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EMI from Cavity Modes of Shielding
Enclosures—FDTD Modeling and Measurements

Min Li, Joe Nuebel, Member, IEEE, James L. Drewniak, Member, IEEE, Richard E. DuBroff, Senior Member, IEEE,
Todd H. Hubing, Senior Member, IEEE, and Thomas P. Van Doren, Senior Member, IEEE

Abstract—Electromagnetic interference (EMI) from slots and
apertures resulting from coupling of interior sources through
enclosure cavity modes in a rectangular test enclosure is reported
herein. EMI from a specially designed test enclosure with slots or
apertures excited by interior sources was studied experimentally
and with finite-difference time-domain (FDTD) modeling. The
measurements and FDTD modeling agree well. The results
indicate that radiation at cavity mode resonances through slots
and apertures of nonresonant dimensions can be as significant
as the radiation at aperture or slot resonances. The agreement
between the FDTD modeling and measurements demonstrates
the usefulness of FDTD for investigating aspects of shielding
enclosure design such as coupling to slots and apertures and slot
interactions.

Index Terms—Cavity-mode resonances, FDTD, enclosure.

I. INTRODUCTION

T HE integrity of shielding enclosures for high-speed digital
designs is compromised by slots and apertures for heat

dissipation, CD-ROMs, input/output (I/O) cable penetration,
and plate-covered unused connector ports, among other possi-
bilities. Radiation from slots (the length is much greater than
the width) and apertures (the length and width are comparable)
in conducting enclosures excited by interior printed circuit
board (PCB) level sources is of great concern in meeting
the Federal Communications Commission’s (FCC) radiated
electromagnetic interference (EMI) limits. At frequencies
above the fundamental cavity-mode resonance, radiation from
enclosures can dominate radiation from I/O cables connecting
the high-speed PCB to peripherals. An understanding of energy
coupling mechanisms to and from the enclosure as well as an
experimentally demonstrated modeling approach is essential in
minimizing the EMI and susceptibility risk in a new design.

Considerable work has been done on the admittance of
cavity-backed slots [1]–[3] that concentrates on the slot reso-
nances that occur below the resonances of the backing cavity.
Extensive efforts—both experimental and numerical—have
also been reported on the shielding effectiveness of enclosures
at frequencies below cavity-mode resonances [4]–[7]. More
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recent efforts have studied an analytical formulation for the
shielding effectiveness of an empty enclosure with apertures
using an equivalent circuit for the shorted waveguide and
aperture impedance [8], but only up to the fundamental cavity
mode resonance. A calculation of the shielding effectiveness
of rectangular enclosures with apertures by a modal expansion
technique has also been reported [9]. A means of obtaining
the tangential electric fields numerically or experimentally,
and applying equivalence principles to estimate the radiation
from apertures has been shown [10] as well as the shielding
effectiveness of a shielding enclosure with apertures of varying
area [11]. A power balance method to estimatefactors of
resonances associated with a shielding enclosure has also
been reported [12]. Much of the previous work, however, has
focused on an analytical formulation of enclosure and aperture
modeling. While analytical approaches can provide insight
and direction on enclosure design, incorporating even gross
geometric irregularities common in high-speed digital products
such as PCB conducting planes as well as the overall loading
effects of the electronics are precluded.

The work reported herein details coupling through slots and
apertures at cavity mode resonances resulting in EMI as well
as new resonances associated with the interaction between the
cavity and slot and resonances due to the slots and apertures.
EMI, from perforations in a shielding enclosure, was studied
experimentally and with finite-difference time-domain (FDTD)
modeling. Among the significant results is that EMI at cavity
mode resonances through nonresonant slots or apertures can be
as significant as that from resonant slots and apertures. Further,
the EMI from closely spaced multiple electrically short slots is
proportional to the number of slots. Good agreement between
the measurements and modeling shows that numerical modeling
of enclosure designs can be a useful aid in understanding funda-
mental coupling physics and in developing EMI design guide-
lines for enclosures. Lossy materials have also been incorpo-
rated into the study and can be used to mimic a distributed PCB
loss or in design for reducing the of resonances.

