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EMG-Based Teleoperation and Manipulation with the DLR LWR-III

Jörn Vogel, Claudio Castellini and Patrick van der Smagt

Abstract— In this paper we describe and practically demon-
strate a robotic arm/hand system that is controlled in real-
time in 6D Cartesian space through measured human mus-
cular activity. The soft-robotics control architecture of the
robotic system ensures safe physical human robot interaction
as well as stable behaviour while operating in an unstruc-
tured environment. Muscular control is realised via surface
electromyography, a non-invasive and simple way to gather
human muscular activity from the skin. A standard supervised
machine learning system is used to create a map from muscle
activity to hand position, orientation and grasping force which
then can be evaluated in real time—the existence of such a
map is guaranteed by gravity compensation and low-speed
movement. No kinematic or dynamic model of the human arm
is necessary, which makes the system quickly adaptable to
anyone. Numerical validation shows that the system achieves
good movement precision. Live evaluation and demonstration of
the system during a robotic trade fair is reported and confirms
the validity of the approach, which has potential applications
in muscle-disorder rehabilitation or in teleoperation where a
close-range, safe master/slave interaction is required, and/or
when optical/magnetic position tracking cannot be enforced.

I. INTRODUCTION

Surface electromyography (sEMG) for prosthetic hand

control has since a long time been used, even in the com-

mercial setting, for the control of prosthetic hands, albeit the

control is mostly limited to one or two degrees of freedom

and predefined hand postures. sEMG is a totally non-invasive

and relatively cheap technique to measure muscular activity.

The obtained signal is strongly and stably related to the force

exerted by the measured muscle(s) thanks to the electrical

activity of ensembles of motor units. The signal is noisy, but

the fact that many hundreds of motor units combine together

makes it is relatively insensitive to small influences, to the

point that sEMG is widely demostrated in literature [1], [2],

[3], [4], [5] as an excellent means to control dexterous hand

prostheses.

The use of EMG for copying arm movement however

is a totally different problem: in this case, the human

skeletomuscular system does not exert a certain force to

hold or grasp an object; rather, muscles are activated to

move an arm to or track a desired Cartesian position. In

most finger movement settings, the precise finger position is

secondary to the exerted force; in arm movement, it is rather

the other way around. The nature of the sEMG signal may

therefore indicate its inapplicability for this task; nonetheless,
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Fig. 1. The system during a live demonstration at the Automatica 2010

trade fair (www.automatica-munich.com).

interesting results have already been obtained by Artemiadis

and Kyriakopoulos [6], [7], [8].

In this work we follow the approach outlined in that work,

at the same time lifting some of its limitations. In particular,

we address the low number of controlled degrees-of-freedom

(3), the low generalisability (a detailed model of the arm of

the human subject is required) and the use of an industrial

robotic setup, which makes the whole system unsuitable

for close cooperation with human beings. In particular we

introduce a method which matches a 9-dimensional sEMG

signal to a 6-DoF end-effector position plus 1-DoF grasp

force. The system, which has been demonstrated online,

requires a short training period and can then be used for

a prolonged period of time to grasp and move objects

using the sEMG signal as user interface only. No precise

positioning of the sEMG electrodes, nor any model of the

human arm is required; the adaptivity of the machine learning

approach used also automatically incorporates compensation

for muscle fatigue, an issue which usually requires non-trivial

handling [7].

Even though the use of the system for precise position tele-

operation is limited, the system can be used for rehabilitation

purposes as well as for impedance-controlled, stiffness-based

teleoperation. Furthermore, the current system allows, where

necessary, for increased accuracy by optimisation of the data

acquisition methods.

II. APPROACH

The system, as described here, was demonstrated at the

Automatica 2010 trade fair in Munich, Germany (see www.
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Fig. 2. An abstract block-diagram representation of the system.

automatica-munich.com). All data presented in this paper

was collected live during the fair.

A picture of the setup in action is visible in Figure 1. The

robot is mounted on a pedestal in a right-arm like posture.

