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Spin waves offer intriguing novel perspectives for computing and signal processing, since 

their damping can be lower than the Ohmic losses in conventional CMOS circuits. For 

controlling the spatial extent and propagation of spin waves on the actual chip, magnetic 

domain walls show considerable potential as magnonic waveguides. However, low-loss 

guidance of spin waves with nanoscale wavelengths, in particular around angled tracks, 

remains to be shown. Here we experimentally demonstrate that such advanced control of 

propagating spin waves can be obtained using natural features of magnetic order in an 

interlayer exchange-coupled, anisotropic ferromagnetic bilayer. Using Scanning 

Transmission X-Ray Microscopy, we image generation of spin waves and their 

propagation across distances exceeding multiple times the wavelength, in extended planar 

geometries as well as along one-dimensional domain walls, which can be straight and 

curved. The observed range of wavelengths is between 1 µm and 150 nm, at corresponding 

excitation frequencies from 250 MHz to 3 GHz. Our results show routes towards practical 

implementation of magnonic waveguides employing domain walls in future spin wave 

logic and computational circuits. 
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 Spin waves are the elementary excitations of the order parameter in ferromagnetic 

materials [Fig. 1a)] [1-3]. Also referred to as magnons, they can be used similarly to electrons 

in CMOS circuitry, but with lower losses, to transmit information, and, therefore, are currently 

attracting a lot of interest as possible information carriers in alternative computing schemes [4-

7]. One of the most pressing issues in present-day high-performance computing are the high 

power requirements and the necessary heat removal associated with the Ohmic losses in 

conventional electronic CMOS circuits - latest generation supercomputers easily consume 

power in the order of ten Megawatts. On a wider societal scale, the reduction of signal-

processing losses, in particular in personal mobile communication devices may create 

substantial benefits due to reduced power consumption, resulting in extended battery life and 

improved environmental sustainability. Another substantial advantage of spin-wave technology 

is the fact, that in the GHz range, magnon wavelengths are several orders of magnitude shorter 

than those of electromagnetic waves [8]. Thus, a significant device miniaturisation can be 

achieved for applications where the wavelength imposes a critical constraint on the device 

footprint. For such purposes it will be crucial to utilise spin waves with wavelengths in the sub-

µm range, where both magnetostatic and exchange effects are relevant (dipole-exchange waves) 

[5]. While surface acoustic waves are already present as short-wavelength signal carrier in 

today's communication technology, spin waves offer a superior scalability of wave excitation 

and propagation at frequencies above 2 GHz as well as a much wider frequency tunability 

[9,10]. 

 Two of the most challenging aspects of building a magnonic computer remain the 

generation of short-wavelength magnons and the construction of suitable waveguides for spin 

wave transport. Several recent works focus on these two issues ([11-29] and [7,29-40], 

respectively). A standard method to coherently generate spin waves employs the localised 

Oersted fields from alternating electric currents flowing in metallic antennas that are patterned 

adjacent to a magnetic medium. The smallest excitable wavelengths using this method, 



however, are approximately equal to the patterning sizes involved [cf. Supplemental 

information (SI) (3)]. In terms of nanopatterning and microwave impedance matching, it is 

therefore highly challenging to efficiently scale such an antenna-based excitation to nanoscale 

wavelengths. While similar restrictions apply from the patterning size, spin-transfer torques 

have proven to be an alternative suitable source for spin-wave excitation [13,14,16,26], with 

the possibility for steering spin waves by external magnetic bias fields [26]. More recently, it 

was also shown that spin waves can be generated using the internal fields of non-uniform spin 

textures [15,17-25,27-29], yet direct observations are limited to wavelengths > 1µm, apart from 

[18,29]. In [18] the emission of high-amplitude nanoscale spin waves from a pair of stacked 

vortex cores [41], driven by an alternating magnetic field [42,43] was demonstrated. However, 

in the geometry [18], where a point-like vortex core source is radiating spin waves into a two-

dimensional propagation medium, spin waves originating from a vortex core and traveling 

outwards radially experience not only Gilbert damping, but also a purely geometric reduction 

of amplitude proportional to the inverse square root of the distance from the source, as shown 

schematically in Fig. 1b). Further, it has been suggested that magnetic domain walls could be 

harnessed to guide spin waves across the magnonic chip [7,29-36]. In particular, it has been 

shown that domain walls can host localized modes, excited by alternating magnetic fields [31]. 

While in Ref. 31, the lateral position of the excited magnetisation amplitudes could be well 

controlled by tuning the lateral domain wall position, these modes however quickly decayed 

along the domain wall coordinate with increasing distance from the microwave antenna within 

subwavelength length scales.  

 These key issues – short wavelength-spin wave generation and spin wave guidance - are 

the points we address in this work, where we make use of naturally formed anisotropic spin 

textures. First, we demonstrate the excitation and propagation of two-dimensional planar spin-

waves [Fig. 1c)] excited by the oscillation of straight domain walls. We observe that these 

excitations can travel distances spanning multiples of the wavelength. Second, we observe 



excitation and propagation of spin wave modes confined to quasi-one-dimensional natural 

waveguides (straight or curved) formed by domain walls embedded in a two-dimensional host 

medium [Fig. 1d)]. 

 Our samples are Co40Fe40B20/Ru/Ni81Fe19 multilayers with (46.6/0.8/44.9) nm 

thickness, patterned into disc- and square-shaped elements, having lateral sizes of several 

microns [Fig. 2a)]. Each ferromagnetic layer exhibits an in-plane uniaxial anisotropy. The Ru 

interlayer causes antiferromagnetic coupling between the two ferromagnetic layers [44] (see 

methods part for further details).  

 The magnetic ground state configuration stabilized in this system is a pair of stacked 

vortices, with opposite vorticity due to the antiferromagnetic interlayer exchange coupling. The 

influence of the CoFeB uniaxial anisotropy leads to a significant distortion of the vortex 

magnetization distribution in both magnetic layers. The result in each layer is a state of two 

homogeneously in-plane magnetized domains with opposite magnetizations. These domains are 

separated by a narrow, partially perpendicularly oriented, 180 degree domain wall that contains 

the vortex cores and spans the lateral extension of the discs. These magnetic configurations are 

shown in Figures 2b) and 2c), which are Scanning Transmission X-ray Microscopy (STXM) 

images displaying magnetic information about the in-plane (b) and the out-of plane component 

(c) of the individual layers, where the technique provides a lateral resolution of about 25 nm. 

As Fig. 2c) indicates, the out-of-plane magnetization components of the respective layers 

couple ferromagnetically to each other by their stray field. In particular, this is true for the 

polarizations of the vortex cores. Micromagnetic simulations confirm this and reveal that the 

domain wall formed in the sample is, in fact, a mixture between Néel and Bloch types of domain 

walls [45], where the in-plane components couple antiferromagnetically across the Ru 

interlayer, as in the domains. The complex ground state magnetic pattern is illustrated in panels 

d) and e) of Fig. 2. Figure 2d) displays a schematic top view of the domain wall structure in the 

CoFeB layer, showing the mixed Bloch and Néel components. In Fig. 2e) a cross-section of the 



bilayer system is shown, which can be imagined as resulting from a cut along the blue lines in 

panel c) of the Figure, revealing the out-of-plane magnetization components in the domain wall 

to follow a flux-closing distribution between the two layers. 

Spin waves can be excited in such anisotropic spin textures by applying an alternating 

magnetic field, as shown in Figure 3. The corresponding measurements were made by means 

of time-resolved (TR)-STXM imaging, allowing for a stroboscopic time-resolution of 

approximately 100 ps. Figure 3 (a) is a snapshot of the magnetic excitations at an Oersted field 

frequency of 1.11 GHz, taken at the Ni absorption edge, displaying the out-of-plane contrast. 