The particular aspects of concern for enclosure designs in
general were: 1) the EMI coupling mechanism (slot resonances
or cavity mode resonances); 2) the relation between EMI and
slot length; 3) multiple slot interactions; and, 4) utilizing lossy
materials. A test enclosure was then designed with a rectan-
gular interior shape and well-controlled slot parameters to sim-
plify and concentrate on the enclosure study. Measurements and
FDTD modeling were both utilized in the study to understand
the EMI coupling mechanism, as well as slot interactions in the
shielding enclosure.

0018–9375/00$10.00 © 2000 IEEE



30 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 42, NO. 1, FEBRUARY 2000

Fig. 1. A rectangular test enclosure.

II. EXPERIMENTAL CONFIGURATION AND FDTD MODELING

EMI from shielding enclosures was studied using a simple
rectangular shielding enclosure. The simple rectangular en-
closure accommodated straightforward identification of cavity
modes as well as comparison between measurements and
FDTD modeling. The geometry of this enclosure is shown
in Fig. 1. The enclosure was constructed of five pieces of
0.635-cm-thick aluminum and one plate of 0.05-cm-thick
aluminum for the face containing the slot or aperture. The
cavity was constructed so that it could easily be disassembled
and reassembled for repeatable measurements. The inside
dimensions of the enclosure were 22 cm14 cm 30 cm.
One-inch copper tape with a conductive adhesive was used as
an electromagnetic seal along the seams in the interior. The
cavity was fed with a 50- coaxial cable probe through a
type- bulkhead connector, which was peripherally bonded to
the cavity. Two different methods of excitation were employed.
In one case, as shown in Fig. 1, the center conductor of the
probe was extended to span the width of the cavity with a
0.16-cm-diameter wire and terminated on the opposite cavity
wall with a 1206 package size surface-mount (SMT) nominal
47- resistor soldered to a 1.5 in 1.5 in square of conductive
adhesive copper tape. This source geometry was employed in
order to introduce the loss necessary in the FDTD modeling. In
the other case, the center of a 5 cm9 cm copper patch was
connected to a 3-cm-long wire extending from the center con-
ductor of the bulkhead connector. The patch was used to mimic
the heatsink within a computer server enclosure [13]. The type

bulkhead connector was located at cm, cm,
cm. Using an HP4291A impedance analyzer together

with the HP16192A SMT test fixture, the SMT resistor in the
first excitation method (Fig. 1) was found to have a constant
impedance and a small reactance over
the entire frequency range of the measurements.

-parameters and radiated EMI measurements were also per-
formed in a 3-m anechoic chamber, as shown in Fig. 2. Two-port

Fig. 2. Experimental setup.

-parameters were measured with a Wiltron 37247A network
analyzer. Port 1 was connected to the interior source in the en-
closure under test, and Port 2 was connected to a receiving an-
tenna. For measurements below 1 GHz a log-periodic antenna
was used, while for measurements above 1 GHz a horn antenna
was used. The network analyzer was placed outside the anechoic
room to measure the reflection coefficient and the trans-
mission coefficient . The power delivered to the enclosure
is related to the reflection coefficient as [14]

(1)

where is the source voltage and is the source impedance
as well as the characteristic impedance of the coaxial cable. In
this particular case, the source voltage is scaled to 1 mV and the
source impedance equals the characteristic impedance (50)
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of the coaxial cable connected to ports 1 and 2. The available
power is then 2.5 nW. The enclosure and slot resonances can
be determined from the frequency dependence of the delivered
power.

