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The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an
interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the
Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface,
stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin
damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the
magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression
similar to that for the Josephson voltage across a superconducting junction. �S0163-1829�96�00237-8�

I. INTRODUCTION

In metallic ferromagnets, the spins s of itinerant 4s con-
duction electrons are coupled to the spins S�r� of 3d mag-
netic electrons by the s-d exchange interaction �2Jsds•S�r�:

Vsd�g�Bs•Hsd�r�,

Hsd��2Jsd�S�r��/g�B , �1�

where g is the gyromagnetic ratio and �B is the Bohr mag-
neton. Also, Jsd is the s-d exchange integral, and Hsd �r� is
the intra-atomic s-d exchange field acting on s. The trans-
verse quantum fluctuations of Hsd are neglected in Eq. �1�.
For simplicity, we treat the 3d spins S as localized.
Scattering events between spin waves and itinerant elec-

trons, caused by the isotropic exchange Vsd , are generally
believed to be rare or nonexistent1 in bulk ferromagnets be-
low the Curie point. In most of the earlier work,2 which
treated Vsd by the first Born approximation, a sizable scat-
tering probability was usually predicted, but this is probably
illusory. Actual electron-magnon scattering in bulk metals is
probably mediated by the smaller anisotropic exchange
interaction1,3 instead.
On the other hand, electrical-resistance measurements

versus temperature in magnetic Fe/Cr multilayers4 indicate
the existence of intense electron-magnon scattering. This has
been ascribed5 to Vsd and the thermal excitation of localized
spin-wave modes at the interface between Fe and Cr layers.
The purpose of the present paper is to show that a large

electron-magnon coupling exists at an interface between nor-
mal and ferromagnetic layers, even without localized spin-
wave modes. In the bulk, electron states have all the time
needed to ‘‘adapt’’ themselves to the existing spin wave,6 at
minimal energy cost. This opportunity does not exist for an
electron entering a ferromagnet through a sharp interface. In
addition, we predict an emission of coherent spin waves
when the interface is traversed by a dc current.

II. SINGLE ELECTRON AT AN INTERFACE

Recently,7 we calculated the electron states in a sandwich
composed �Fig. 1�a�� of two ferromagnetic layers F1 , F2 ,
separated by a normal layer N , in the case where the mag-

netic spins S1 , S2 in F1 , F2 are at an oblique angle �. In N ,
we use a frame (x ,y ,z) where x is normal to the N-F2 in-
terface, and z parallel to S1 �Fig. 1�a��. The origin of x is at
the N�F2 interface. S1 and S2 are assumed uniform over F1
and F2 . Also, S1 is assumed parallel to the interface, al-
though this is not essential. We consider a conduction elec-
tron injected from F1 into N , with expectation �s� parallel to
z , i.e., a ‘‘spin-up’’ electron in N:

���eikxNx�A0��e�ikx
Nx�BC��ei�kyNy�kz

Nz �. �2�

Here, B , C are the spin-up and spin-down amplitudes in N
caused by reflection at the N�F2 interface, and kN is the
wave vector in N .
In F2 , we use the same frame (x ,y ,z) to describe the

spatial motion of the electron. In Ref. 7, we assumed S2 to be
parallel to the plane (y ,z) of the interface; we now consider
the more general case of arbitrary S2 direction, given �Fig.
1�a�� by the polar angles ��,�� in the (x ,y ,z) frame. The
electron wave transmitted into F2 can be written in the form

FIG. 1. �a� Coordinate system x ,y ,z , and polar angles �,� giving
the orientation of localized spin S2 in layer F2 . �b� Coordinate
system x2 ,y2 ,z2 in layer F2 , with the z2 axis parallel to S2 , and the
x2 axis in the �z ,S2� plane.
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��Deik↑•r�e�i�/2cos��/2�
ei�/2sin��/2� ��Eeik↓•r��e�i�/2sin��/2�

ei�/2cos��/2� �.
�3�

Here, the two spin states correspond to �s� parallel and anti-
parallel to S2 , respectively. Hence, k↑ and k↓ are the spin-up
and spin-down wave vectors. And D and E are the spin-up
and spin-down electron amplitudes, in a frame (x2 ,y2 ,z2)
with z2 parallel to S2 and x2 in the �S2 ,z� plane �Fig. 1�b��.
The (x ,y ,z) frame was called (xN ,yN ,zN) in Ref. 7, and the
x2 ,y2 ,z2 axes correspond to �y2 ,x2 ,z2 in the special case
����/2 of Ref. 7. The boundary conditions of continuity of
� and d�/dx at x�0 give

D�2Aei�/2cos��/2�/�1�kx
↑/kx

N�,
�4�

E��2Aei�/2sin��/2�/�1�kx
↓/kx

N�.