Plane spin waves are visible, with wave fronts parallel to the domain wall, and propagating 

away from the domain wall towards the rim of the elliptical element, as indicated by the green 

arrow. The oscillating Oersted field in-plane component is oriented along the minor axis of the 

ellipse, perpendicular to the domain wall. The main effect of the Oersted field is to excite 

dynamics of the domain wall, and that the excited domain wall acts as a confined perpendicular 

source for the observed spin waves [24,25,29]. In more detail, by acting on the full sample 

volume, the field excites a non-resonant antiphase width oscillation of the walls in the two 

different layers which is coherent over the wall length, causing highly localised out-of-plane 

torques in the wall vicinity. Thereby spin waves are essentially excited via a linear and coherent 

coupling of the discrete wall mode to the spin-wave continuum, similar to the situation of vortex 

core driven spin waves reported earlier [18,27]. 

The periodic-in-time nature of the waves allows capturing the wave motion at discrete, 

equispaced phases in each scanned pixel, and composing the recorded data into movie-like 

arrangements, which impressively show the propagation of these spin-excitations [see movies 

in the SI (1)]. A comparison of the absorption data taken along the green arrow in Fig. 3a) at 

different time slices yields the wavelength of the wave, and in particular its speed of 

propagation. Three of these time slices are shown in Fig. 3b). Notably, the spin wave amplitude 

does not visibly decrease across the distance of two micrometers, corresponding to about 7.5 



times the wavelength. Increasing the excitation frequency to 1.46 GHz results in a similar wave 

pattern, but with shorter wavelength [Fig. 3c)]. By comparison with the contrast of the vortex 

core, the spin-wave amplitudes are estimated to reach a precession angle of beyond 5 degrees, 

which can be considered as very high when compared to standard spin-wave excitation 

techniques. 

Around the vortex center, as shown in the magnified image Fig. 3d), in addition to the 

plane waves generated by the oscillating wall, there exist radial wave fronts which arise from 

the motion of the vortex core, which acts as a point source [18]. In comparison to the plane 

waves excited by the domain wall, these radially symmetric waves must decay faster in power 

density, with a factor of 1/r in addition to the exponential decay induced by the Gilbert damping, 

r corresponding to the distance from the vortex center. This difference can be regarded as a 

consequence of the fact that the plane waves are excited by a one-dimensional source (the 

domain wall), while in the case of the radial waves, the source is zero-dimensional (the vortex 

core). As these two wave forms are excited simultaneously, patterns of interference arise which 

are also visible in Fig. 3d). 

In this manner, we can excite planar spin waves for a broad range of frequencies up to 

3 GHz. Yet, one can expect this process to scale to even higher frequencies, if the magnetisation 

gradient of the exciting source (domain wall or vortex core) was enhanced as for domain walls 

in systems with strong perpendicular magnetic anisotropy or if the spin-wave dispersion relation 

was tuned to longer wavelengths by modifying the magnetic layer stack. Remarkable effects, 

however, appear when going to rather low excitation frequencies, as shown in Fig. 4, displaying 

excitations at 0.52 GHz and 0.26 GHz [panel a) and b), respectively]. At these low frequencies, 

no visible excitations exist in the domains, yet the data clearly shows spin waves propagating 

confined to the domain wall in the directions away from the vortex cores. The wavelength of 

these waves can be controlled in the same way as in the previous cases, i.e. by tuning the 

excitation frequency. Note that there is a directional asymmetry in the spin-wave emission at 



0.52 GHz, which, however can be attributed to sample imperfections in the exciting core region 

as simulations indicate a symmetric emission pattern. Irrespective of this, the wave amplitude 

is again still significant even after a propagation distance extending from the vortex core to the 

rim of the ellipse. This is made possible in a way that is analogue to the above described case 

of planar waves in a two-dimensional medium excited by the one-dimensional domain wall: 

For the waves propagating along the domain wall, the source is of dimension zero; however, 

due to the confinement to the domain wall, the propagation medium is effectively one-

dimensional. As a result, geometrical decay of the amplitude is avoided, making the domain 

wall act as a low-loss waveguide (c.f. SI movie M4 of propagating spin waves in the domain 

walls). The confined waves excited here can be considered a bilayer analog of the spin-wave 

mode predicted by Winter for a single domain wall [33], while also the coherent domain wall 

resonance (or infinite wavelength k=0) case of such a bilayer has been theoretically studied in 

Ref. [46] [cf. SI(2)]. 

In order to shed light on the physics underlying these observations, we followed a 

twofold strategy: First, both observed phenomena - the excitation and propagation of planar 

spin waves in the domain, and one-dimensional waves confined to the domain wall – were 

investigated and qualitatively confirmed with micromagnetic simulations. For that purpose, the 

experimental static magnetization distribution was reproduced prior to excitation by an ac 

magnetic field. We refer to SI movie M7 for a qualitative confirmation of the gapless one-

dimensional spin-wave mode in the domain wall. In order to obtain the details of the dispersion 

relation for the planar waves in the domains within reasonable computation time, the system 

was modeled by two continuous, homogeneously magnetized coupled layers (further details 

can be found in the methods section). The experimental plane spin-wave dispersion was 

quantitatively reproduced by these simulations.  

In addition to the simulations, we developed a theory (see SI for in-depth technical 

details) for the propagation of spin waves in two exchange-coupled extended ferromagnetic 



films. The core of the theory considers spin wave modes in thin magnetic films, where the 

magnetization along the coordinate perpendicular to the film plane can be considered 

homogeneous. The case of thicker films as in the experiment is accounted for by splitting each 

ferromagnetic layer into a number N of thin films of equal thickness, so that for each of these 

films the thin-film approximation holds. The N thin films of each layer are then coupled to each 

other by an effective ferromagnetic intralayer exchange coupling, whose strength is determined 

by estimating the energy of a magnetization distribution subject to homogeneous torsion and 

by requiring consistency with the continuum limit. The theory thus enables us to quickly 

compute dispersion relations for spin waves in the interlayer exchange-coupled bilayer system 

with ferromagnetic layers whose thicknesses exceed the exchange lengths of the respective 

material. In Fig. 5, the measured spin wave dispersion relations !(# = 2&/l) (! denoting the 

frequency, # the wave number and l the wavelength, respectively) for waves in the domains 

and in the domain walls are combined with the analytical and micromagnetic simulation results. 

We first consider the planar waves propagating through the domains. The open circles represent 

the results extracted from the STXM measurements. The blue continuous line displays the 

theoretical result, which is found to depend sensitively on the CoFeB in-plane uniaxial 

anisotropy and the interlayer exchange coupling. For J = -0.1 mJ/m2 and Ku(CoFeB) = 3 kJ/m3, 

we find good agreement with the experimental data. The elevated value of Ku(CoFeB) is 

reasonable, since we expect the CoFeB to react sensitively to strain exerted by the patterned 

waveguide microstructure onto the elliptical element [47]. Using the same parameters as in the 

theory, we also compute the dispersion using micromagnetic simulations [grey dots in Fig. 5)]. 

Note, that the antiparallel bilayer system considered here can in principle host two separate 

spin-wave modes of acoustic and optical character [cf. SI (2)]. Since the optical mode however 

resides at much higher frequencies and is not accessed by our experiments, we only consider 

the acoustic mode in the following.   



A striking feature of the acoustic plane wave dispersion is the existence of a local 

minimum at low k around 5 rad/µm, and accordingly, a frequency gap, below which no spin 

wave excitations are possible. The local minimum at some finite value of the wave vector in 

Fig. 5 can be understood due to a combination of the non-reciprocity induced by the dipolar 

coupling between the two antiferromagnetically coupled magnetic layers [18,48] [SI (2)] and 

the uniaxial magnetic anisotropy. Namely, when the anisotropy is null, the collective dispersion 

in Damon-Eshbach geometry (k M0) [49] has a minimum of zero frequency at k = 0, while at 

finite anisotropies, this minimum is shifted to finite values of both wave vector and frequency. 

Such a k-shifting of the dispersion minimum is somewhat analogous to that induced by the 

Dzyaloshinskii-Moriya interaction on ferromagnetic/heavy-metal alloys, where the minimum 

of the dispersion is also shifted. [50]. Note that we only observe the slow branch (k  +5 

rad/µm) of the non-reciprocal dispersion relation in our experiment since the wavelengths of 

the fast branch are of the order or exceeding the sample size for the frequencies given [cf. SI 

(2)]. At the same time the spin-wave amplitudes predicted for the fast branch are also much 

lower, which both are the reasons for why spin-wave edge reflections are not noticeable in the 

experiment. 