Far-zone electric field measurements were made with a sep-
aration of 3 m between the enclosure and the receiving antenna.
The far-zone electric field provides a quantitative measurement
of the levels of EMI and is related to the-parameters by [15]

(2)

where is the antenna factor of the receiving antenna and
is the incident voltage at Port 1, which is 0.5 mV for the scaled
1 mV source with 50- source impedance. The enclosure res-
onances and slot resonances are determined from the delivered
power and the far-zone electric field indicates EMI peaks. From
the relation between delivered power and far-zone fields, the
coupling of EMI from the shielding enclosure can be studied.

The FDTD method was used to model the test enclosure ex-
cited by a terminated feed probe. A cell size of 1.0 cm0.5 cm

1.0 cm was employed in the FDTD modeling. A finer dis-
cretization along the -direction was used in order to better
model the spatial extent of the SMT load resistor. Aluminum
plates were modeled with perfectly electrical conductor (PEC)
surfaces by setting the tangential electric field to zero on the
cavity walls. The wire feed probe was modeled using a thin-wire
subcellular algorithm [16], with a radius of 70% of the physical
radius [17]. The feed source was modeled by a simple voltage
source with 50- resistance incorporated into a single cell
at the feed point. The magnetic fields circling the source were
modeled in the same fashion as a thin wire to give the cross sec-
tion of the source with the specified physical dimensions [18].
The resistor was modeled as a lumped element using a subcel-
lular algorithm [19]. The width of the SMT is approximately that
of the feed-wire diameter and the physical cross-section dimen-
sions were modeled with the same diameter as that of the feed
wire by modifying the magnetic field components circling the
SMT in the same fashion as for the source. Thin slots were mod-
eled with the capacitive thin-slot formalism (C-TSF) introduced
by Gilbert and Holland [20], as applied to shielded enclosures
[17].

The far-zone field was obtained by applying equivalence
theory to the numerical FDTD modeling results. Referring to
Fig. 3, the FDTD method was used to calculate the electric and
magnetic fields on a virtual surface completely surrounding the
FDTD model of the enclosure. From the modeled values of the
electric and magnetic fields on this surface, equivalent magnetic
and electric surface current distributions were determined.
The electric and magnetic vector potentials in the frequency
domain are related to the electric and magnetic surface current
distributions on a virtual surface through [21]

(3)

(4)

Fig. 3. Application of equivalence theory to calculate the far-zone electric field
in the FDTD modeling.

The far-zone electric field components and
are then

(5)

(6)

Some previous work on near-zone to far-zone transformation
implements all of the above equations in the FDTD modeling
and directly obtains the far-zone electric field in time domain
[22]. In this paper, only (3) and (4) for the electric and magnetic
vector potentials are implemented in the FDTD modeling, while
the far-zone electric field is obtained in the fast Fourier trans-
form (FFT) process from (5) and (6). As an example, consider
one face of the virtual surface shown in Fig. 3. Let the outward
normal direction to this face be given by . The electric
and magnetic vector potentials are then

(7)

(8)

(9)

(10)

(11)

(12)

where the summation indexrepresents an FDTD cell on this
surface. is the distance from this FDTD cell to a point having
a position vector of . Since the values of the electric and mag-
netic fields appearing within the summation ((7)–(12)) are only
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calculated at specific sampling instants, the values of
are rounded up (or down) to the nearest sampling instant. The
spatial sampling intervals in the and directions are repre-
sented by and , respectively. The contributions to the elec-
tric and magnetic vector potentials at a far-zone observation
point from all the electric and magnetic surface currents on the
six virtual surfaces are then summed.

The far-zone electric field components and
are then obtained by the application of (5) and (6)

and, in the following section, will be compared with the mea-
sured values. The virtual surfaces were placed three cells away
from the enclosure in the FDTD modeling. Perfectly matched
layer (PML) absorbing boundary conditions were employed for
the three-dimensional (3-D) FDTD modeling [23]. The PML
absorbing layers were four cells away from the conducting
planes without a slot and eight cells away from the conducting
planes containing or near a slot.