A table is placed within the workspace of the robot, to allow

the user to pick up and put down objects; a soft ball is used

to this end. Figure 2 depicts a simplified schematic overview

of the core elements of the system, which consists of two

independent parts: (1) an EMG-decoder which calculates

Cartesian wrist position and orientation as well as grasp

force from measured muscle activity, and (2) the DLR Light-

Weight Robot III equipped with the DLR-HIT Hand II, which

performs the decoded motion and grasps. Additionally, a

visual tracking system is integrated in the setup in order

to gather the human arm position for training the machine

learning algorithm. As is customary in (supervised) machine

learning, the system operation consists of two phases: the

training phase, during which an EMG-to-(arm/hand/force)

map is built; and the prediction phase, when the map is em-

ployed to predict new, previously unseen arm/hand/grasping

configurations. Before entering the training phase, the subject

is equipped with EMG electrodes to record the muscular

activity.

To build the map, EMG data needs to be acquired, as well

as the real position, orientation and grasp force of the user’s

hand. Therefore a tracking marker is fixed to the upper side

of the subjects wrist and a rubber ball equipped with force

sensitive resistor is given to the subject (see Figure 3). Once

the mapping is created, the EMG signals can be used to

directly control the robotic system.

A. Data acquisition

Muscular activity is gathered using nine OttoBock My-

oBock 13E200 surface EMG electrodes (www.ottobock.

com). The electrodes already provide an amplified, bandpass-

filtered and rectified signal, eliminating the need of further

processing onboard the card and/or the computer (their

usefulness was already demonstrated at least in [5], [9]).

They are connected to a wireless DAQ card sampling the

EMG signals at 100 Hz.

There are three sets of three electrodes. Each set is tied

to a velcro elastic band and roughly uniform spacing of the

Fig. 3. Schematic view of the subject’s arm equipped with the EMG
electrodes, the motion tracking marker and the ball with the FSR on top.

electrodes is visually enforced. The bands are placed on the

subject’s forearm about five centimeters below the elbow, on

the upper arm midway between elbow and shoulder, and on

the shoulder (see Figure 3). No precise positioning of the

electrodes is enforced — this is a great simplification of the

operations and has already been demonstrated effective, even

on amputees [9]. The exerted grasp force is measured with

an Interlink Standard 400 FSR force-sensing resistor (see

www.interlinkelectronics.com). The standard amplification

circuit connected to the FSR returns a voltage signal which

is univocally (logarithmically) related to the force applied to

its surface. The above wireless DAQ card is used to digitise

this signal, too, making the whole setup rather easy to wear

and take away. The FSR is mounted on a rigid rubber ball

and the subject is instructed to press it to teach a grasping

signal to the system.

Motion capture is enforced by a Vicon MX (www.

vicon.com) motion tracking system. A Vicon “rigid object”

consisting of 4 passive markers rigidly connected to one

another is fixed to the subject’s wrist, and six near-infrared

cameras use it to reconstruct the object’s position (x, y, z in

centimeters) and orientation (α, β, γ in radians) in real time.

The coordinates are relative to an inertial frame set up during

the Vicon calibration phase. The Vicon has a sampling rate

of 200 Hz and generates accordingly a UDP stream of data.

The resulting global data stream (from the Vicon and

acquisition card) is received by a standard desktop machine

equipped with Matlab and synchronously subsampled at

25 Hz, and its moving average over 400 milliseconds (10
samples) is evaluated.

B. Machine Learning

After the data acquisition is concluded in the training

phase, the data set is organised into samples (each sample

consisting of the 9 values of the EMG electrodes) and 7
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target values for each sample (the position/orientation of the

hand and the grasping force). The resulting (sample, target)
pairs are used to train a Support Vector Machine (SVM,

see [10]) with Gaussian kernel, with the purpose of building

a function mapping the EMG values to each target. One

of the most popular machine learning nowadays, SVMs

build an approximation of the underlying function as the

sum of a finite, and hopefully small, number of Gaussian

functions, centered on a subset of the training samples called

Support Vectors. Since in our case every training set would

consist of several thousands of samples, we subsampled

sequentially the training set in order to have always 750
and, later on, 1000 samples available. The training samples

are normalised by subtracting the means and dividing by the

standard deviations, dimension-wise; 10-fold cross-validation

and grid-search are conducted in order to find the best SVM

hyperparameters. Lastly, a regression model for each target

value is created using the 750 or 1000 training samples at

once. These 7 models are the map used in prediction.