Our experimental observations of selective excitation and propagation of spin waves in 

the domain wall can actually be explained based on the existence of the frequency gap discussed 

above: The red circles in Fig. 5 display the dispersion relation of the measured spin waves in 

the domain wall. In sharp contrast to the planar waves in the domains, the waves confined to 

the wall exhibit an almost linear dispersion, which runs below its plane wave counterpart and, 

when extrapolated towards zero, intercepts the y-axis close to f = 0. Thus, when tuning the 

excitation frequency to values inside the gap, no propagating magnons are excited in the 

domains; only the energetically lower modes existing in the wall are populated. The existence 

or, respectively, absence of the gaps in the domain and domain wall can be explained by the 

Goldstone theorem [51], which states that a system exhibiting a continuous symmetry 



spontaneously broken by the ground state has a gapless mode. In case of the spin waves in the 

domains, the corresponding system comprises the two coupled discs. Here, the continuous 

symmetry is compromised by the uniaxial anisotropy and accordingly, the planar spin wave 

dispersion relation exhibits a gap. In case of the waves confined to the domain wall, there exists 

a continuous translational symmetry that gives rise to a gapless mode. The presence of defects 

and the finite size of the sample, in principle, break this symmetry, but the resulting gap is too 

small to change the quality of the observed effects. 

The idea of using domain walls as waveguides is intriguing, and Fig. 6 shows that the 

above described phenomenon indeed extends to cases where the walls are curved, i.e., lead 

‘around the corner’. Neither is the concept restricted to continuous wave excitation. Figure 6a) 

displays the static magnetization configuration (out-of-plane contrast) of a domain wall, 

apparently of the same type as in the aforementioned cases, but curved towards the right-hand 

rim of the magnetic element. The regions marked in orange and yellow inside the domain wall 

indicate positions in front of and behind the curve, respectively, when following the domain 

wall from the vortex core towards the rim. Panels (b)-(d) display the snapshots of the excitation 

following a field pulse: Due to the width of the spectral composition of the pulse, spin waves 

are excited inside and above the frequency gap. The resulting plane wave packet traverses the 

domains in the direction away from the wall and makes it easy to optically distinguish the 

domain wall wave from the rest of the excitations. Fig. 6b) displays the time slice just before 

the field pulse. 11.1 ns after the pulse, the wall wave packet has reached the orange region in 

front of the turn [Fig. 6c)]; 2.5 ns later the wave packet has traveled around the corner. 

Remarkably, even after the turn, the wave packet maintains a considerable amplitude. While 

the spatial distribution of the domain wall in our experiment is solely a consequence of both 

dipolar sample confinement fields and magnetostrictive anisotropies, it was shown that further 

control of the domain wall position can be achieved e.g. by exchange bias patterning [34,39], 

ferroelectric coupling [21,22], or external magnetic fields [31]. 



To summarize, the work presented here addresses several key aspects of magnonic 

computing by exploiting magnetic anisotropy. The first aspect is related to energy and signal 

range. We demonstrated that textures in a magnetization distribution, like domain walls and 

vortex cores, can serve as sources for the generation of short-wavelength, dipole-exchange spin 

waves of directional nature, that is, planar waves in magnetic domains and waves confined to 

domain walls, which due to their geometry, are not subject to the reduction of amplitude due to 

the geometric dilution of the energy flow. This is an important result, since such waves 

minimize the losses occurring during propagation. Indeed, we found that the resulting 

excitations can travel distances easily spanning several microns, i.e., significantly exceeding 

multiples of the nanoscale wavelengths – a necessary condition, e.g., for magnon interference-

based applications. The second aspect is to identify possible waveguides for magnonic chips. 

Here, we showed that domain walls can serve as such waveguides, combining several useful 

properties. First, due to their inherent symmetry, and consequently their near-gapless dispersion 

relation, spin waves can selectively be excited in these structures. In addition, we showed that 

spin wave packets can travel along angled domain walls while largely maintaining their 

amplitude. Such possibility of angled signal guidance is vital for chip design, and therefore our 

result may enable new solutions to the development of magnonic circuits. 

 

 

 

 

 



 

Figure 1: Spin waves in different geometries. (a) Schematics of a spin wave propagating 

along ek. Magnetic moments (orange arrows) precess with a spatial phase difference, 

determining the wavelength λ. (b-d) Three different geometries of spin wave propagation 

explored in this paper. The magenta and orange fields denote the geometric dimensions of 

source and propagation medium, respectively. (b) Spin wave emission from a point source. In 

this case, the dimensions of medium and source differ by two. As a result, in addition to the 

exponential decay caused by the Gilbert damping, there is a geometric decay of the spin wave 

amplitude. (c) Plane-wave-like spin wave propagation. Similarly to (b), the waveguide medium 

is two dimensional, however the source has dimension one in this case. Thus, in c) the 

dimensions of source and medium differ by one. This is also the case in panel (d), where a zero-

dimensional source excites a one dimensional medium (a domain wall). The situations depicted 

in (c) and (d) are of special interest from the viewpoint of engineering magnonic waveguides, 

since in these cases the losses are largely limited to the Gilbert damping. 
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Figure 2: Sample layout and magnetic configuration. (a): The ferromagnetic element is 

patterned out of an interlayer-exchange-coupled bilayer system, consisting of a NiFe and a 

CoFeB layer, coupled antiferromagnetically by a Ru interlayer. The coupling leads to the 

magnetic states shown in (b), where the contrast represents the in-plane component along the 

long axis of the elliptic element, and (c), where the out-of-plane magnetic contrast is displayed. 

High-resolution XMCD STXM images show that the magnetic configuration is a pair of stacked 

vortices, with antiferromagnetically coupled in-plane magnetizations. We find that an 

additional anisotropy with easy axis along the long axis of the elliptic element leads to an 

anisotropic deformation of the vortex patterns, resulting in the formation of a domain wall, 

which is also visible both in the in-plane and out-of-plane contrast images. Micromagnetic 

simulations reveal that this domain wall has both Neel and Bloch character, as shown in (d). A 

cross-section of the domain wall profile is shown in (e), which can be imagined as taken along 

the blue lines in panel (c), illustrating the in- and out-of-plane components of the layer 

magnetizations in and around the domain wall.  
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Figure 3: Excitation of spin waves. TR-STXM Snapshots of spin waves (NiFe layer out-of-

plane magnetization component), excited using ac magnetic fields at different frequencies. (a) 

At an excitation frequency of 1.11 GHz, spin waves are generated that originate from the 

domain wall spanning the elliptically shaped magnetic element along the long axis through the 

vortex core. These plane waves travel from the wall to the rim of the disc, as indicated by the 

green arrow. Three time slices of the signal amplitude along that arrow taken at equidistant time 

intervals of 235 ps are shown in panel (b). The time slices allow to determine the wavelength 

or wave vector, respectively. Furthermore, they show that the wave amplitude does not change 

significantly across the traveled distance of 2 microns, which clearly exceeds the wavelength. 

Panel (c) shows the corresponding image of a spin wave excited at 1.46 GHz, panel (d) displays 
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an enlarged image of the center region. In addition to the plane waves originating from the 

domain wall, spin waves with circular wave fronts can be seen. The latter are emitted from the 

vortex core (c.f. [18]). Using such images, we obtain the dispersion relation for the various 

types of waves. 



 
 
Figure 4: Spin waves in the domain wall. At excitation frequencies below a certain threshold, 

no spin waves are present in the domain regions. However, spin waves confined to the domain 

wall are observed that originate from the vortex core and travel towards the rim of the disc. 