III. FDTD M ODELING AND MEASUREDRESULTS

Measurements and FDTD modeling were conducted on the
rectangular test enclosure with a 12-cm-long and 0.1-cm-wide
thin slot, as shown in Fig. 1. The results of delivered power
and far-zone electric field are shown in Fig. 4. The frequency
range studied was from 0.7 GHz to 1.6 GHz, which included
several cavity modes as well as the slot half-wavelength res-
onance. The agreement between the measurements and mod-
eling is good in both cases. The electric field below 1 GHz was
measured with a log-periodic antenna and above 1 GHz with a
horn antenna. The cavity-mode resonances and the resonances
due to the slot were distinguished by observing the delivered
power measurements as the slot length was varied. With the re-
duction of slot length, the cavity mode resonance frequencies
were almost unchanged and the resonances due to the slot dis-
appeared from this frequency range. Since the feed-probe wire
was along the -direction, the -component of the electric field
was excited while the -component of the magnetic field was
suppressed, i.e., only TMcavity modes were excited by the
probe wire. The cavity-mode resonances, slot resonances, and
cavity-slot resonances are shown in Table I. The cavity-slot res-
onances may be due to reactance tuning, and have been pre-
viously denoted cavity-slot modes [24]. The terminated feed
probe acting as a matched half-wavelength transmission line
caused the broad-band resonance at 1.08 GHz and there is no
radiation at this resonance [25]. The frequencies of peaks in
the far-zone electric field match the cavity-mode resonance and
cavity-slot resonance frequencies. Furthermore, the magnitudes
of the peaks at cavity mode resonances are roughly comparable
to the magnitudes of the peaks at the slot and cavity-slot mode
resonances, as can be seen from Fig. 4(a) and (b). The maximum
EMI level in the 0.7–1.6 GHz range occurs for the cavity-slot
mode at 1.53 GHz. This EMI level, corresponding to a source
voltage of 1 mV, is close to the FCC class B limit.

The slot length was then varied in order to study the EMI ef-
fect of slots at frequencies below the half-wavelength slot reso-
nance. Referring again to Fig. 1, various lengths of copper tape
were placed over the ends of the slot to reduce the slot length.
The slot length was reduced by equal amounts on both ends so

Fig. 4. Measured and modeled results for the test enclosure with a 1-mV
source. (a) Delivered power. (b) Electric field at 3 m.

that the center of the effective slot remained in the same posi-
tion as the copper tape was added and removed. Measurements
of the delivered power and electric field at 3 m for slot lengths of
12 cm, 9 cm, and 5 cm are shown in Fig. 5 and agree well with
the FDTD modeling results. The peaks labeled A1, A2, B1, B2,
C1, and C2 in the electric field at 3-m curve correspond to res-
onances associated with the slot. With a slot length of 12 cm,
these peaks are roughly commensurate with the peaks at the
cavity resonance frequencies. When the slot length is reduced,
these peaks are not as high as the peaks at the cavity resonance
frequencies. Also, these peaks are narrow-band with a high
factor and, thus, less important to EMI. In short, the dominant
peaks in the electric field at 3 m correspond to cavity resonances
at frequencies below the half-wavelength resonance of the slot.

Similar sets of measurements were made for the patch source
described in the previous section. The physical dimensions of
this patch source were chosen to mimic the heatsink in a com-
puter server enclosure. With a 12 cm0.1 cm slot as shown in
Fig. 1, the delivered power and far-zone electric field were mea-
sured and are shown in Fig. 6. The first resonance at 0.7 GHz is
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Fig. 5. Measured delivered power and measured and modeled electric field at 3 m for slots of various lengths.