These values are consistent with the ones in Ref. 7 for the
case ����/2. From Eqs. �3� and �4�, we can calculate7 the
local expectation of the spin components of one conduction
electron along the x2 and y2 axes, at a space location at a
distance x0�0 from the N�F2 interface

�sx2•��r�r0���Re�ei�kx
↑�kx

↓�x0E*D�

��2�A�2
f �x0�sin�

�1�kx
↑/kx

N��1�kx
↓/kx

N�

�cos��kx
↑�kx

↓�x0� .
�5�

�sy2•��r�r0���Re� iei�kx
↑�kx

↓�x0E*D�

�2�A�2
f �x0�sin�

�1�kx
↑/kx

N��1�kx
↓/kx

N�

�sin��kx
↑�kx

↓�x0� .

This is consistent with Eq. �4� of Ref. 7, taking into account
the exchange of the x2 and y2 axes. At x0�0, �s•��r�r0�� is
parallel to the (z2 ,x2) plane.

Equations �5� predict7 that the local �s� components along
x2 and y2 have spatial oscillations of wavelength
2�/�k x↑�k x↓� as a function of the distance x0 from the N�F2
interface. The reason for these oscillations7 is that the elec-
tron spin precesses around the s-d exchange field Hsd �Eq.
�1�� as it moves in F2 away from the N�F2 interface.
The effect on � of electron scattering by solute atoms and

phonons in F2 may be simulated approximately by multiply-
ing the first and second term of Eq. �3� by damping factors
exp��k↑x0/�↑k x↑� and exp��k↓x0/�↓k x↓�, respectively.
Here, �↑ and �↓ are the spin-up and spin-down mean free
paths in F2 . In turn, this leads to the existence of the correc-
tion factor f (x0), introduced a posteriori7 into Eq. �5�:

f �x0��exp��� k↑
�↑kx

↑ �
k↓

�↓kx
↓� x0� . �6�

The effect of this factor is to attenuate the density
�sx2•��r�r0�� strongly at distances x0 from the interface
larger than �↑ or �↓ .
Equation �3� is the ‘‘coherent’’ part of �, and Eqs. �5� and

�6� are the corresponding spin density. There is also an in-
coherent part of �, where the electron has a diffusive,
random-walk motion inside F2 . The electron enters the inco-
herent part at the first scattering event in F2 . Because of the
random direction of motion, the phases of the spin-up and
spin-down amplitudes �↑ and �↓ of the incoherent part are
largely uncorrelated in space. As a result, transverse compo-
nents such as �sx2•�(r�r0)��(1/2)Re(�↑*�↓) do not have
regular spatial oscillations in the incoherent part, only ran-
dom short-range fluctuations around an average of zero. On
the other hand, the longitudinal component �sz2•��r�r0�� �in
the x2 ,y2 ,z2 frame� is �1/2� ���↑�2���↓�2� and independent of
phases. Therefore, it is usually not zero.
From the exchange torque exerted by Hsd , we can find

the rate of change of component �sx2� of �s�, using Eqs. �5�
and �6�:

�
d�sx2�
dt ��g�B�sy2�•Hsd

z2��g�BHsd
z2� � �

x�0

x��

dV�sy2•��r�r0��

��g�BHsd
z2LyLz2�A�2

sin�
�1�kx

↑/kx
N��1�kx

↓/kx
N�

1
kx
↑�kx

↓ �7�

where Ly and Lz are the sample dimensions along y and z ,
and we assume �↑ ,�↓�1/�k x↑�k x↓�. The effect of 1/�↑ ,1/�↓
is to make the integral converge at x0��. Equation �7�
shows that only a region of F2 of thickness �1/�k x↑�k x↓�
near the interface contributes appreciably to the total torque
on the electron spin. By the same method, one can show that
d�sy2�/dt�d�sz2�/dt�0 in the same frame (x2 ,y2 ,z2).
Thus, d�s�/dt is a vector parallel to the x2 axis �Fig. 1�b��, so
that Eq. �7� also gives its magnitude �d�s�/dt �. Finally, we can
use the relation (�2/2m)((k x↑)2�(k x↓)2)��2�BH sd