Panel (a) and (b) display such waves (TR-STXM of the NiFe layer magnetisation out-of-plane 

component) excited at 0.52 and 0.26 GHz, respectively, with accordingly changing 

wavelengths. 
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Figure 5: Spin waves dispersion relations. From the experiment, we obtain the dispersion 

relations for spin waves propagating in the domains (full green diamonds) and waves confined 

to the domain wall (full red dots). In addition, we show the plane wave dispersions calculated 

using our model (blue continuous line) and micromagnetic simulations (grey dots), which are 

in good agreement. Assuming an interlayer exchange coupling of -0.1 mJ/m2 and a CoFeB 

uniaxial anisotropy of 3 kJ/m3, we obtain a reasonable agreement between the numeric results 

and the measured plane wave dispersion. The key difference of the plane waves and the waves 

confined to and propagating through the domain walls is the existence of a frequency gap in the 

plane wave dispersion, while for the wall waves, such a gap is absent, or too small to play a 

role here. These results explain why it is possible to selectively excite spin waves in the domain 

wall. 
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Figure 6: Domain walls as waveguides. We demonstrate the possibility of harnessing domain 

walls as waveguides for magnonic excitations by sending a spin wave packet around a domain 

wall curving around a corner (TR-STXM images). Panel (a) displays an in-plane magnetic 

contrast image of the domain wall, where the orange and yellow ellipses mark two regions in 

front and behind the curve, respectively. Panels (b) to (d) show snapshots of a spin wave packet 

excited by a magnetic field pulse, which are taken at different instances of time after the pulse. 

At 11.1 ns after the pulse (c), the wave packet has reached the region in front of the curve, as 

indicated by the orange ellipse. 2.5 ns later, the wave packet has traveled around the corner (d). 
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Methods 

Sample fabrication. 

The samples were prepared on x-ray transparent silicon-nitride membrane substrates with a 

thickness of 200 nm. Multilayer films of Ni81Fe19/Ru/Co40Fe40B20/Al were deposited by 

magnetron sputtering onto these, where Al (5 nm) is serving as a capping layer for oxidation 

protection. The thicknesses of the ferromagnetic layers, NiFe and CoFeB, were determined by 

transmission electron microscopy to be 44.9 nm and 46.6 nm, respectively. The Ru spacer (0.8 

nm nominal) between them mediates an antiferromagnetic interlayer exchange coupling [44] 

according to the hard axis magnetization reversal of extended multilayer stacks, which was 

measured by magneto-optic Kerr effect (MOKE) [52]. Additional MOKE measurements on 

corresponding single layer films revealed collinear uniaxial magnetic anisotropies of 0.2 kJ/m3 

for NiFe and 1.1 kJ/m3 for CoFeB. However, in order to reproduce the experimentally found 

static magnetic configuration in the micromagnetic simulations, a significantly larger value 

around 3 kJ/m3 is required for CoFeB. This elevated value for the in-plane uniaxial anisotropy 

in CoFeB can be attributed to strain, which in our case is caused by the contact with the 

waveguide. In fact, CoFeB is known for its sensitivity to strain and the orientation of the 

experimentally observed magnetic pattern with respect to the waveguide is consistent with this 

interpretation [47]. The patterning of the microelements was realized by electron beam 

lithography (EBL) and consecutive ion beam etching. Upon an initial oxygen plasma treatment 

for adhesive purposes, a negative resist (MA-N 2910) was spun onto the multilayer films. In a 

second step, the microelements were exposed by EBL. The samples were then developed for 

300 s in MA-D 525 and rinsed in de-ionized water. Finally, the samples were exposed to an 

argon ion beam at two different angles (85° and 5°) for physically etching the magnetic 

microelements out of the continuous films. Remaining resist was removed by aceton and a 

second oxygen plasma treating. For magnetic field excitation, a copper strip of 200 nm 

thickness was fabricated on top of the microelements by means of EBL, electron beam 



evaporation deposition, and lift-off processing [18]. The patterned microstrip has a width of 5 

µm, hence the resulting magnetic Oersted field from a flowing electric current of one mA can 

be estimated to µ0H = 4π * 10-2 mT. 

 

Time-resolved STXM.  

The magnetic orientation in the multilayer microelement investigated was imaged by means of 

synchrotron based scanning transmission x-ray microscopy (STXM) [53]. Here, a Fresnel zone 

plate is used to focus a monochromatic x-ray beam onto the sample. The locally transmitted x-

ray intensity is then measured by a single pixel detector, hence raster scanning the sample yields 

a two-dimensional absorption image with approximately 25 nm lateral resolution. Using 

furthermore circularly polarized x-rays allows for exploiting x-ray magnetic circular dichroism 

(XMCD) [54] leading to a magnetic contrast. As XMCD only occurs at the element specific 

resonant absorption edges, the magnetic signal from both ferromagnetic layers, NiFe and 

CoFeB, can be separated by tuning the incident x-rays to the corresponding L3 energies, Ni L3 

~853 eV and Co L3 ~778 eV, respectively. On the other hand, a collective signal from both 

layers can be collected from the Fe L3 edge at ~708 eV since both layers contain Fe. The 

magnetic contrast acquired is proportional to the projection of the magnetic orientation m = 

M/M on the x-ray propagation direction ek. Therefore, in normal incidence, the STXM setup is 

sensitive to the perpendicular magnetization component, while an inclined sample mounting 

also allows for detecting in-plane magnetization components. 

The magnetization dynamics of the multilayer microelements was imaged 

stroboscopically by means of time-resolved STXM. This method utilizes the specific time 

structure of the incident x-ray pulses, i.e. 2 ns repetition rate at ~100 ps effective pulse length. 

Each incoming signal (photon or no photon transmitted) is routed after every pulse to a periodic 

counting register of a field programmable gate array. Here the number of registers (Q) sets the 

maximum non-stroboscopic observation period (Q*2 ns), while the number of excitation 



repetitions in this period (J) sets the nominal time resolution as well as the excitation frequency 

in case of a continuous sinusoidal excitation. The excitation current was measured both in front 

of and behind the sample by means of -20 dB pick-off tees through an oscilloscope. 

 

Micromagnetic simulations. 

Micromagnetic simulations based on the time integration of the Landau-Lifshitz-Gilbert [55,56] 

equation were carried out using the code MuMax3 [57]. The simulations were performed to 

compute the spin wave dispersion relations in the coupled layer system. The ferromagnetic 

layers are homogeneously magnetised and the dispersion relations are calculated in a thin film 

approach. Therefore, the system was discretised into (4096,16,115) (x,y,z) cells and periodic 

boundary conditions were applied along the y – direction, which corresponds to the direction 

of equilibrium magnetisation. The thickness of the individual layers and the spacer were chosen 

according to TEM measurements. This results in a cell size along the z – axis of 0.8 nm. The 

material parameters used in the micromagnetic simulations are as follows: For NiFe, the 

respective values of saturation magnetisation, exchange stiffness and uniaxial in-plane 

anisotropy are: )*
+,
= 800	kA/m , 345

+,
= 7.5	pJ/m  [58] and ;<

+,
= 200	J/m= . For the 

CoFeB layer, we used )*
>?@AB = 1250	kA/m , 345

>?@AB = 12	pJ/m  [59] and ;<
>?@AB =

3000	J/m= . The interlayer exchange coupling is E = −0.1	mJ/mG . The Gilbert damping 

constant α for CoFeB and NiFe is chosen to 0.008 and 0.01, respectively. The prevent reflection 

of spin waves from the edges, the damping was increased linearly to 0.065 for both layers.    

An out-of-plane sinusoidal excitation field with a fixed frequency was applied in a 100 nm wide 

region in the center of the system. After the system reached the dynamic equilibrium, the 

magnetisation configuration was stored. To extract the wave number for each frequency a 

spatial fast-Fourier transform along the x – direction of the system was performed. The 

corresponding dispersion relations are shown in Fig. 5 as grey full dots and are in good 

agreement with the result from the model calculations. Additional simulations were performed 



in order to compare the effects of oscillatory magnetic fields applied in- and out-of-plane, in 

each case perpendicular to the magnetization. The simulations clearly show that the bilayer 

system is more susceptible to out-of-plane field perturbations. This result can be understood 

taking into account the fact that the excited collective mode exhibits an in-phase oscillation of 

the perpendicular, yet anti-phase oscillation of the in-plane magnetisation component, and thus 

couples more efficiently to driving fields oriented perpendicular to the sample plane. There 

exists another type of collective mode in the system, which exhibits an in-phase oscillation of 

the in-plane component, however this mode resides at higher frequency values than the 

measured ones. 