C. Robotic Setup

The position and grasp decoding from the EMG signals

is used to control the DLR Light-Weight Robot III (LWR

III) with the DLR-HIT Hand II attached. The LWR III

[11] is a seven degree of freedom (7 DoF) robotic arm

weighing 14kg and able to lift payloads equal to its own

weight. The kinematics of the robotic arm allow to replicate

a reasonable large part of the workspace of a human arm.

The LWR III is equipped with joint torque sensing in each

joint, which makes it possible to realise special soft-robotic

features such as Cartesian Impedance Control and collision

detection and reaction [12], [13]. These features are essential

when operating in rather unknown environments and physical

contact with rigid objects needs to be established. The active

compliance of the robot provided by the impedance con-

troller copes with these uncertainties and thereby provides

stable behaviour of the system. In addition to that, the

integrated torque sensors allow detecting external forces that

appear whenever the robot establishes a physical contact.

Depending on the magnitude of the force, the robot can react

with different strategies and thereby provide safety to the

operator as well as to the robotic hardware (see [14], [15]).

All these soft-robotic features are embedded in a human-

friendly state-based control architecture [16].

A simplified schematic overview of the robot control

architecture is depicted in Figure 4. From the EMG signals

the humand hand position, orientation, and force is decoded

and send to the robot controller via UDP. The UDP stream

is received by the high-level task execution layer of the

robot controller. This layer operates at a rate of ≈ 100Hz
and allows defining complex tasks in a state-based manner

illustrated by the Hybrid task state machine in the block

diagram. The low-level robot controller runs on a VxWorks

realtime machine at a rate of 1kHz. Communication between

the two layers is realised via the ARDNet Interface [17]. The

core component of the Robot Control kernel is the Cartesian

Impedance Controller (CIC) which receives a desired Carte-

sian frame as input and calculates the desired joint torques

(further details on this control scheme can be found in

[12]). As Cartesian human wrist position and orientation are

directly decoded at a rate of 20Hz it is necessary to employ

an interpolation to fit the 1ms cycle of the robot controller

and generate a smooth robot motion. Within the interpolation

the maximum achievable translational and rotational velocity

is limited to ≤ 0.25m/s and ≤ 0.3rad/s, respectively. The

scaling between human motion and robot motion was kept

1:1 in this sets of experiments, though it would easily be

possible to up or downscale the motion when it is exerted

by the robotic system. To provide additional safety to the

operator as well as to the robotic hardware, known obstacles

in the workspace, such as the table the user operates on,

and the pedestal the robot is mounted on, are internally

represented in a virutal environment. This constist of virtual

planar walls which the robot is unable to pass. To achieve

this, the virtual walls create a repelling Cartesian force which

then is transformed via the Jacobian transposed in joint

torques. These are added to the desired joint torques of the

Cartesian impedance controller.

In addition to wrist position and orientation, the human

grasp force is also decoded from the EMG signals. This

then is commanded to the DLR-HIT Hand II. The DLR-

HIT Hand II is a five-finger robotic hand with three degrees

of freedom in each finger. Similar to the LWR III, the

hand is equipped with joint-torque sensors in each of its 15

joints, allowing it to be used with joint impedance control.

In our implementation, the hand performs a preprogrammed

grasp motion whenever the decoded grasp force exceeds a

certain threshold. Furthermore, the joint stiffness of each

finger is increased proportional to the decoded grasp force

and thereby enabling the operator to increase or decrease

the force excerted on a grasped object. Dropping below the

predefined force threshold causes the hand to release the

grasp again.

