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METHOD Open Access

EMIRGE: reconstruction of full-length ribosomal
genes from microbial community short read
sequencing data
Christopher S Miller1*, Brett J Baker1,2, Brian C Thomas1, Steven W Singer3,4 and Jillian F Banfield1,5*

Abstract

Recovery of ribosomal small subunit genes by assembly of short read community DNA sequence data generally

fails, making taxonomic characterization difficult. Here, we solve this problem with a novel iterative method, based

on the expectation maximization algorithm, that reconstructs full-length small subunit gene sequences and

provides estimates of relative taxon abundances. We apply the method to natural and simulated microbial

communities, and correctly recover community structure from known and previously unreported rRNA gene

sequences. An implementation of the method is freely available at https://github.com/csmiller/EMIRGE.

Background
Characterization of microbial community composition is

most often done with a phylogenetic marker gene, most

commonly the small subunit ribosomal RNA (SSU

rRNA) gene [1]. Traditionally, rRNA sequences were

generated by amplification, cloning, and Sanger sequen-

cing. More recently, technologies such as pyrotag

sequencing of short hyper-variable regions [2,3], Illumina

sequencing of variable tags [4-7], and hybridization to

specialized high-density microarrays (for example, Phylo-

chip) [8-10] have accelerated the throughput of SSU-

based microbial community characterization. Although

each method has limitations, these high-throughput

approaches have been broadly adopted, and have pro-

vided new understanding of microbial community com-

position from a wide range of environments[8,11,12].

Complementing these approaches are growing databases

of SSU sequences from both isolates and environmental

samples [13-15] that provide a rich phylogenetic and eco-

logical context.

Searching for SSU genes directly in metagenomic data

avoids PCR and primer biases [16,17]. For example,

novel deeply branching archaea with unusual 16S rRNA

gene sequences were recently detected through metage-

nomic sequencing [18]. These divergent sequences were

not recovered by methods that relied on amplification

with standard SSU primers.

Most reported metagenomic sequencing has used San-

ger or Roche 454 sequencing technologies. The rRNA

gene sequences for closely related organisms in these data-

sets co-assemble. The result is a composite sequence that

is not representative of any community member and

obscures the real level of diversity. These problems are

exacerbated when shorter sequencing reads are used.

Typical reads from the Illumina platform currently range

from 35 to 125 bp. Additionally, the k-mer-based methods

used to assemble short read data can further confound de

novo assembly near regions with high inter-species

sequence identity, such as that found within the SSU gene.

Because of these challenges, there are no methods cur-

rently available to assemble full-length SSU sequences

from short read sequencing data.

An alternative to de novo assembly of short read

sequencing data is to map reads to a reference sequence,

if one is available. Several fast, memory-efficient mapping

programs are available, all of which allow for varying

levels of error while searching for alignments [19-21].

Quantification of species abundance could in theory

reduce to a read mapping problem if the community

composition was known ahead of time and all reference

SSU sequences were available. However, the composition

of environmental samples is rarely known ahead of time.

Short read lengths and high conservation of sequence in

the SSU gene produce ambiguous assignments of many
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reads among closely related strains, confounding a simple

mapping strategy.

Here, we report a novel iterative mapping method, based

on the expectation maximization (EM) algorithm [22], that

accurately reconstructs the full-length SSU sequences pre-

sent in a microbial community. The method, referred to

as expectation maximization iterative reconstruction of

genes from the environment (EMIRGE), takes as inputs

the raw reads and quality values from a short-read DNA

sequencing project and an initial large database of curated

SSU sequences. Several iterative read-mapping cycles are

completed, during which the most probable consensus

sequences are gradually discovered and corrected by the

mapped reads. The algorithm produces probabilistically

described full-length SSU sequences, and a measure of

their relative abundances in the community. This bioinfor-

matic approach can be applied to both shallow and deeply

sampled microbial communities with widely varying

complexity.

Results
De novo assembly of microbial communities fails to

recover SSU genes

The study used data from one natural and two simu-

lated communities. The natural community, a micro-

bial biofilm containing eukaryotes, bacteria, archaea,

and viruses, was sampled from an acid mine drainage

site within the Richmond Mine at Iron Mountain, Cali-

fornia [23]. Microbial biofilms from this system have

been studied extensively as model communities, and

12 near-complete genomes have been assembled from

community genomic datasets [24-26]. In the current

study, we assembled one lane of 76-bp paired end Illu-

mina sequence (approximately 38.6 million reads, 2.9

Gbp of sequence) and attempted to recover full-length

rRNA genes.

For the two simulated communities, we first recon-

structed in silico a recently described ‘simple’ model

microbial community used by Morgan et al. [27] to evalu-

ate DNA extraction and sequencing methods. This com-

munity contains eight bacterial species, one archaeon, and

one yeast, representing both closely and distantly related

taxa that broadly cover the tree of life at various levels of

relatedness. We also simulated data from a ‘complex’

human gut mock community of known composition

described by Turnbaugh et al [28]. The complex commu-

nity consisted of 67 taxa with relative abundances ranging

over five orders of magnitude. We generated random

reads for both simulated communities and applied to

these data error profiles (quality values) sampled from the

natural community data (see Materials and methods).