Due to the absence of domain walls, the thin film approach above cannot reproduce the 

observed one-dimensional spin-wave dispersion within the walls and the emission of planar 

waves from them. To gain insight into these phenomena an elliptical bilayer with a short and 

long axis of 2.16 µm and 3.24 µm, respectively, was simulated at a discretisation of 648 x 432 

x 115 cells. The material parameters were chosen to be the same as for the thin film approach, 

but for the slightly modified constants 345
HI
= 10.5	pJ/m , 345

JKLMN = 13	pJ/m , ;O
JKLMN =

	5	kJ/m=  and EPQJ =	−0.3	mJ/m
G . To simulate the excitation of spin-wave dynamics 

a spatially homogeneous sinc(t)-pulse with a cut-off frequency of 10 GHz was utilised. To 

obtain the dynamic response the magnetisation data was Fourier-transformed and filtered 

afterwards to extract the desired frequency. 

 

 

Data availability. 

The datasets generated and/or analysed during the current study are available from the 

corresponding authors on reasonable request. 
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 (1) Supplementary Movies 

 

Time-resolved scanning transmission x-ray microscopy 

Selected time-resolved scanning transmission X-ray microscopy measurements are shown as 

movies (M1-M6) with perpendicular magnetic sensitivity for both different samples (#1 and 

#2) and excitation schemes (continuous wave and pulsed). These movies display the absolute 

(~mz) and normalised (~∆mz) magnetic contrast at different absorption edges (Fe, Co, Ni L3) 

as described below: 

 

M1_s1_Ni_8um-5um_cw1.11GHz_absolute-normalised 

- sample: #1, photon energy: Ni L3 edge, scan size: 8x5µm2, scan step: 50 nm,  

- excitation: continuous wave N=23, M=51, frequency: 1.11 GHz, time step: 39 ps 

- absolute contrast (left), normalised contrast (right) 

 

M2_s1_Ni_7.5um-x-5um_cw1.46GHz_absolute-normalised 

- sample: #1, photon energy: Ni L3 edge, scan size: 7.5x5µm2, scan step: 50 nm,  

- excitation: continuous wave N=23, M=67, frequency: 1.46 GHz, time step: 30 ps 

- absolute contrast (left), normalised contrast (right) 

 

M3_ s1_2um-x-2um_cw1.46GHz_absolute-normalised_Ni-Co-Fe 

- sample: #1, scan size: 2x2µm2, scan step: 25 nm,  

- excitation: continuous wave N=23, M=67, frequency: 1.46 GHz, time step: 30 ps 

- absolute contrast (left), normalised contrast (right) 

photon energy: Ni L3 edge (top), Co L3 edge (middle), Fe L3 edge (bottom) 

 

M4_s1_Ni_7.5um-x-5um_absolute-normalised_cw0.52GHz-cw0.26GHz 

- sample: #1, photon energy: Ni L3 edge, scan size: 7.5x5µm2, scan step: 50 nm,  

- absolute contrast (left), normalised contrast (right) 

- excitation: continuous wave N=23, M=24, frequency: 0.52 GHz, time step: 83 ps (top) 

- excitation: continuous wave N=23, M=12, frequency: 0.26 GHz, time step: 167 ps (bottom) 

 

M5_s1_Ni_9um-x-1.5um_pulse0.6ns_50.5ns_absolute-normalised 

- sample: #1, photon energy: Ni L3 edge, scan size: 9x1.5µm2, scan step: 50 nm, 

- excitation: pulsed N=101, M=4, duration: 600 ps, time step: 500 ps, period: 50.5 ns 



- absolute contrast (left), normalised contrast (right) 

 

M6_s2_Fe_4.5um-x-4.5um_pulse0.6ns_25.1ns_normalised 

- sample: #2, photon energy: Ni L3 edge, scan size: 9x1.5µm2, scan step: 50 nm, 

- excitation: pulsed N=101, M=4, duration: 600 ps, time step: 500 ps, period: 50.5 ns 

- normalised contrast 

 

Micromagnetic Simulations 

M7_sim_ellipse-3.24um-x-2.16um_CoFeB_sinc_FFT404MHz_normalised 

- simulation according to methods section, showing the normalised perpendicular magnetic 

response (~∆mz) of the CoFeB layer at f = 404 MHz 

 

 

 

 

 

 

  



(2) Spin-wave modes in antiparallel magnetic bilayers 

The bilayer system with antiparallel magnetic layers considered in the present work can host 

spin-wave excitations of acoustic and optical character. This applies both to spin waves in the 

bulk domains and to waves in the domain wall. The acoustic mode spin waves in the domain 

wall can be considered as the bilayer-analogue of the modes proposed by Winter [33]. The 

magnetization precession associated with that mode for finite k results in a string-like in-

phase oscillation of both individual domain walls. In the limit ! → 0 this mode corresponds to 

the coherent domain wall oscillations as described by Stamps et al. [46]. As discussed in the 

main text, due to symmetry, this acoustic domain wall mode has a (near) gap-less dispersion 

relation. However, the optical domain wall mode, as well as both optical and acoustic plane 

spin wave modes in the domains exhibit gaps in their dispersion relations.  

 In the figure below, we show the respective dispersion relations for the optical and 

acoustic spin waves in the domains, comparing results obtained from theory and from 

micromagnetic simulations [panel (a)]. The pink symbols represent the two lowest k-vector 

data points from the experiment. The optical and acoustic modes can be easily compared 

when imagining looking at the individual layers’ magnetizations from the perspective such 

that the magnetization points directly at the viewer. In that case, each layer’s magnetization 

precesses with the same sense of rotation, so that the terms “optical” and “acoustic” refer to 

the different phase relationships (180 and zero degrees, respectively). In addition to the phase 

shift, the waves of a particular mode differ also with respect to the propagation direction, as 

can be seen from the asymmetry with respect to the sign of the k coordinate. The resulting 

four combinations of phase relationships and sign of k are illustrated by the inset schematics. 

Panel [b] displays the respective mode profiles along the coordinate perpendicular to the 

sample plane. Note that a completely strict separation between optical and acoustic mode is 

only possible in a system with two identical layers. Yet, for the layers and frequencies 

considered here, phase deviations from the pure coupled optic and acoustic mode schemes are 

very small and therefore neglected. As can be seen in the figure, the optical mode resides at 

much much higher frequencies than the accoustic mode. At the same time, both modes (in 

particular the accoustic one) are strongly non-reciprocal, in the sense that waves propagating 

into opposite directions have different wavelengths at the same frequency. Therefore the two 

branches (±%) can be defined as slow branch and fast branch with respect to their group 

velocity (&'/&%). Note that there is a frequency gap (accoustic: ~500 MHz vs. optical: ~3 

GHz) for both modes, and that the frequency minimum of the accoustic mode is shifted to 

finite k to the slow branch side. 



 In our experiment, however, we only observe waves belonging to the slow branch of 

the accoustic mode. One reason for this is that the optical mode only exists at frequencies 

above those addressed in our experiment. Secondly, for the accoustic mode, the fast branch is 

not observed as the expected amplitudes are relatively low and because the wavelengths at the 

experimental frequencies are of the order of or beyond the sample size itself.  

 For the one-dimensional waves confined to the domain walls, the situation is similar. 

The accoustic and optical spin-wave modes are also non-reciprocal. As mentioned above, the 

acoustic mode is gapless due to the Goldstone theorem and in agreement with earlier 

predictions, while the domain wall optical mode still exhibits a frequency gap. Also for the 

spin waves confined to the domain walls, we only abserve the slow branch of the accoustic 

mode. 