D. Experimental protocol

Three male, healthy subjects (age 28, 38 and 44) joined

the experiment and controlled the system over a time span

of 4 days. (Actually, a fourth subject, namely a TV reporter,

joined the demonstration, but her training set was very

simple, limited to arm positioning, due to the lack of time.

See the attached video and Section III-A for more details). A

particularly interesting point is that of task-oriented training,

which was enforced via direct teleoperation between the

motion capture system and the robotic system during the

training phase.

In particular, in the non-task-oriented (NTA) modality, the

subject would be equipped with the electrodes, FSR-ball and

Vicon object. He would then be placed within the reach of

the Vicon cameras (about 8 cubic meters) and asked to relax

his arm for a few seconds, during which the initial position

and orientation of the rigid object on the wrist would be

gathered—this enables mapping muscle activity to a body-

solidal frame rather than to the Vicon’s absolute frame. The
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Fig. 4. Schematic overview of the system and it’s core components

subject performed then random arm movements and grasps

all over the reach space.

The allowed hand movement speed was willfully kept

relatively low, topping a maximum of about 0.5 m/s. Ac-

tually, the whole idea of EMG-to-position mapping relies on

gravity compensation: one end-effector position is charac-

terised by one (or more) isometric/isotonic configuration(s)

of the arm muscles, and this in turn corresponds to a single,

quasi-stationary muscular activity (and EMG signal) pattern.

Therefore low end-effector speeds are required in order

for the muscular activity to be only negligibly affected by

acceleration. The data acquisition usually lasted until about

5000 to 7000 samples were gathered (3.5 to 4.5 minutes).

No subject reported fatigue or cramps during the acquisition

phase.

On the other hand in the task-oriented (TA) modality, the

subject was in sight of the robot’s workspace, including the

robot itself, the table and the objects to manipulate. The

hand’s position, orientation and grasp force as detected by

the Vicon and FSR was directly transmitted to the robotic

system, so that the subject could teleoperate. Meanwhile,

the subject’s muscular activity was gathered by the EMG

setup. In this modality the subject would actively try and

grasp the ball from its pedestal, move it around (such as,

e.g., stretching the arm along the coronal plane with the ball

in hand) and put it back on it, or release it somewhere else

or in someone else’s hands.

Figure 5 shows the 3D motion capture plots of two typical

training sessions in the NTA/TA modalities. The difference

in the sample distribution is apparent.

Once the map is built and validated, the subject enters

the loop again and now without use of the tracking system

and FSR data the EMG readings are directly mapped onto

hand positions, orientations and grasp forces. Decoded posi-

tion/orientation/force commands are then sent to the robotic

system. The sEMG gathering setup (electrodes, velcro bands

and the digital acquisition card) is light and can easily be

carried around by the user, for instance in a small bag (check

Figure 1 again). Since the muscular activity of the shoulder /

arm / hand is largely independent of that required by walking

the subject is allowed to move freely and as the robotic

system is operated in a human friendly control architecture,

the user may as well interact with it while being in control,

as seen in the attached video.

III. EXPERIMENTAL RESULTS

The system was practically demonstrated during the Au-

tomatica 2010 robot trade fair in Munich, Germany, over a

period of 4 days (see also http://www.automatica-munich.

com). The subjects trained and tested the system several

times each day, generating a total number of 38 data sets and

corresponding models. The TA phase was activated during

the last day (10 datasets and models).

A. System demonstration

The video attached to this paper shows an exemplar

prediction phase (NTA phase): one of the subjects controls

the robot system and uses it to grasp/release a soft ball,

remove it from the pedestal, carry it around and place

it back. Although a noticeable delay is seen between the

subject’s operation and the robot response, and the overall

position of the arm does not always reflect the subject’s

one, the whole qualitative appearance of the coordinated

human/robotic motion is good, and after a few failed attempts

the subject succeeds in grasping the ball and placing it back

on the pedestal.