z2 to

eliminate H sd
z2. With g�2, Eq. �7� becomes

�d�s�
dt ��LyLz�A�2

�vx
↑�vx

↓�
�1�kx

↑/kx
N��1�kx

↓/kx
N�

�sin��. �8�

Here, v↑ and v↓ are the spin-up and spin-down Fermi veloci-
ties in F2 .
We use a fictitious normalization volume VN ,7 located

mostly in N but including the N�F2 interface. Normaliza-
tion gives �A�2�1/VN .
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Slonczewski has already predicted8 a rate of change of �s�
similar to Eq. �8� near an interface, in a somewhat different
manner. As in our case his d�s�/dt has the effect of bringing
�s� closer to S2 in direction.

III. SPIN-FLIP TIME NEAR THE INTERFACE

Instead of the frame (x2 ,y2 ,z2), we now use again the
original frame (x ,y ,z), more appropriate in connection with
spin waves. The vector d�s�/dt has a projection �Fig. 1�b�� on
that fixed z axis, given by

d�sz�
dt ���d�s�

dt �sin� . �9�

The measured value of a spin component such as sz can
only be �1/2. Therefore, for the average �sz� to change in
time, the electron must sometimes flip its spin along z . The
total spin-flip rate, from up to down, is

dn↑↓
dt ��

d�sz�
dt �n↑ . �10�

Here, �n↑ is the number of such spin-up electrons as-
sumed present on a particular element dS of the Fermi sur-
face in N . We define an electron spin-flip time �↑↓ at that
point of the Fermi surface by

dn↑↓
dt �

�n↑
�↑↓

. �11�

By combining Eqs. �8�–�11�, we obtain finally

1
�↑↓

�LyLz�A�2
vx
↑�vx

↓

�1�kx
↑/kx

N��1�kx
↓/kx

N�
sin2� . �12�

We assign 1/�↑↓�0 to states where k x↑ or k x↓ is imaginary.

IV. SPIN-WAVE RELAXATION TIME

So far, we assumed that only spin-up electrons enter F2
through the interface. This was sufficient for our definition
and determination of the spin-flip time �↑↓ �Eq. 12��. Now,
we consider a more realistic situation where electrons of both
spins enter F2 . In that general case, we must pay attention to
the energies �↑ and �↓ of the two states involved in the quan-
tum transition. Energy conservation implies �Fig. 2�

�↓��↑��� . �13�

Here, �� is the energy quantum �magnon� of a spin wave of
angular frequency ��0. To have a spin wave in F2 means
that the localized spins S2 are precessing clockwise around
the fixed axis z �Fig. 1�a��, at a rate ���d�/t . For simplic-
ity, we assume the spin-wave wavelength very large, corre-
sponding to the uniform precession present in ferromagnetic
resonance. This will be discussed further in Sec. VIII. Since
we treated S2 as a classical object until now, magnons did
not enter our formalism explicitly. Because of conservation
of the total angular momentum along z , the electron must flip
from up to down as a magnon is annihilated, and vice versa.

Therefore, we always have �↓��↑ �Fig. 2�, in agreement with
Eq. �13�. In addition, if nm is the total number of magnons in
F2 ,

dnm
dt ��

dn↑↓
dt . �14�

We generalize Eq. �11�, in the form

dn↑↓
dt ��

��

��

d�↑
D↑

2 �̄↑↓
f ↑��↑��1� f ↓��↑�����

��
��

��

d�↓
D↓

2 �̄↑↓
f ↓��↓��1� f ↑��↓����� ,

�15�
where 1/�̄↑↓ is some average of 1/�↑↓ over the active half of
the Fermi surface, with k xN�0, in N . Also, D↑�D↓�DN/2
are the N densities of states for spin up and down, and f ↑ , f ↓
the average occupation numbers of spin-up and spin-down
states. The (1� f ↑),(1� f ↓) factors take into account the ex-
clusion principle for the final states. We put a factor of 2 in
the denominator because only the half of the Fermi surface
with k xN�0, and the corresponding halves of D↑ and D↓ ,
contribute to dn↑↓/dt . Only electrons on that half have
crossed the interface.
We assume the spin-up and spin-down Fermi levels pos-

sibly to be shifted �Fig. 2� by amounts ��↑ ,��↓ from their
equilibrium value �0 . Thus, if f 0 is the Fermi function at
temperature T ,

f ↑��↑�� f 0��↑��0���↑�,
�16�

f ↓��↓�� f 0��↓��0���↓�.

