-type fatty acid binding protein; NGAL: Neutrophil gelatinase-
associated lipocalin.
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Table 1
Current status of new urinary biomarkers for discriminating between different forms of AKI*.

Biomarker name CPB Contrast nephropathy Sepsis or ICU setting Kidney tx

NGAL 2 h post-CPB 1 – 2 days pre-AKI 2 days pre-AKI 12–24 hpost-tx
IL-18 6 h post-CPB Not increased 2 clays pre-AKI 12–24 hpost-tx
KIM-1 12 h post-CPB Not tested Not tested Not tested
L-FABP 4 h post-CPB 1 – 2 days pre-AKI Not tested Not tested

*
The times indicated (in hours) are the earliest time points at which the biomarker is increased significantly from baseline values.

AKI: Acute kidney injury; CPB: Cardiopulmonary bypass; ICU: Intensive care unit; KIM-1: Kidney injury molecule-1; L-FABP: Liver-type fatty acid
binding protein;

NGAL: Neutrophil gelatinase-associated lipocalin; tx: Transplant.
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