Assemblies used Velvet, a program developed to assem-

ble short read data [29]. The assembly for the natural

community had an N50 of 3,912 nucleotides (half of the

assembled length was in contigs of 3,912 nucleotides or

longer; data not shown). However, the only near-full-

length SSU gene recovered was that of a dominant, near-

clonal fungal species. The N50 of bacterial and archaeal

SSU fragments with a reliable blast hit to the Silva riboso-

mal SSU database [15], in contrast, was only 182 bp. Simi-

larly short SSU fragments were recovered from assemblies

of both simulated datasets (Table 1). Velvet produces a de

Bruijn graph that provides an overview of the assembly. In

the vicinity of contigs sampling the 16S rRNA genes, the

graph shows a convoluted network of short contigs

(nodes) with highly variable coverage (Figure 1).

EMIRGE overview: iterative mapping and correction of

reference SSU sequences

As full-length rRNA genes could not be recovered from

the de novo assemblies, we developed a strategy based on

mapping of all reads to a large reference database of SSU

Table 1 Comparison of EMIRGE with de novo assembly

Method Community Number of
expected SSUs

Number of SSU sequences or
fragments

Number classified at
genus levela

N50 Weighted UniFrac
distance

EMIRGE Simulated
simple

10 11 10 (90%) 1,537 0.03

Assembly
fragments

Simulated
simple

10 78 39 (50%) 383 0.32

EMIRGE Simulated
complex

52b 23 20 (87%) 1,488 0.04

Assembly
fragments

Simulated
complex

52b 320 212 (66%) 122 0.26

EMIRGE Natural Unknown 11 9 (82%) 1,484 NA

Assembly
fragments

Natural Unknown 137 85 (62%) 182 0.32c

aRDP classifier with bootstrap cutoff > 50%; eukaryotes not classified. bWith abundance > 0.5%. cDistance to EMIRGE-defined community. NA, Not Applicable: true

community structure is unknown
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Figure 1 De novo assembly of SSU rRNA genes versus reconstruction of full-length gene sequences. (a) A section of the de Bruijn graph

created by the short read assembler Velvet [29] for the natural microbial community. Each contig in the graph is represented by a rectangle

whose width is proportional to contig length and whose height is proportional to contig k-mer coverage depth. Edge width reflects the

multiplicity of overlapping k-mers shared by contigs. All contigs with BLAST matches to SSU genes recovered by EMIRGE were selected, and

those contigs and additional contigs within three edges are shown. Contigs with BLAST matches to the SSU sequence from Leptospirillum

ferrodiazotrophum [54] are shown in color. (b) The correct tiling of highlighted contigs from (a) is shown schematically with the EMIRGE-

reconstructed SSU rRNA gene. (c) A selected region of the L. ferrodiazotrophum SSU gene shows the individual base probabilities at algorithm

termination for each position in the reconstructed SSU gene. While most bases are highly confident, some positions show evidence for strain

variants present in the population.
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sequences and iterative determination of the most prob-

able full gene sequences. We chose as a reference data-

base a filtered subset of the SSU sequences contained in

Silva [15]. An ideal mapping strategy would not depend

on the completeness or correctness of the reference data-

base, and evaluate the probabilities of errors in the map-

ping and the sequence of the reads. Therefore, we

developed a method that models reads as being generated

by unknown reference SSU sequences. Each iteration

consists of mapping reads to the current reference

sequences, computing the probability that each read was

generated by each reference sequence, computing esti-

mates of reference sequence abundance, and then cor-

recting the nucleotides of the reference sequences before

the subsequent iteration and mapping begins anew. Gra-

dually, the correct reference sequences and the estimates

of organism abundance adjust and then stabilize, at

which point the iterations stop (Figure 2). At each itera-

tion, if two reference sequences have evolved to be close

to identical, we merge them. Conversely, if the evidence

from mapping indicates separate strains mapping onto

the same reference, the reference is split into two

sequences for future iterations.

Central to our approach to determining both the cor-

rect SSU gene sequence and computing abundances of

each sequence type is a probabilistic approach that

acknowledges that we do not know which reference

sequence each read should be mapped to. Especially for

communities with many closely related strains, and

because of sequencing errors, many assignments of

reads to specific reference sequences are uncertain.

There is even more uncertainty if the read was gener-

ated by a sequence not represented in the reference

database. The expectation maximization algorithm [22]

provides a computational framework for explicitly deal-

ing with this uncertainty. The actual sequences present

in the community are unlikely to be present in the SSU

database. Thus, the SSU database sequences serve as

candidate initial sequences and the probability that each

base is correct changes with each iteration. For each

mapping cycle and final sequence determination, the

base with the highest probability is chosen at each

position.