Fig. 6. Measured delivered power and electric field at 3 m for the test enclosure with a 12-cm slot excited by a patch source withV = 1 mV.

associated with the physical dimensions of the patch and does
not appear to contribute significantly to the radiated electric
field. Peaks in the delivered power at 0.90, 1.37, 1.41, 1.66, 1.85,
1.96, 2.05, and 2.13 GHz are associated with cavity-mode reso-
nances while peaks at 1.10, 1.24, 1.53, 1.80, and 1.86 GHz can
be identified as cavity-slot modes. The frequencies of the first
three cavity-slot modes agree with the cavity-slot mode reso-
nance frequencies observed using the previous source (termi-
nated feed probe). At the cavity mode resonance frequencies,
the magnitude of the electric field at 3 m varies from approxi-
mately 28 dB to 45 dB V/m. At resonances due to the slot, the

magnitude of the electric field at 3 m varies from approximately
34 dB to 47 dB V/m.

The electronics in the product enclosures are usually too
complicated to be directly modeled with any numerical method.
From the measurements on the computer server enclosure with
electronics, the loading effect of electronics is appreciable [26].
Lossy materials may be used in the enclosure to mimic the
loading effect of the electronics for FDTD modeling purposes
[26] and the effect of conductive lossy materials was also
studied herein. Two layers of Milliken conductive 110/
lossy material were placed on the cm interior plane.
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Fig. 7. Measured and modeled delivered power and electric field at 3 m for the test enclosure with a 110
/ lossy material on one wall.

TABLE I
RESONANCES ASSOCIATED WITH THE

SHIELDING ENCLOSURESHOWN IN FIG. 1

The thickness for each layer was 0.4 cm, and the conduc-
tivity of the lossy material used in the FDTD modeling was

S/cm. The lossy material was simply
modeled by a one-cell layer of conducting material with con-
ductivity S/cm. For the electric field components
inside the conducting layer, the conductivity S/cm
was employed, while the conductivity S/cm
was employed for the components on the interface of the
conducting layer and free-space [27].

The measured and modeled delivered power and electric field
strength at 3 m are shown in Fig. 7, with the lossy material on
the interior face cm. The agreement between measure-
ments and FDTD modeling is generally good. The effect of the
lossy material in decreasing the’s of resonances is evident
in the delivered power and reflected in the reduced radiation in
the 3-m electric field. The results in Figs. 4 and 7 can be com-
pared at the resonances indicated in Tables I and II. However,

TABLE II
RESONANCESASSOCIATED WITH THESHIELDING ENCLOSURELOADED

WITH LOSSYMATERIAL

a resonance and a corresponding increase in radiation were ob-
served at 1.20 GHz, where the two resonances due to the slot at
1.10 GHz and 1.24 GHz for the situation without the lossy ma-
terial may have shifted and broadened to produce a resonance at
1.20 GHz. Overall, a lossy material can be easily incorporated in
the FDTD modeling, and may be used to mimic the electronics
in the initial shielding enclosure design stage. For example, a
conducting plane with a lossy dielectric on it can be used to ap-
proximate a PCB (that has entire power or ground planes) with
electronics for FDTD modeling of enclosure designs.

Multiple slots were also investigated to study EMI at
cavity-mode resonances. Three configurations of twin slots
were employed, as shown in Fig. 8. In configuration 1, two
slots on different cavity faces were studied. In configuration
2, two parallel slots on the same face were employed with a
distance of 0.9-cm edge-to-edge spacing. In configuration 3,
two slots end-to-end with a distance of 1 cm between the
near ends were studied. All the slot lengths were 12 cm with
widths of 0.1 cm and the terminated feed probe source was
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Fig. 8. The configurations for multiple slots. (a) Configuration 1—two slots
on different enclosure faces. (b) Configuration 2—two slots side-by-side. (c)
Configuration 3—two slots end-to-end.

employed as the cavity excitation. The measured and modeled
delivered power and far-zone fields are shown in Fig. 9. Above
1 GHz, the agreement is good for all three configurations.
Unfortunately, calibration data for the horn antenna used in
these measurements was not available for frequencies below
1 GHz. Therefore, measurements at the TM101 resonance
frequency (0.885 GHz) are relatively unreliable when compared
to measurements above 1 GHz.