  



 

Figure S1: Dispersion and mode profiles for plane waves in the domains. Panel (a) shows 

the dispersion relations for acoustic and optical modes in the domains. Both modes exhibit a 

frequency gap, and the point of lowest frequency of the acoustic mode is shifted towards 

positive k. The modes are also nonreciprocal, as their dispersion relations are not symmetrical 

with respect to k = 0. The insets schematically depict the phase relationship and propagation 

direction for the respective mode and sign of k. Panel (b) shows the mode profiles along the 

perpendicular to plane z-coordinate, for optical and acoustic modes and opposite k-polarities. 

The colored dots represent the tip of the dynamic component of the local magnetization 

vector. The color scheme of the dots varying from yellow to red refers to the phase. 



(3) Spin-wave excitation efficiency 

In order to compare the efficiency of spin wave excitation by spin textures to that of patterned 

antennas (such as co-planar wave guides), we assume that an antenna of rectangular cross-

section and infinite length lies on top of the magnetic layer system along the x-direction. The 

layer magnetizations are collinear with the x-direction, and z denotes the coordinate in the 

out-of-plane direction. Then the Oersted field emanating from the antenna has the form 

)(+, -)cos	('3) . We further assume that it is the Fourier-component )(%4, -)cos	('3) that 

is exciting the spin wave with wave vector ! = %464  (64  denoting the unit vector pointing 

into the +-direction). As the z-component behaves qualitatively similar, below we focus only 

on the +-component of that field. It is proportional to the ac current density 7 sent through the 

antenna and further determined by the width and height of the wave guide. In Figure S2, we 

display 84(%4, -9) for two cases: The first case corresponds to the situation in our experiment 

(blue lines); the antenna width and height are 5 µm and 200 nm, respectively. In the second 

case (orange), the antenna width is reduced to 200 nm. The value of -9 is chosen to 46 nm 

below the antenna in each case, which approximately corresponds to the centre of the 

magnetic layer stack. The current densities are equal in each case. 

For the first case, it can be seen that 84(%4, -9) falls off drastically from low to high k-

vectors, with an oscillatory k-dependence superimposed, so that at wave lengths such as 

observed in the experiment (%4 > 10	rad/µm and higher), the excitation amplitude is only a 

fraction of its maximum value (that of the spatially homogeneous component). In the second 

case of the narrower antenna, the fall-off towards higher k is less dramatic, but the overall 

amplitude is so low that around %4 = 10	rad/µm, the two cases are actually comparable (c.f. 

the inset Figure S2). The excitation by spin textures as in our experiment is more efficient 

because it uses the very strong spatially inhomogeneous internal fields arising from dynamics 

of the spin textures (driven by the homogeneous external field), which in turn excite the high-

k spin waves. 

  



 

 

Figure S2: Spatial Fourier transform of the in-plane magnetic field component 

emanating from an antenna. Two cases are compared: The first is similar to the experiment, 

with the antenna wire exhibiting a width of 5 µm and a height of 200 nm (blue). In the second 

case (orange), width and height are both equal to 200 nm. The inset compares the field 

amplitudes at wave vectors similar to the ones of the spin waves in the experiment (> 10 rad/ 

µm). At these k, the field amplitudes of broad and narrow antenna are actually comparable, 

but only correspond to a fraction of the homogeneous field component generated by the wide 

antenna. That strong component, however, can be exploited in our experiment to indirectly 

excite spin waves via the domain walls and vortex cores. 
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I. SPIN WAVES IN COUPLED FERROMAGNETIC BILAYERS

A schematic diagram of the bilayer structure is shown in Fig. 1. The system is composed

of two exchange and dipolarly coupled ferromagnetic (FM) layers (1) and (2) with in-plane

homogenous magnetization M(1) and M(2), respectively. The layers have different magnetic

parameters and thicknesses, and s denotes the separation between them. A local coordinates

system (Xν ,Yν ,Zν) is defined for each layer (⌫ = 1, 2) [see Fig. 1(b)], where the uniform

M(ν) is pointing along Xν . Spin waves (SWs) are assumed to propagate along the x-axis.

Thus, for the wave-vector k = kx̂, a positive (negative) k represents SW propagation in the

positive (negative) x direction. The angle 'ν corresponds to the equilibrium angle of layer

(⌫) measured from x̂, while 'h is the field angle.

s 

y 
z 

x 
d1 

d2 

(a) 

(b) 

x 

y 
X1 

φ2 
φ1 

X2 

Y2 
Y1 

Z1 = Z2 = z 
H 

φH 

k = kx̂

FIG. 1. (a) Overview of the bilayer system. Coordinates (x,y,z) are fixed and both FM layers

are separated by a distance s. In (b), local coordinates (Xν ,Yν ,Zν) are defined according to the

equilibrium magnetization of layer (ν).

The temporal evolution of the system is described by the Landau-Lifshitz (LL) equation

Ṁ(ν)(r, t) = ��M(ν)(r, t)⇥He(ν)(r, t), (1)

where the dot denotes time derivative, � is the absolute value of the gyromagnetic ra-

tio, and He(ν)(r, t) is the effective field acting on layer ⌫. In the linear response regime,

both magnetization and effective field can be written as M(ν)(r, t) = M
(ν)
s X̂ν +m(r, t) and

He(ν)(r, t) = He0
Xν

+he(r, t) (see Fig. 1). Thus, the linearized equations of motion (1) become

1

(4) Analytic calculation of the spin-wave dispersion in coupled bilayers



i
!

�
mYν

(r) = �mZν
(r)He0

Xν
+M (ν)

s he
Zν
(r), (2a)

i
!

�
mZν

(r) = mYν
(r)He0

Xν
�M (ν)

s he
Yν
(r), (2b)

where an harmonic dynamic response has been assumed m(r, t) = m(r)eiωt. Also, according

to the equilibrium condition He0
Yν

= He0
Zν

= 0. On the other side, for monochromatic spin

waves propagating along x, the dynamic magnetization components of both FM layers can

be written as m(x) = m(k)eikx, where k is the wave vector. In the same way, the dynamic

effective field is given by he(x) = he(k)eikx. Therefore, the terms M
(ν)
s he

Yν
(r) and M

(ν)
s he

Zν
(r)

in Eq. (2) can be expressed as

M (1)
s he

Y1
(x) = [mY1

(k)TY1
+mZ1

(k)TZ1
+ mY2

(k)TY2
+mZ2

(k)TZ2
] eikx,

M (1)
s he

Z1
(x) = [mY1

(k)UY1
+mZ1

(k)UZ1
(k) + mY2

(k)UY2
+mZ2

(k)UZ2
] eikx,

M (2)
s he

Y2
(x) = [mY1

(k)VY1
+mZ1

(k)VZ1
+ mY2

(k)VY2
+mZ2

(k)VZ2
] eikx,

and

M (2)
s he

Z2
(x) = [mY1

(k)WY1
+mZ1

(k)WZ1
+ mY2

(k)WY2
+mZ2

(k)WZ2
] eikx.

Thus, Eq. (2) can be expressed in matrix form, this is

i
!

�
m(k) = Ã m(k), (3)

where the transpose of matrix m(k) is given by mT(k) = [mY1
(k),mZ1

(k),mY2
(k),mZ2

(k)]

and

Ã =

0

B

B

B

B

B

@

AY1

Y1
AY1

Z1
AY1

Y2
AY1

Z2

AZ1

Y1
AZ1

Z1
AZ1

Y2
AZ1

Z2

AY2

Y1
AY2

Z1
AY2

Y2
AY2

Z2

AZ2

Y1
AZ2

Z1
AZ2

Y2
AZ2

Z2

1

C

C

C

C

C

A

.