We use the EM algorithm to alternate between an

expectation step (E-step), in which the probability for

each read being generated by each reference sequence is

computed, and a maximization step (M-step), in which

we calculate both (i) the probability values for each base

in each reference and (ii) a prior probability that each

candidate reference generated any read.

The E-step: computing the probability that a SSU

sequence generates a read

In the E-step we construct a distribution representing

the probability that each reference sequence generated

each read of interest. To compute the probability that a

specific reference sequence s generated the observed

read r, Pr(s|r), we use Bayes’ theorem:

Pr(s|r) =
Pr(r|s) Pr(s)

∑

∀i Pr(r|si) Pr(si)

The E-step likelihood

To calculate the likelihood, Pr(s|r), for a given read-

reference pair, we make the false but simplifying

assumption that each base position in the read is inde-

pendent. The probability that the reference SSU

Figure 2 Convergence of reconstructed SSU sequences and abundance estimates. (a-d) Algorithm convergence for both the simulated

simple microbial community (a, b) and natural community (c, d) is shown. In (a, c), the number of nucleotide (nt) changes made in all

reconstructed SSU sequences is plotted for each iteration. In (c, d), each line represents a different reconstructed SSU sequence: the prior

probability (abundance estimate) of each SSU sequence is plotted for each iteration. Only SSU sequences with ≥ 1% prior probability at

convergence are shown.
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sequence generated the read is thus a product over all

mapped positions (k) of the probabilities of observing

each base bk, given the reference SSU sequence:

Pr(r|s) =
∏

∀k

Pr(bk|s)

To compute Pr(bk|s), we consider the possibility that

the reference base n can be one of A, C, T, or G:

Pr(bk|s) =
∑

n∈A,C,T,G

Pr(bk|n) Pr(n)

The first term in the summation is the probability of

observing read base bk, given that the reference

sequence base at position k is n, and can be calculated

with the following:

Pr(bk|n) =

(

pk

3

)1−I
(

1 − pk

)I

where pk is the error probability of the called base bk
in the read, as reported by the base-calling software. We

make the simplifying assumption that a base mismatch

has an equal probability of being one of the three non-

match bases. The indicator variable I is one if and only

if the base called in the read matches the mapped base

in the reference sequence. The second term in the sum-

mation above, Pr(n), is calculated based on the current

alignment of reads to the reference sequence from the

previous M-step in the EM algorithm (see below).

The E-step prior and normalization factor

The prior, Pr(s), is the current best estimate of the abun-

dance ratios of each underlying SSU reference sequence

in the microbial community. This is computed in the

previous M-step (see below). The denominator of Bayes’

theorem is calculated in a similar fashion as the likeli-

hood and prior, except that all possible reference SSU

sequences (si) are considered in the summation. Practi-

cally, this reduces to the set of SSU sequences with any

reported mappings for the read under consideration: we

treat all other sequences as having zero probability.

The M-step: computing SSU sequence and abundance

probabilities

In the M-step, the model parameters representing the

candidate reference sequences and their abundances are

updated, based on the current best estimate of Pr(s|r)

from the previous E-step.

Correction of the reference sequence

We can calculate Pr(n) for each base position in each

reference sequence. Ignoring sequence quality scores

and with each read mapped to only one sequence, a

maximum likelihood estimator for the probability of, for

example, base A at reference sequence position k would

simply be a summation of all A bases in reads mapped

at that position divided by the total number of reads

mapped at that position. However, because the generat-

ing reference sequence for each read is unknown, we

instead compute the probability of that base at position

k based on the current calculated Pr(s|r) from the pre-

vious E-step, as well as quality scores of mapped bases:

Pr(nk) =

∑

∀j

[

Pr(bk,j = n) Pr(s|rj)
]

∑

∀j Pr(s|rj)
=

∑

∀j

[

(

pk,j

3

)1−I
(

1 − pk,j

)I
Pr(s|rj)

]

∑

∀j Pr(s|rj)

where bk, j is the aligned base at position k in read j, I

is an indicator variable indicating a match of the aligned

base with the base under consideration, n, and Pk, J is

the error probability of the aligned base k in read j. The

consensus sequence chosen for the next round of map-

ping is simply the sequence of bases with the highest

probability at each position (Figure 1c).

Adjusting reference sequence abundances

In each M-step, we also calculate the prior probabilities

(abundances) of each reference sequence, based on the

current calculated Pr(s|r) from the previous E-step.

Again, if the reference sequence generating each read

was known, an estimate of these prior probabilities

could be obtained by observing the fraction of reads

generated by each reference. However, each read is

essentially split among several possible ‘read-generating’

reference sequences probabilistically from the previous

E-step. Thus, we compute:

Pr(s) =

∑J
j=1 Pr(s|rj)

J

where J is the total number of reads with mappings.

Algorithm initialization and termination

The EM algorithm performs best and avoids local maxima

when initialized with reasonable parameters. Therefore,

we initialize EMIRGE by first choosing the single best

reference sequence for each read, as reported by the map-

ping software. If a read maps equally to two or more

sequences, a reference sequence is chosen at random.