All subjects reported the same subjective impression of

motion accuracy and ease of operation; this is due to the

adaptability of the supervised machine learning approach.

Additionally, a reporter from the n-tv Germany Broadcasting

company (http://www.n-tv.de) trained the system in a

quicker fashion, limited to a few simple arm movements.

In the end she reported the same feeling of easiness and

compliance by the robot. A short clip of the demonstration

is available, at the time of writing, on the tv-station’s

website itself (http://www.n-tv.de/mediathek/videos/technik/

Automatica-zeigt-Roboter-fuer-zu-Hause-article916558.

html, starting approximately at second 40 of the clip).
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Fig. 5. 3D plots of non-task-oriented (left) and task-oriented (right) motion capture data sets. The densely-sampled zone in the right panel corresponds
to the position of the object to be grasped in the robot’s workspace. The red/green/blue axes indicate the reference frame (x,y,z axes).

Better robot response and ease of use was reported by

the subjects in the TA modality, with respect to the NTA.

Especially, the lack of an input space sampling strategy

was particularly frustrating in the NTA modality, since the

subjects needed to wave randomly with little relation with

what they would do later on. This resulted in frequent

unexpected decrease in the decoding quality when getting

close to the grasping zone. This drawback disappeared in

the TA modality, as one would expect.

B. Numerical evaluation

In this section the performance of the models obtained

during the demonstration is evaluated. The evaluation is

accomplished by testing the SVM model on the samples not

included in the training set (normalised using the statistics

of the training set), and reporting the Mean-Squared-Error

normalised over the testing samples variance (NMSE). It

must be noted that this is an approximation of the perfor-

mance actually obtained during the demonstration—the latter

cannot be numerically evaluated any longer, since no ground

truth is available (the subjects would step outside the Vicon

detection zone during the demonstration). We expect the

real performance to be numerically slightly worse than what

we show here; nevertheless, notice that evaluating the real

performance would also require a subjective success metric,

such as, e.g., the number of successful grasp/release trials,

the time needed to grasp, etc.

Figure 6 reports the results for each target value and for

each model, in chronological order. Consider the Figure. For

the position coordinates (upper panel) the overall NMSE

values are 0.0982± 0.0591, 0.0789± 0.0455 and 0.0674±
0.0510 (mean / standard deviation); for the orientation,

0.1689± 0.1518, 0.0989± 0.0864 and 0.1249± 0.1208 and

for the grasping force 0.0321±0.0341. Models 29 to 38, built

during the TA phase, show an apparent better performance; in

fact for these models only, the NMSE values are remarkably

better than those obtained for NTA models (see Table I).

TABLE I

PREDICTION MEAN-SQUARE-ERROR NORMALISED W.R.T. THE

TARGETS’ VARIANCE, MEAN VALUES ± ONE STANDARD DEVIATION,

FOR NTA AND TA PHASES.

NTA TA

x 0.1101± 0.0615 0.0647± 0.0364
y 0.0885± 0.0482 0.0519± 0.0214
z 0.0741± 0.0573 0.0485± 0.0178

α 0.1817± 0.1644 0.1330± 0.1081
β 0.1130± 0.0961 0.0593± 0.0242
γ 0.1362± 0.1292 0.0934± 0.0921

force 0.0357± 0.0386 0.0223± 0.0128

In general, these values denote a remarkably low error also

in physical terms; for instance, in the TA phase, the non-

normalised squared MSE for x, y, z is in turn 3.12 ± 0.54,

3.14±0.95 and 3.54±0.72cm. These values are comparable

with those reported in [6].

Further on, it is interesting to consider the effect of task-

orientedness on the distribution of the error in the input

space. Figure 7 shows two typical cases. Model 20 (NTA,

NMSE 0.2953, 0.1582, 0.0799 for x, y, z) has a uniformly

distributed error, while for model 38 (TA, 0.1418, 0.0807,

0.0576) the error is mostly seen outside the zone where the

object to be grasped was located, which appears as a darker,

almost black cloud of well-predicted points. Lighter, and

therefore less accurately predicted ”clouds” are clearly seen

around the path the arm followed from the resting position

to the fully stretched (right-hand side) and on the left of the

zone where the ball was. Figure 8 shows an example of real

and predicted position, namely the x coordinate for these

models, i.e., 20 and 38.