Then Eq. �15� becomes, after defining �����↑���↓ ,

dn↑↓
dt �

DN

4 �̄↑↓
�������. �17�

FIG. 2. Occupation numbers f ↑�1, f ↓�1 of spin-up and spin-
down states, as a function of electron energy �. The spin-up Fermi
level is shifted by an energy �� with respect to the spin-down
Fermi level, for k xN�0. Two oblique solid lines show electron spin-
flip transitions between states of energy �↑ ,�↓ with �↓��↑���.
Here, �� is the magnon energy, and � the spin-wave frequency.
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This result holds even at finite temperature.
Each magnon has an angular momentum of �� along z .

Therefore, if ����1 rad:

nm�S2�1�cos��n2��S2n2sin2��/2, �18�

where S2 is the magnitude of S2 and n2 the number of atoms
in F2 . We combine Eqs. �12�, �14�, �17�, and �18�, and define
the spin-wave relaxation time, �m :

1
�m

��
1
nm

dnm
dt

��DN

VN
� � V2n2 � �����

2L2
xS2

�� vx
↑�vx

↓

�1�kx
↑/kx

N��1�kx
↓/kx

N�
� , �19�

where V2�L 2xLyLz is the volume of F2 , and L 2x is the thick-
ness of F2 along x . The reason why L 2x appears in the de-
nominator is that the enhanced electron-magnon scattering is
a surface effect. Equation �19� is valid as long as L 2x��↑ ,
�↓ . The horizontal bar indicates an averaging over the k xN�0
half of the Fermi surface. Note that �m is related to the fer-
romagnetic resonance linewidth �H by ��H�1/�m . Note
also that Eq. �19� does not contain sin� anymore.
When ����� is positive, dnm/dt is negative and propor-

tional to nm , corresponding to dominant spin-wave absorp-
tion. If ���0, the constant term �� gives deviations from
the usual relation 1/�m�� associated with Gilbert damping.
On the other hand, at zero current, the electrons are in equi-
librium and we have ���0. Then Eq. �19� predicts 1/�m��,
consistent with Gilbert damping. The dimensionless Gilbert
parameter � is

��
1

2��m
��DN

VN
� � V2n2 � �

4L2
xS2

� vx
↑�vx

↓

�1�kx
↑/kx

N��1�kx
↓/kx

N�
� .

�20�
We use DN/VN�11.4�1046 J�1 m�3 for a free-electron
metal similar to copper, and n2/V2�9.14�1028 m�3 as for
nickel, S2�0.5 as for Ni80Fe20 . Also, we assume
v x

↑�v x
↓�1�106 m/s and L 2x�3 nm, and k x↑ ,k x↓�k xN. Then,

Eq. �20� gives ��0.011. This is at least comparable to the
experimental value ��0.004 for bulk Ni80Fe20 , which arises
from anisotropic s-d exchange.1 This indicates a significant
enhancement of Gilbert damping near the N�F2 interface.

V. STIMULATED EMISSION OF SPIN WAVES

When an electric current with spin-up and spin-down den-
sities j x↑ , j x↓ is flowing across the N�F2 interface, the Fermi
surfaces for spin up and spin down in N are shifted in k
space by amounts �k x↑ and �k x↓ along x ,

�kx
↑�

�2 j x
↑m

ene
N�

; �kx
↓�

�2 j x
↓m

ene
N�

; �21�

where n e
N is the total number of electrons per unit volume in

N , and e , m are the electron charge and mass, respectively.