When paired reads are available, the reads are mapped

together and the probabilities are computed as if a single

longer read was used. We then assume for each read-refer-

ence pair and begin an M-step. We terminate the algo-

rithm when no further changes are made to the nucleotide

sequence of the reference SSU genes, at which time the

sequence abundances have also stabilized (Figure 2a, c).

Assessing algorithm performance on simulated microbial

communities

To test the ability of EMIRGE to reconstruct correct

SSU gene sequences and abundances from metagenomic

Miller et al. Genome Biology 2011, 12:R44
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data, we first simulated realistic error-containing Illu-

mina reads from the simple microbial community con-

structed in silico (see Materials and methods). After

combining SSU genes from the same organism (generat-

ing composite sequences in cases where multicopy

genes were not identical), and combining two Lactococ-

cus lactis subspecies, which share near identical SSU

sequences (> 99% identity), the nine composite SSU

genes range in abundance from 2.3% to 26.1%. To

further challenge our algorithm, we also introduced ran-

dom mutations in 10% of the bases in each SSU

sequence in the starting reference database. We pro-

cessed the simulated reads with EMIRGE and examined

the nine most abundant reconstructed SSU sequences

that emerged from the starting database of approxi-

mately 125,000 sequences (Additional file 1). These nine

sequences, which together represented 96% of the

summed prior probabilities, accurately recover each of

the expected SSU sequences (Figure 3a). In addition, the

observed abundances match the expected abundances

excellently (Pearson r = 0.998, P-value = 8.5e-10; Figure

4). Thus, on simulated but realistic data, our method

accurately reconstructs both community SSU gene

sequences and their abundances.

To gauge how EMIRGE performs on more complex

communities, we next simulated reads from a mock

community of 67 human gut microbes [28]. The com-

munity reconstructed from the full-length SSU

sequences reported by EMIRGE was highly similar to

the expected community (Figure 5; Additional file 2).

We attempted to quantify this similarity; using the

weighted UniFrac statistic [30], the EMIRGE and

expected communities were not distinguishable

(weighted UniFrac distance = 0.0124, P-value < 0.01).

The EMIRGE community was more similar to the

expected community when the input reads were longer

or sequencing effort was higher. However, even with

few paired SSU reads of full length, or with enough

reads as short as 36 bp, the community structure could

Figure 3 Community composition is captured by correctly reconstructed full-length SSU sequences. (a, b) Phylogenetic trees showing

algorithm-reconstructed sequences (black diamonds) and their best blast hits, for both the simulated simple (a) and natural (b) microbial

communities. Reconstructed sequences are presented with their (arbitrary) algorithm-assigned identifier and their prior probability, which serves

as an abundance estimate, after the final round. All reconstructed sequences match to the expected organism in the simulated community (a),

and all but two sequences match to metagenomic contigs assembled from traditional Sanger sequencing in the natural community (b). The two

novel sulfobacilli in the natural community are presented with their closest blast hit in GenBank. Units are base substitutions per site, and

bootstrap values ≥ 50 are shown at the branches.

Figure 4 SSU abundance estimates are accurate. For the nine

most abundant reconstructed sequences in the simulated simple

community, the final prior probability estimated by EMIRGE is

plotted against the expected SSU abundances from the associated

community members. The algorithm recovers the expected

abundances excellently (Pearson r = 0.998, P-value = 8.5e-10).
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Figure 5 Accurate SSU sequences and abundance estimates are recovered by EMIRGE for a complex microbial community. Using reads

from the complex simulated community, full-length SSU genes reconstructed by EMIRGE with estimated abundances of > 0.5% were aligned

and placed in a phylogenetic tree with the expected community members. Estimated EMIRGE sequences and relative abundances (blue)

correspond in most cases to expected sequences and expected abundances (red). Grey circles on branches indicate bootstrap values > 80.
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be recovered correctly (Figure 6). Insert size of the

sequencing library had little effect on the ability of

EMIRGE to recover the expected community.

We also attempted to evaluate how well the short SSU

fragments produced by de novo assembly could recon-

struct the structure of a microbial community. Assembly

produced many more SSU gene fragments than

expected for each of the simulated communities, though

many of these could be classified to a specific genus

(Table 1). We used BLAST [31] to search for the closest

known full-length SSU sequence to these short

assembled fragments. The best hits were clustered at

97% identity, and each cluster was given an abundance

relative to the average k-mer coverage of the matching

SSU fragments. The resulting phylogenies produced

weighted UniFrac distances to the expected commu-

nities that were roughly an order of magnitude larger

than the distances produced by EMIRGE (Table 1).