The matrix elements are given by

AY1

β = Uβ �He0
X1
�β,Z1

, (4a)

AZ1

β = �Tβ +He0
X1
�β,Y1

, (4b)

AY2

β = Wβ �He0
X2
�β,Z2

, (4c)

AZ2

β = �Vβ +He0
X2
�β,Y2

. (4d)

2



Here �β,β0 is the Kronecker delta function and � = Y1, Z1, Y2 and Z2. Therefore, once the

effective fields are derived the elements Tβ, Uβ, Vβ, Wβ and He0
Xν

can be readily obtained and

hence the matrix Ã can be analytically described. By considering Zeeman energy, uniaxial

anisotropy with easy axis along y, intralayer and interlayer exchange coupling, and dipolar

interaction, the elements Tβ, Uβ, Vβ, Wβ and He0
Xν

are given by

TY1
= �M (1)

s sin2 '1 (1� ⇣[k, d1])�M (1)
s [�(1)

ex ]
2k2 +H(1)

u cos2 '1, (5a)

TY2
= �M (1)

s sin'1 sin'2
|k| d2
2

⇣[k, d1]⇣[k, d2]e
�|k|s +

J

d1M
(2)
s

cos('2 � '1),

TZ1
= 0, (5b)

TZ2
= iM (1)

s sin'1
kd2
2

⇣[k, d1]⇣[k, d2]e
�|k|s; (5c)

UY1
= 0, (6a)

UY2
= iM (1)

s sin'2
kd2
2

⇣[k, d1]⇣[k, d2]e
�|k|s, (6b)

UZ1
= �M (1)

s ⇣(k, d1)�M (1)
s [�(1)

ex ]
2k2, (6c)

UZ2
= M (1)

s

|k| d2
2

⇣[k, d1]⇣[k, d2]e
�|k|s +

J

d1M
(2)
s

; (6d)

VY1
= �M (2)

s sin'1 sin'2
|k| d1
2

⇣[k, d1]⇣[k, d2]e
�|k|s +

J

d2M
(1)
s

cos('1 � '2), (7a)

VY2
= �M (2)

s sin2 '2 (1� ⇣[k, d2])�M (2)
s [�(2)

ex ]
2k2 +H(2)

u cos2 '2, (7b)

VZ1
= �iM (2)

s sin'2
kd1
2

⇣[k, d1]⇣[k, d2]e
�|k|s, (7c)

VZ2
= 0, (7d)

and

WY1
= �iM (2)

s sin'1
kd1
2

⇣[k, d1]⇣[k, d2]e
�|k|s, (8a)

WY2
= 0, (8b)

WZ1
= M (2)

s

|k| d1
2

⇣[k, d1]⇣[k, d2]e
�|k|s +

J

d2M
(1)
s

, (8c)

WZ2
= �M (2)

s ⇣[k, d2]�M (2)
s [�(2)

ex ]
2k2. (8d)

Here, we have defined the function

⇣[k, dν ] =
sinh [kdν/2] e

�|k|dν/2

kdν/2
. (9)
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Also, the X-component of the static effective field is given by

He0
Xν

= H cos('h � 'ν) +H(ν)
u sin2 'ν +

J

dνM
(ν)
s

cos('1 � '2). (10)

Explicit expressions for the effective magnetic fields are derived in the following section,

where all magnetic parameters are defined.

EFFECTIVE MAGNETIC FIELDS

A. Zeeman field

For the in-plane geometry shown in Fig. 1, the Xν-component of the external field is

H0
Xν

= H cos('h � 'ν), (11)

where H is the strength of the dc applied field.

B. Uniaxial anisotropy

For simplicity, it is assumed uniaxial anisotropy with easy axis along y for both layers.

Thus, the energy density in this case is given by

✏(ν)u = �
µ0H

(ν)
u

2M
(ν)
s

⇥

M(ν)(x) · ŷ
⇤2
, (12)

where H
(ν)
u = 2K

(ν)
u /µ0M

(ν)
s is the magnitude of the uniaxial anisotropy field, with K

(ν)
u the

uniaxial anisotropy constant. Then, ŷ = cos'ν Ŷν + sin'νX̂ν , and therefore

✏(ν)u = �
µ0H

(ν)
u

2M
(ν)
s

[mYν
(x) cos'ν +MXν

sin'ν ]
2 . (13)

By considering up to second order in the magnetization deviation, the X-component and

dynamic part of the uniaxial anisotropy field are

Hu0
Xν

= H(ν)
u sin2 'ν (14)

and

hu
Yν
(x) =

H
(ν)
u

M
(ν)
s

mYν
(x) cos2 'ν , (15)

respectively.
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C. Intralayer exchange field

The exchange field within layer ⌫ can be cast in the form

Hex(ν)(x) =
�

r · [�(ν)
ex (x)]

2
r
 

M(ν)(x). (16)

Here �
(ν)
ex (x) =

q

2A(ν)/µ0[M
(ν)
s ]2 is the exchange length of the layer ⌫ and A(ν) its exchange

stiffness constant. Writing the magnetization in the linear regime and taking into account

that the exchange length is independent of x, the exchange field components are Hex0
Xν

= 0

and

hex
Yν ,Zν

(x) = �[�(ν)
ex ]

2k2mYν ,Zν
(x). (17)

D. Dynamic dipolar fields

1. Dynamic dipolar fields due to volumetric magnetic charges

The dynamic dipolar field due to volumetric magnetic charges can be obtained as follows.

First, as mentioned before, dynamic components of the magnetization can be written as

mYν ,Zν
(x) = mYν ,Zν

(k)eikx. Then, the volumetric magnetic charge density ⇢(ν)(r) = �rr ·

M(ν)(x) = �dM
(ν)
x (x)/dx, where M

(ν)
x (r) = M

(ν)
s cos'ν �mYν

(x) sin'ν . Therefore

⇢(ν)(r) = imYν
(k)(k sin'ν)e

ikx. (18)

Here, it has been assumed a uniform distribution of the dynamic magnetization along the

thickness, therefore the results presented here should apply to thin films. Then, the magne-

tostatic potential can be calculated from

�(ν)
v (r) =

1

4⇡

Z

⇢(ν)(r0)

|r� r0|
d3r0, (19)

which gives

�(ν)
v (r) = imYν

(k)(k sin'ν)
1

4⇡

Z

eikx
0

|r� r0|
d3r0. (20)

The integral in Eq. (20) can be analytically evaluated inside the film (⌫), this is
Z

eikx
0

|r� r0|
d3r0 = 2⇡eikx

Z dν+ξν

ξν

e�|k||z�z0|

|k|
dz0

= 2⇡eikx
Z z

ξν

e�|k|(z�z0)

|k|
dz0 +

Z dν+ξν

z

e�|k|(z0�z)

|k|
dz0

�

= 4⇡
1� cosh[k(dν/2 + ⇠ν � z)]e�|k|dν/2

k2
eikx, (21)
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where, according to Fig. 1, ⇠ν = (dην + s)�1,ν with ⌘ν = 2�1,ν + �ν,2 (⌘1 = 2 and ⌘2 = 1).

Thus, ⇠ν is defined in such a way that ⇠1 = d2 + s and ⇠2 = 0. Note that the coordinate z is

measured from the bottom of the layer 2. Then, the potential �
(ν)
v (r) becomes

�(ν)
v (r) = imYν

(k) sin'ν

1� cosh[k(dν/2 + ⇠ν � z)]e�|k|dν/2

k
eikx. (22)

The dynamic dipolar field components can be obtained from hv
x,y,z(r) = �@x,y,z�

(ν)
v (r). i.e.,

hv
x(r) = mYν

(k) sin'ν

�

1� cosh[k(dν/2 + ⇠ν � z)]e�|k|dν/2
�

eikx. (23)

hv
z(r) = �imYν

(k) sin'ν sinh[k(dν/2 + ⇠ν � z)]e�|k|dν/2eikx, (24)

and hv
y = 0. Now, the fields averaged along the thickness dν give hv

z(x) = 0 and

hv
x(x) = mYν

(k) sin'ν (1� ⇣[k, dν ]) e
ikx, (25)

where ⇣(k, dν) is given in Eq. (9). Now, the Y -component of the field is hv
Yν
(x) =

�hv
x(x) sin'ν , and therefore

hv
Yν
(x) = �mYν

(k) sin2 'ν [1� ⇣(k, dν)] e
ikx. (26)

On the other hand, the interacting potential �
int(ν)
v (r) is generated by the dynamic mag-

netization of the layer (⌫), and must be evaluated inside the other layer (⌘ν). In this case,

the integral in Eq. (20) gives

Z

eikx
0

|r� r0|
d3r0 = 2⇡eikx

Z dν+ξν

ξν

e�|k|(�1)ν(z�z0)

|k|
dz0

= 4⇡
sinh [|k| dν/2]

k2
e(�1)ν |k|(dν/2+ξν�z)eikx.