The radiation at cavity mode resonances is comparable to the
radiation at resonances due to the slot. A comparison of Fig. 9(b)
and (c) with Fig. 4(b) suggests that the additional slot in the con-
figuration used in Fig. 9 does not yield more than a few decibels
change in either the delivered power or in the far-zone electric
field. In this case, the slot is not electrically small over the given
frequency range. Comparing Fig. 9(a) with (b) and (c) shows
that the presence of two slots on adjacent cavity walls signifi-
cantly alters the pattern of resonance frequencies.

Reducing the length of each slot from 12 to 5 cm raises the
half-wavelength resonance frequency of each slot to approxi-
mately 3 GHz—well above the frequency range of the mea-

(a)

(b)

(c)

Fig. 9. Measured and modeled delivered power and electric field at 3 m for
multiple 12 cm slots. (a) Configuration 1. (b) Configuration 2. (c) Configuration
3.

surements presented here. Therefore, a set of measurements and
FDTD modeling was made using two 5-cm-long slots similar
to the configurations shown in Fig. 8. Copper tape was used to
reduce the 12- to 5-cm slots. In configuration 1, the left end of
the 5-cm slot in the face was 16 cm from the
edge and the left end of the 5-cm slot in the cm face was
5 cm from the cm edge. In configuration 2, the
left end of the two side-by-side 5-cm slots were 12 cm from the

edge. In configuration 3, the left end of the slots
was 9 cm from the edge and the spacing between
the near ends of these two slots was 1 cm.



36 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 42, NO. 1, FEBRUARY 2000

(a)

(b)

(c)

Fig. 10. Measured and modeled electric field at 3 m for multiple 5-cm-long
slots. (a) Configuration 1. (b) Configuration 2. (c) Configuration 3.

Measurement and FDTD modeling results, consisting of the
delivered power and the electric field at 3 m for each config-
uration, are shown in Fig. 10. The cavity-mode resonances in
this frequency range can be identified and are listed in Table III.
The electric field plots show for each of the three configura-
tions that these cavity resonances are associated with signifi-
cant peaks in the radiated EMI level. For each configuration,
there is also a peak in the electric field at 3 m at a frequency
of approximately 1.36 GHz. This peak represents a cavity-slot
resonance and is unlikely to be associated with high levels of
EMI when the enclosure is excited by active digital electronics
since this peak has a very narrow bandwidth. Further, incor-

TABLE III
RESONANCESASSOCIATED WITH THESHIELDING ENCLOSURE WITH5-cm

SLOTS

Fig. 11. The measured and modeled delivered power and electric field strength
3 m away through a 3 cm� 4 cm aperture in test enclosure.

porating the effects of loss will appreciably damp this high-
resonance. Much smaller cavity-slot mode peaks occur at ap-
proximately 1.18 GHz for all configurations and at 1.21 GHz
for the configuration of slots on adjacent cavity walls (config-
uration 1). Again these peaks have narrow bandwidths in addi-
tion to relatively small amplitudes and would therefore be even
less likely to be associated with high levels of EMI. In com-
paring the radiated electric field from a single 5-cm slot with
that from a pair of closely spaced 5-cm slots located in the same
wall of the cavity, the double slot configurations were approxi-
mately 6 dB higher. The EMI varying with the number of per-
forations has been demonstrated for closely spaced electri-
cally small apertures used for airflow [28], even for a relatively
large number of apertures. The preliminary results from the cur-
rent study, as well as from further FDTD modeling, indicate that
closely spaced electrically short slots may behave similarly, i.e.,
that EMI varies as the number of slots. However, for very
closely-spaced parallel slots this is not the case [29].