Assessing algorithm performance on a natural microbial

community

Next, we applied EMIRGE to the model natural micro-

bial community from acid mine drainage [23]. We

sequenced a single lane of a 76-bp paired-end Illumina

library. As with the simulated communities, we

mutated 10% of the bases in each SSU sequence in the

starting reference database to test if new taxa can be

discovered. We then ran our algorithm until

convergence and examined the most probable recon-

structed SSU sequences with abundance ≥ 1% (Figure

2d; Additional file 3). Because this particular acid mine

drainage community is closely related to communities

that have been extensively studied via metagenomics,

proteomics, and traditional clone libraries, we were

able to validate nearly all of the reconstructed SSU

sequences by comparing them to known metagenomic

contigs (Figure 3b). In addition to obtaining correct

species-level SSU sequences from the typical microbial

members that dominate this community, we also dis-

covered novel Sulfobacillus-like SSU sequences not

found in previous metagenomic assemblies whose clo-

sest sequence homology is to SSU clones recovered

from ore-processing environments [Genbank:

EU419137 and AF460984]. We confirmed the presence

of Sulfobacillus in our real community by fluorescent

in situ hybridization with a probe designed specifically

to this genus (Figure 7). The presence of the Sulfoba-

cillus genus could also be detected based on short SSU

fragments produced by the de novo assembly. However,

these fragments were not long enough to give the spe-

cies-level assignment of the EMIRGE Sulfobacillus

sequences. We identified 37 different short fragments

(70 to 243 bp) in the assembly that were assigned by

the RDP Classifier [32] to the Sulfobacillus genus.

Thus, our method recovers known and novel full-

length SSU genes from species residing in a natural

microbial community.

Discussion
When characterizing microbial communities, a critical

goal for metagenomic data analysis is recovery of a col-

lection of full-length SSU sequences, each of which

represents an operational taxonomic unit. However,

when short read metagenomic datasets sampling coex-

isting organisms are assembled, the SSU genes tend to

be highly fragmented and misassembled (Figure 1). The

resulting short contigs are often composite sequences,

not representative of any individual taxon present. Com-

plexity arises because sequences in highly homologous

regions co-assemble, while assembly paths diverge

where sequence variation exceeds some defined thresh-

old. Identification of the appropriate path is confounded

when reads are shorter than the distance between low

variation regions. EMIRGE solves these problems by

avoiding traditional assembly altogether, probabilistically

reconstructing full-length SSU gene sequences from

metagenomic datasets. To our knowledge, this is the

first report of successful full-length SSU reconstruction

from short read metagenomic sequencing data. The

method also accurately estimates relative abundances of

SSU sequences from each organism type (Figures 4 and

5). Of course, like all approaches relying on the SSU

0.1

0.2

w
e
ig

h
te

d
 U

n
iF

ra
c
 d

is
ta

n
c
e

read length = 35

read length = 50

read length = 76

insert size = 100

insert size = 500

insert size = 700

0.0

SSU-mapped read pairs
10

,0
00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

60
,0

00

70
,0

00

Figure 6 Effect of sequencing library characteristics on EMIRGE

performance. The effects of sequencing effort (x axis), read length,

and insert size were evaluated by running EMIRGE on the complex

community with varying input. Reconstructed communities were

compared to the expected community with the weighted UniFrac

distance metric [30]. For the varying insert size experiment, a single

sequencing effort was chosen (76-bp read length; 80,000 genomic

reads; see Materials and methods).
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rRNA gene for quantification, gene copy number can

confound abundance estimates [33].

Full-length genes provide more complete taxonomic

information than prior tag-sequencing approaches that

have sequenced PCR-amplified short hypervariable

regions (typically < 200 bp) [3-7]. Tag sequencing is

subject to potential primer bias [16] and ultimately relies

on underlying phylogenies built from full-length genes.

Although the phylogenetic information contained in

hypervariable region tags is generally concordant with

information contained in full-length sequences at higher

taxonomic levels [3,5], careful screening of read quality

is necessary to avoid overestimating community diversity

[34,35]. Others have argued that full-length Sanger

sequencing of traditional clone libraries remains the

only way to adequately construct the phylogeny of life

[36]. The method presented here offers a cost-effective

alternative for reconstructing accurate full-length

sequences. The increased read depth underlying each

reconstructed sequence ensures that no single read or

its potential sequencing errors inflate diversity estimates.

One key to the success of EMIRGE lies in the iterative

approach encapsulated in the EM algorithm (Figure 2).

The deep coverage of Illumina sequencing has been

used before to iteratively map and correct whole gen-

ome consensus sequences from a single species [37], or

a population of closely related strains [38]. Our

approach differs in both the end goal and the statistical

approach taken: the EM algorithm models a true popu-

lation of SSU genes, and constructs only probabilistic

descriptions of both the SSU sequences and their under-

lying abundances. Reference sequences that show evi-

dence (in the form of multiple ambiguous base

probabilities above some threshold) of multiple strains

are split and allowed to evolve separately, rather than

forcing reads into a single composite sequence. Even

when iteration ends, base probabilities in the recon-

structed SSU sequence can reveal likely single nucleo-

tide polymorphisms in closely related but distinct

subspecies in the community (Figure 1c).