Therefore,

�int(ν)
v (x) = imYν

(k) sin'ν

sinh [|k| dν/2]

k
e(�1)ν |k|(dν/2+ξν�z)eikx. (27)

Now, following the above procedure, and averaging in the respective thickness ⌘ν , the field

components projected onto the local coordinate system are

hv
Yην

= �mYν
(k) sin'1 sin'2

|k| dν
2

⇣[k, d1]⇣[k, d2]e
�|k|seikx, (28)

and

hv
Zην

= (�1)νimYν
(k) sin'ν

kdν
2

⇣[k, d1]⇣[k, d2]e
�|k|seikx. (29)
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2. Dynamic dipolar fields due to superficial magnetic charges

The magnetic potential generated by surface magnetic charges is given by

�(ν)
s (r) =

1

4⇡

Z

M
(ν)
z (r0)

|r� r0|
dS 0, (30)

where M
(ν)
z (r0) is the normal component of the magnetization. Then,

�(ν)
s (r) =

1

4⇡

Z

z0=dν+ξν

mZν
(k)eikx

0

|r� r0|
dS 0

�
1

4⇡

Z

z0=ξν

mZν
(k)eikx

0

|r� r0|
dS 0.

Taking into account that
Z

eikx
0

|r� r0|
dS 0 = 2⇡

e�|k||z�z0|

|k|
eikx,

the magnetic potential becomes

�(ν)
s (x, z) = mZν

(k) sinh [k (z � dν/2� ⇠ν)]
e�|k|dν/2

k
eikx. (31)

Then, by taking the average along the thickness, it is obtained hs
x(x) = 0 and

hs
Zν
(x) = �mZν

(k)⇣[k, dν ]e
ikx. (32)

On the other hand, the interacting potential �
int(ν)
s (x) generated by layer (⌫) and evalu-

ated inside the other magnetic layer (⌘ν) is

�int(ν)
s (x, z) =

mZν
(k)

2

"

✓

e�|k|(�1)ν(z�z0)

|k|

◆

z0=dν+ξν

�

✓

e�|k|(�1)ν(z�z0)

|k|

◆

z0=ξν

#

eikx

i.e.,

�int(ν)
s (x, z) = (�1)νmZν

(k)
sinh [kdν/2]

k
e�(�1)ν |k|(z�ξν�dν/2)eikx. (33)

Then, the components of the dynamic dipolar fields induced by surface charges are

hs(ν)
x (x, z) = �(�1)νikmZν

(k)
sinh [kdν/2]

k
e(�1)ν |k|(dν/2+ξν�z)eikx (34)

and

hs(ν)
z (x, z) = mZν

(k) sinh [|k| dν/2] e
(�1)ν |k|(dν/2+ξν�z)eikx. (35)

Therefore, the averaged quantities projected onto the axes Yην and Zην are

hs
Yην

(x) = (�1)νimZν
(k) sin'ην

kdν
2

⇣[k, d1]⇣[k, d2]e
�|k|seikx (36)

and

hs
Zην

(x) = mZν
(k)

|k| dν
2

⇣[k, d1]⇣[k, d2]e
�|k|seikx. (37)
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E. Interlayer exchange coupling

The interlayer exchange energy per unit area is given by

✏int = �
J

M
(ν)
s M

(ην)
s

⇥

M(ν)(r) ·M(ην)(r)
⇤

, (38)

where J is the interlayer exchange coupling parameter between both layers. By taking into

account that the magnetization can be written asM(ν)(r) = M(ν)(x) = M
(ν)
s X̂ν+mYν

(x)Ŷν+

mZν
(x)Ẑν , Eq. (38) becomes

✏int = �
J

M
(ν)
s M

(ην)
s

⇥

M (ν)
s M (ην)

s cos('ην � 'ν)�M (ν)
s mYην

(x) sin('ην � 'ν)

+ M (ην)
s mYν

(x) sin('ην � 'ν) +mYην
(x)mYν

(x) cos('ην � 'ν) +mZν
(x)mZην

(x)
⇤

.

Here, it has been used Ẑην = Ẑν , Ŷην = cos('ην � 'ν)Ŷν � sin('ην � 'ν)X̂ν and X̂ην =

cos('ην �'ν)X̂ν+sin('ην �'ν)Ŷν . Then, the X-component of the static interlayer exchange

field is given by

H int0
Xν

=
J

dνM
(ν)
s

cos('ην � 'ν), (39)

while the Zν- and Yν-components of the dynamic interlayer exchange field are

hint
Zν
(x) =

J

dνM
(ν)
s M

(ην)
s

mZην
(k)eikx (40)

and

hint
Yν
(x) =

J

dνM
(ν)
s M

(ην)
s

mYην
(k) cos('ην � 'ν)e

ikx. (41)

Now, it is straightforward to include all the fields into Eq. (4), in such a way that the

elements of matrix Ã in Eq. (3) can be readily obtained.

Note that the fields calculated here are valid for a bilayer system, where both dipolar

and exchange interaction is assumed between FM layers. Nevertheless, the dynamic dipolar

fields derived in section ID can be readily generalized for a multilayer structure, since the

calculations allow determining the dynamic stray fields above and below of one FM layer

and therefore, the interaction of more than two FM layers is feasible. In this sense, if the

upper and bottom layer split each one into N sublayers, where all sublayers are coupled via

dipolar interaction whilst the interlayer exchange interaction is present only between nearest
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neighbors, the theoretical description is able to take into account the dynamics of thicker

FM films. In other words, this subdivision takes into account the variation of the dynamic

magnetization along the thickness and therefore allows to describe the dynamic of films of

around 40 nm of thickness, such as the samples described in the manuscript. Note that

when the system is subdivided into N sublayers, the exchange interaction between them

is of intralayer kind, defined by a constant J
(ν)
intra. Of course, this constant J

(ν)
intra must be

related with the exchange constant A(ν) defined in IC. This relation is shown in the following

section.

F. Continuous limit for Intralayer exchange interaction

When layer ⌫ is subdivided into N sublayers, the exchange energy per unit area between

the sublayer i and i+ 1 is

✏exintra = �

X

i

J
(ν)
intra

[M
(ν)
s ]2

⇥

M(νi)(zi) ·M
(νi+1)(zi + a)

⇤

. (42)

This energy considers the exchange interaction between neighbors magnetic moments sepa-

rated by a distance a, which corresponds to the thickness of each sublayer i. Since the FM

layer can be subdivided into many sublayers, a slow variation of the magnetization along

the normal z-axis can be assumed, and therefore, the expression (42) takes the form:

✏exintra = �

X

i

J
(ν)
intra

[M
(ν)
s ]2



M(νi)(zi) ·

✓

M(νi)(zi) + a
@M(νi)(zi)

@z
+

a2

2

@2M(νi)(zi)

@z2

◆�

(43)

Under the normalization condition for the magnetization of each sublayer, the last expression

can be written as

✏exintra = �

X

i

J
(ν)
intra

[M
(ν)
s ]2



M(νi)(zi) ·

✓

a2

2

@2M(νi)(zi)

@z2

◆�

, (44)

where the constant term has been omitted. Now, expressing the second derivatives in terms

of the first derivatives, Eq. (44) becomes

✏exintra =
X

i

J
(ν)
intraa

2

2[M
(ν)
s ]2

✓

@m(zi)

@z

◆2

⇡
J
(ν)
intraa

2

Z ✓

@m̂(zi)

@z

◆2

dz

= A(ν)

Z ✓

@m̂(zi)

@z

◆2

dz,
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where m̂(zi) = m(zi)/M
(ν)
s is the normalized dynamic magnetization. Therefore J

(ν)
intra =

2A(ν)/a.
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