IV. CONCLUSIONS

In this paper we reported about a robotic arm/hand system

controlled through sEMG-mesured human muscular activity.

The control has such a level of accuracy that a small object

can be repeatedly grasped, carried around, and released.

676



Fig. 6. Prediction Mean-Square-Error normalised w.r.t. the targets’ variance, for each dataset and target dimension. Models from 1 to 28 have been
obtained in the NTA modality, 29 to 38 with the TA modality.

Fig. 7. 3D plots of non-task-oriented (left) and task-oriented (right) squared Root-Mean-Error, model 20 (NTA, left) and 38 (TA, right). Larger and lighter
markers denote higher error.

Fig. 8. Real and predicted x coordinates for models 20 (upper panel) and 38 (lower panel).
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The system was practically demonstrated during a robotic

trade fair in 2010. Muscle activity is gathered using nine

surface electromyography electrodes. No precise placement

of the electrodes is required, and no model of the hu-

man arm/hand is employed, making the system essentially

subject-independent — in fact, three subjects demonstrated

the system without noticeable performance differences. A

fourth subject did a simpler demonstration without any

previous knowledge about the system.

A standard machine learning method (namely, a Support

Vector Machine) is used to build a point-to-point map be-

tween muscle activity and hand position/orientation/grasping

force. The map relies on gravity compensation and rather low

movement speed, which enforces a many-to-one relationship

between sEMG signals and position. Numerical (offline)

evaluation indicates in a few centimeters the precision that

can be obtained by the system; orientation and force guessing

have similar, although slightly worse, precisions.

It was noted that the performance of the system is consid-

erably higher when a task-oriented training modality is used.

This is due to finer sampling of the input space in the zone of

interest (namely, where the grasping mostly happens) which

leads to smaller error rates where it is required.

In [7] a detailed report is given about how to avoid the

well-known time variance of the sEMG signal, in particular

as far as muscle fatigue is concerned — a problem that we

did not notice. The reasons of this improvement could lie

in the choice of the sEMG features, in the reliability of the

electrodes or even in the reciprocal adaptation of the human

subjects to the system. In fact, all subjects reported a feeling

of ”learning to control the arm” as the testing phase would

proceed. Task-orientedness seems to be essential from this

point of view, too.

The DLR Light-weight Robot III we used in this paper is

operated in impedance control, which is essential in applica-

tions in which the environment is unknown. Furthermore the

human-friendly control architecture used in combination with

the robot enables the operator to be within the workspace

of the robot and interact with it. This feature makes the

system suitable for a variety of applications in which physical

interaction between humans and robots occurs.

Future work

Further investigation into the sEMG signal is envisioned,

in particular as the end-effector reaches the grasping zone.

In that case the muscular system is expected to stiffen up.

This could be used to estimate 3D stiffness using sEMG,

a problem which is still largely open and whose solution

would have applications in a number of fields of robotic

(e.g., remote surgery or high-accuracy teleoperation).

The assumption of slow movement can probably be loos-

ened if a more sophisticated form of robotic control is

enforced, namely, considering estimating the end-effector

velocity as well as the position, and then using a hybrid

position/velocity robot controller. This is also subject to

further research.

Lastly, the system as described and demonstrated in this

paper is probably not directly optimally usable for generic

teleoperation—indeed, more accurate ways of estimating the

end-effector position rather than sEMG can be found; how-

ever this setup might be of great use when magnetic tracking

cannot be used for training. An even more interesting future

application is rehabilitation of muscular-disorder patients, in

which a weak or distorted sEMG signal could be used to

train the system and let the patient see the arm move as

desired. Such procedures are well known to dramatically

shorten rehabilitation effort.
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