Also central to our approach is the handling of uncer-

tainty by the EM algorithm. This algorithm has a wide

variety of applications in high-throughput biological

experimentation, which often must deal with hidden

data [39]. Here, rather than try to make a definitive

statement about every read, ambiguity created by short

reads and high homology within the SSU gene is dealt

with probabilistically. Thus, evidence for the sequence

and abundance of a particular SSU gene also accumu-

lates probabilistically, with more evidence accumulating

from more probable read mappings in each iteration.

The result is a set of SSU sequences in which each

Figure 7 Validation of the presence of Sulfobacillus in the natural community. Fluorescent in situ hybridization with a Sulfobacillus-specific

probe (red) shows that Sulfobacillus is present in the natural community, as predicted by EMIRGE. The generic DNA stain DAPI is shown in blue,

and Sulfobacillus cells with both the specific probe and DAPI staining appear purple. Scale bar: 5 μm.
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reconstructed nucleotide has a confidence estimate

based on its final probability. The approach was vali-

dated by recovery of the anticipated set of sequences

from both simulated and natural community datasets

(Figures 3 and 5) at a level of taxonomic resolution typi-

cally used to define operational taxonomic units (OTUs;

97% identity). The algorithm can be tuned to higher

levels of stringency (for example, 99%) if desired, an

important feature given the diversity of genomes and

metabolisms for organisms with similar or even identical

SSU sequences.

The benefit of the probabilistic EM strategy is demon-

strated by the accuracy of the SSU reconstructions

obtained, even when 10% of nucleotide positions were

mutated in the underlying SSU database. This robust-

ness of the method to database error means that new

taxa can be discovered. For example, we were able to

recover a novel Sulfobacillus SSU gene not identified in

previous metagenomic and PCR-based analyses of simi-

lar biofilm communities. This gene shared only 88%

identity with the closest sequence in the starting refer-

ence database. We have also applied the EMIRGE

method to the description of thermophilic bacterial con-

sortia adapted to grow on switchgrass (JM Gladden et

al.: Community dynamics and glycoside hydrolase activ-

ities of thermophilic bacterial consortia adapted to

switchgrass, submitted). The method recovered full-

length SSU genes that corresponded closely to phyloge-

netic identifications derived from amplicon-based pyro-

tag sequencing for these communities, and the EMIRGE

prior probabilities showed general concordance with the

abundance estimates made by pyrotag sequencing.

Our implementation runs overnight on standard hard-

ware available to most labs studying microbial ecology

(see Materials and methods). However, the method

makes assumptions and choices for computational speed

that could be improved upon. In its current form, for

example, we have chosen a read mapper [19] that, while

extremely fast, is blind to insertions and deletions

(indels). We find that the main effect of this choice is

the occasional presence of small indel errors in the

reconstructed sequence. In practice, these rare indels

have little effect on taxonomic assignment. Future

EMIRGE implementations will incorporate a method to

handle indels. This will allow for extension of EMIRGE

to genes with higher levels of sequence divergence and

make it useful for reconstruction of full-length SSU

genes from metagenomes sequenced with Roche 454

technology (which is prone to indel errors at homopoly-

mer runs [34]).

Additionally, although the method adequately corrects

nucleotide errors in the reference database, it is possible

that chimeric database sequences could carry over into

SSU reconstructions, if reads map across the full length

of the chimera. None of the EMIRGE-generated

sequences reported here were identified as chimeric

(data not shown); however, we have documented at least

one very low abundance chimera (below the reporting

threshold) in the natural community that evolved from

a chimeric database sequence. Strict database pre-

screening should eliminate this potential problem.

EMIRGE-generated sequences would benefit from the

same downstream quality control applied to traditional

clone libraries.

As it is described here, EMIRGE does not suffer from

potential primer bias introduced by so-called ‘universal’

primers [16], allowing for discovery of novel species that

may not have canonical primer binding sites [18]. Like

other methods that use next generation sequencing

technologies [3-5], the method also removes potential

cloning bias introduced with Sanger sequencing. How-

ever, it may be subjected to other biases associated with

new technologies - for example, the under-representa-

tion of sequences at the extremes of GC content [40].

In its current form, the analysis relies upon only the

small fraction (< 0.2% here) of reads that derive from

SSU genes. However, the EMIRGE algorithm could

easily be applied to full-length SSU amplicon datasets,

enabling confident reconstruction of full-length SSU

genes from extremely low-abundance organisms. We

focused here on demonstrating the accuracy of the

method for reconstruction of SSU sequences for OTUs

representing ≥ 1% of the population. If the method

scales linearly, we can expect to recover accurate

sequences and abundances from SSU genes from organ-

isms representing just 0.002% of similar populations

with a single lane of Illumina amplicon sequencing.

Conclusions
The method reported here, EMIRGE, reconstructs full-

length SSU sequences from metagenomic data from a

microbial community of interest, accurate to the spe-

cies level. In addition, the method also provides accu-

rate SSU sequence abundance estimates. EMIRGE is

robust to errors and omissions in the reference data-

base, and is broadly applicable to any dataset produced

with short read sequencing technology. An open-

source implementation of the algorithm is freely avail-

able [41]. We expect that application of the method,

especially with very deep sequencing, will provide new

insights into fine details of changing microbial commu-

nity structure.