Radiation from an aperture was also considered. In this case,
a rectangular aperture measuring 3 cm4 cm and centered at

cm, cm was cut into the front wall of the cavity,
as shown in Fig. 1. In applying the FDTD modeling for this case,
the result of electric field at 3 m using the 1.0 cm0.5 cm
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1.0 cm cell size (24 cells in the aperture) was generally 5 dB
below the measured result. Then the computational cell size was
reduced to 0.5 cm 0.5 cm 0.5 cm in order to increase the
number of FDTD cells modeling the aperture to 48 cells. An
improvement of 3 dB was obtained. The measured and FDTD
modeling results of both the delivered power and the electric
field at 3 m are shown in Fig. 11. The change of the cell size
had no significant effect on the FDTD modeling of the deliv-
ered power since the power radiated from the aperture was only
a small fraction of the total delivered power. The three large,
broad peaks in the far zone electric field intensity correspond
to cavity-mode resonances at 0.885, 1.4, and 1.5 GHz. Narrow
bandwidth peaks occur at 1.18 and 1.36 GHz are associated with
the presence of the aperture. Nevertheless, the highest frequency
(1.6 GHz) in this measurement is well below the first aperture
resonance.

IV. SUMMARY AND CONCLUSION

EMI from slots and apertures in shielding enclosures was in-
vestigated with measurements and FDTD modeling. A simple
rectangular test enclosure excited with an interior terminated
feed-probe source was used to study EMI from a single slot
and aperture as well as multiple slots, both electrically short and
of resonant dimensions. In general, the agreement between the
measurements and modeling was good for both the delivered
power and the electric field at 3 m. In the frequency range where
slots are near a half-wavelength, the EMI from cavity-mode
resonances is comparable to that from the slot resonances and
the cavity-slot mode resonances. For slots shorter than a half-
wavelength, the EMI from cavity mode resonances dominates,
though there are a few narrow bands of increased EMI due to
the cavity-slot resonances. These cases are very narrow-band
and unlikely to cause serious EMI problems, particularly since
loading will decrease the of these resonances considerably.
The radiation from a small aperture is similar to that of a short
slot, as long as the frequency is below the aperture resonance.

The effect of conductive lossy materials on radiated EMI
resulting from cavity modes and slot resonances, as well as
FDTD modeling of these materials in an enclosure, were
studied. The lossy material damped high-cavity resonances.
In FDTD modeling, the uniform lossy material can be used
to approximate the loss associated with the functioning elec-
tronics. For example, a conducting plane covered with the lossy
material can approximate a multilayer PCB with at least one
entire plane, e.g., power or ground. In addition to serving as
an approximation to the loss on the PCB, the lossy material
also serves to provide loss in the FDTD modeling so that more
general and realistic source geometries can be modeled (such
as a driven heatsink) without the need to build loss into the
excitation as with the resistively terminated wire probe.

Multiple slots were also investigated. As in the case of single
slots and apertures, significant EMI resulted at cavity-mode res-
onances. The radiation from the combination of two closely
spaced slots of appreciable electrical length was not the sum of
the radiation from the individual slots. By contrast, the radiation
from two closely spaced short slots in the same face, whether

side-by-side or end-to-end, is approximately 6 dB higher than
the radiation for only one of the slots.

A terminated feed probe or a patch driven against the
enclosure were employed as the interior source in this study.
The utility of the terminated wire probe was for ease of
modeling, i.e., an FDTD subcellular algorithm exists for a
thin wire and the resistive termination provides loss for the
FDTD time-marching algorithm. However, EMI sources at the
PCB level in a functional enclosure that excite the cavity still
remain largely unknown. Structures that protrude above the
board such as heatsinks are known PCB level structures that
excite the enclosure. Realistic source models for the integrated
circuit (IC) packages that couple to the heatsinks, however, are
necessary in the future to provide absolute EMI levels for a
given enclosure geometry and PCB level sources. Presently,
FDTD modeling is best suited for understanding fundamental
physics and coupling paths as well as addressing relative
questions, for example, the EMI reduction for various screw
spacings in an enclosure comparing EMI gasketing alternatives
or EMI for various air-flow aperture array designs.
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