Materials and methods
Sample collection, short-read sequencing and assembly

of the natural microbial community

Fungal streamer biofilms were collected in February

2008 from the 5-way site of the Richmond Mine at Iron
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Mountain, California [23]. The pH of the acid mine

drainage the biomass was sampled from was 0.98, and

the temperature was 38°C.

For genomic DNA extraction, aliquots of 4 to 5 ml of

frozen biofilm were thawed in an equal volume of 4°C

0.9% NaCl, pH 1.0. Biofilm was homogenized with a

pipette tip, and then pelleted by centrifugation at 7,000

× g for 5 minutes at 4°C. The supernatant was removed,

and 4 ml of 4°C phosphate buffered saline, pH 7.0, was

added to the cell pellet. The cells were passed several

times through a 16 G needle to further homogenize the

biofilm, and again pelleted at 7,000 × g for 5 minutes at

4°C. The supernatant was removed, and the cell pellet

was added to a sterile, pre-chilled mortar and ground to

a fine powder in liquid nitrogen. This frozen powder

was stored in liquid nitrogen for further processing.

Approximately 50 mg aliquots of frozen, ground powder

were added to tubes with pre-warmed (65°C) lysis solu-

tion from the PowerSoil DNA Isolation Kit (MoBio

Laboratories, Carlsbad, CA, USA). This mixture was

incubated with shaking at 120 rpm for 10 minutes at

65°C, with brief vortexing every 2 minutes to resuspend

the powder in the lysis buffer. The mixture was then

bead beat for 30 s at 5 m/s in the provided tubes, and

the manufacturer’s protocol was followed for DNA

extraction and cleanup. DNA was eluted in TE buffer,

and aliquots were pooled and DNA precipitated with 2

volumes of EtOH before resuspending in TE buffer for

library preparation.

Illumina library preparation and sequencing followed

standard protocols developed at the Joint Genome Insti-

tute [42]. Briefly, genomic DNA was sheared by nebuli-

zation, and sheared fragments were end-repaired and

phosporylated. Blunt-end fragments were A-tailed, and

sequencing adapters were ligated to the fragments. Frag-

ments with an insert size of around 200 bp were gel-

extracted and enriched with 12 cylces of PCR before

library quantification and validation. Hybridization of

the library to the flow cell and bridge amplification was

performed to generate clusters, and paired-end reads of

76 cycles were collected.

A single flow cell lane was used to obtain 38.6e6

paired-end 76-bp reads (2.9 Gbp). The raw reads have

been deposited in the NCBI Sequence Read Archive

under accession [SRA:SRR191843]. These reads were

used as input to the assembler Velvet [29]. For the

natural and the simulated communities, the VelvetOp-

timiser script was run with default parameters to

choose assembly k-mer and coverage parameters that

led to optimal assembly (k = 49 for the natural com-

munity, k = 61 for the simple simulated community, k

= 37 for the complex community). The LastGraph file

produced by Velvet was used for the generation of Fig-

ure 1.

Simulating short read sequencing reads for simulated

microbial communities

For the simple simulated community, we reconstructed

reads from the ten evenly distributed genomes used in

the in vitro community of Morgan et al. [27]. For the

complex community, we first downloaded the SSU

sequences for organisms in the ‘uneven 1’ mock com-

munity from Turnbaugh et al. [28]. Because not all of

these organisms have available genome sequences, we

padded each SSU sequence with 1,000 random bases

before simulating reads. This likely makes the de novo

assembly problem (though not EMIRGE’s method)

easier than can be expected in a real community, as

there are unlikely to be shared k-mers between taxa in

these random padding sequences. We used the wgsim

program [43] to simulate 60e6 paired-end, 76-bp, error-

free reads from the genomes for the simple community,

with an insert length mean of 200 bp and a standard

deviation of 25 bp. We simulated reads with varying

coverage depth, insert size, and read length for the com-

plex community. Unless otherwise specified, we used a

data set with 80,000 paired, 76-bp reads with an insert

size mean and standard deviation of 300 ± 30 bp. When

simulating other insert sizes, a standard deviation of

10% was used. Many of these simulated reads fell in the

padded genome sequence outside of the SSU genes. We

assigned quality score vectors to each read by sampling

at random from 1 million real quality value vectors

from the real microbial community reads, and made

mutations in all simulated reads with the probabilities

specified by the assigned quality scores. To calculate the

expected abundances of SSU rRNA genes in the simple

simulated community, we divided the copy number of

the SSU gene for any given genome by the sum of copy

numbers for all SSU genes in the community. For the

complex community, we used the expected abundances

given by Turnbaugh et al. [28]. Both simulated datasets

are available [44].

Evaluation of SSU gene fragments produced by de novo

assembly

Contigs from de novo assembly were searched with

BLAST [31] against the Silva SSU database, and contigs

with an e-value ≤ 1e-10 were identified as SSU-frag-

ment-containing. These fragments were classified at the

genus level using the RDP classifier [32] if the classifica-

tion had a bootstrap value > 50%. Best BLAST hits to

the fragments were clustered at 97% identity using

UCLUST [45], and relative abundances for each cluster

representative were calculated based on the average k-

mer coverage, as reported by Velvet, for each of the

fragments hitting a sequence in that cluster. We note

that this strategy will not allow the discovery of novel

sequences as EMIRGE will; however, for the two
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simulated datasets all the expected sequences were in

the search database.

Implementation details

The reference SSU database was built by first removing

sequences < 1,200 bp or > 1,900 bp from the Silva [15]

SSU reference 102, and then clustering the remaining

sequences at 97% identity with UCLUST [45]. In order

to evaluate the ability of EMIRGE to recover novel

sequences, for each database sequence, 10% of the sites

were chosen at random and mutated to a different base,

also chosen at random. For read mapping, we used the

short read mapper bowtie [19] in paired-end mode. For

initiation, bowtie reported a single best alignment,

allowing up to three mismatches in a 20-bp seed, and a

maximum sum of quality values in mismatched bases of

300. The minimum and maximum insert size allowed

was set to ± 3 times the expected standard deviation

around the expected median insert size. For subsequent

iterations, bowtie used the same parameters, but

reported all mappings in the top strata. Prior to running

EMIRGE, reads were trimmed from the 3’ end to

remove bases with quality scores of 2 or lower, and

paired reads were kept if both reads were at least 60 bp

long after trimming. For data sets with shorter read

lengths, no trimming was done.

At each iteration, SSU sequences were merged into

one sequence if the identity of non-gapped positions in

a global alignment was greater than 97%. A single SSU

sequence (and its prior probability) was divided into two

sequences if the second most probable base in more

than 4% of all positions had a probability greater than

10%. In this way, sequences that evolved over iterations

to be the same were merged, and sequences with evi-

dence from the reads for multiple OTUs were dupli-

cated and allowed to evolve as separate OTUs in future

iterations.

EMIRGE was implemented in python. Forty iterations

of EMIRGE for the natural community took 6.8 hours

on eight Intel Xeon 2.0 GHz cores, with a maximum

memory footprint of 900 MB. The read mapping steps

accounted for 91% of the run time and is parallelizable.

Thus, run time decreases approximately linearly with

the number of processor cores available.

Fluorescent in situ hybridization microscopy

Cell fixation and epifluorescent microscopy were per-

formed as described previously [46], except that cells

were fixed after thawing from storage at -80°C. We

developed a probe for a broader specificity of Sulfobacil-

lus spp. from Bond et al. [47], SUL230 (5’-

GGRGCUCGCGGCCCAUUA-3’), and all cells were

counterstained with DAPI. Probe stringency was main-

tained by hybridization at 46°C with 30% formamide.

Phylogenetic tree construction and evaluation of

community structure

The nine (for the simple simulated community) and ten

(for the real community) most abundant SSU sequences

recovered by the algorithm were used for phylogenetic

tree construction. For the simple simulated community,

these sequences were aligned with default parameters with

muscle [48] with the known SSU genes. For the real com-

munity, we blasted reconstructed SSU sequences against

previously assembled contigs from the same environment

[GenBank:ADCE01000000, GenBank:ADHF00000000.1,

GenBank:ABOZ00000000.1, GenBank:ACXJ00000000.1,

GenBank:ACVJ01000000, GenBank:ACXK01000000, Gen-

Bank:ACXL01000000, GenBank:ACXM01000000, Gen-

Bank:ACNP01000000, GenBank:AAWO01000000,

GenBank:AADL01000000], and the Silva database, and

included the best hit for each reconstructed sequence in

the resulting multiple sequence alignment. These align-

ments were imported into MEGA [49], and neighbor join-

ing trees with 500 bootstrap replicates were built using

distances derived with the maximum composite likelihood

method. Only positions in the alignments without gaps

were used to construct the trees.

For the complex community, we aligned EMIRGE-gener-

ated SSU sequences with abundance estimates > 0.5% with

the sequences from the known community with muscle,

and built maximum likelihood trees with RAxML [50]

using the GTRGAMMA model. We used these, and analo-

gously built trees for input reads with varying library para-

meters, to measure the weighted UniFrac distance [30]

between the reconstructed and known communities using

the UniFrac website [51]. For comparisons with the com-

munities produced by clustering the best hits to de novo

assembly fragments, a single alignment was built for the

three communities with expected, EMIRGE-produced, and

assembly-fragment-best hit sequences. A tree was built

using FastTree [52], and weighted UniFrac values were

computed for each pair of communities using this single

phylogeny. Figure 5 was constructed using iTOL [53].

Additional material

Additional file 1: FASTA formatted file containing EMIRGE-

reconstructed sequences from the simple simulated microbial

community.

Additional file 2: FASTA-formatted file containing EMIRGE-

reconstructed sequences from the complex simulated microbial

community.

Additional file 3: FASTA-formatted file containing EMIRGE-

reconstructed sequences from the natural microbial community.
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