Electronlike carriers are assumed. These shifts produce shifts
��↑ , ��↓ of the local Fermi level at a given point of the
Fermi surface:

��↑���kx
↑vx

N ; ��↓���kx
↓vx

N , �22�

where vN is the Fermi velocity in N . For simplicity, we as-
sume F1 and F2 to be made of the same material, with ����1
rad. Also, we assume N to be much thinner than a spin-
diffusion length. Then,9 j x↑ and j x↓ are the same in N as in F1
and in F2 , where their ratio10 was �1�j x↑/ j x↓��1

↑/�1↓ . Here,
�1
↑ , �1↓ are the spin-up and spin-down conductivities in F1 far
from any interface. Then, Eqs. �21� and �22� give, with
j x� j x↑� j x↓ as the total current density and kN as the Fermi
wave vector in N

�����↑���↓��2� �1�1
�1�1

� j x �kx
N

ene
N . �23�

With n e
N�8.5�1028 m�3 and k xN�kN�1.36�1010 m�1

for copper, �1�1, and j x��1�1011 A/m2 achievable11 in dc
or with current pulses, Eq. �23� gives ����1.31�10�4 eV.
This is to be compared to ���0.41�10�4 eV for �/2��10
GHz. The ���� value above is a maximum, and the ����
average over a half Fermi surface would be somewhat
smaller. We see, however, that ����� may become nega-
tive in Eq. �19�, leading to negative 1/�m . Then, dnm/dt is
positive and proportional to nm , reflecting stimulated emis-
sion of spin waves. There is no spontaneous emission, since
S2 has no quantum fluctuations in our formalism.
Note that the critical current density where ������0,

and spin-wave emission starts, is proportional to �, by Eqs.
�19� and �23�. Thus, low-frequency spin waves are easiest to
excite.
There is some degree of analogy between this spin-wave

emitting diode and an injection laser. We suggest the name
SWASER �spin-wave amplification by stimulated emission
of radiation� for this device. It is through a Fermi-level dif-
ference �����↑���↓�0 �Fig. 2� that the electrons are
‘‘pumped up.’’ This sign of �� at k xN�0 requires the correct
sign j x�0 �see Eq. �23��, if �1�1 as in Ni80Fe20 .10
The current also causes shifts ��↑ , ��↓ of the opposite

sign on the other half k xN�0 of the Fermi surface, but these
are inactive in F2 , as these electrons do not flip their spin in
F2 . These shifts may be active for F1 , after the electrons
cross N . In Eqs. �19� and �20�, the positive additional term
caused by anisotropic s-d exchange in the bulk1 has been
neglected.
Slonczewski8 has predicted a current-induced precession

somewhat similar to ours. However, he treats a tunneling
junction, and his predicted exchange torques are definite
functions of the voltage across the junction and of the band
structures of the ferromagnets; see his Eq. �5.4�. On the other
hand, our theory involves ordinary conduction processes in
metals, and the predicted net exchange torques depend on j x ,
and on the conductivity ratio �1 , i.e., on the spin-up and
spin-down mean free paths in F2 or F1 ; see our Eqs. �19� and
�23�. And the quantity �� in these equations has no simple
relation to the total voltage across the interface. Finally, there
does not seem to be any equivalent in Slonczewski’s work8
of our prediction of enhanced Gilbert damping near the in-
terface even at j x�0 �Eq. �20��.
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VI. EXPERIMENTAL CONFIGURATIONS

We show in Fig. 3�a� a possible configuration for a
SWASER. Layer F2 is patterned in the shape of a rod with
square cross section, with its length parallel to the N�F2
interface. The insulating layer I forces the current to flow
through F2 . The second normal-metal layer N2 returns this
current to one of the two current leads. The other lead is
connected to F1 . In the absence of spin waves, the magneti-
zations M1 and M2 of F1 and F2 must be parallel if the
conductivity ratios �1 and �2 are both larger than one.
Ni80Fe20 is a good material for F1 and F2 , as it has a large
conductivity ratio,10 a narrow ferromagnetic-resonance line-
width, and a small Gilbert parameter. Because of Eq. �19�,
the F2 thickness L 2x must be minimized. On the other hand,
the F1 thickness should preferably be at least one spin-
diffusion length �1 �m, to insure the value of �1 .9 For the
same reason, the metal in N2 should have a very short spin-
diffusion length, obtained with Mn or Pt solutes. And the
condition Ly ,Lz��↑ ,�↓ must hold.
This rod shape for F2 has the advantage of giving circu-

larly polarized spin waves. But it is difficult to manufacture,
as the F2 thickness �and therefore the width� L 2x must be kept
small in Eq. �19�, i.e., L 2x�1–10 nm. In addition, its
ferromagnetic-resonance frequency12 near zero field is
���MS/2, where ��1.76�1011 rad/s T is the gyromagnetic
ratio and MS is the saturation magnetization. In Ni80Fe20 ,
this yields a rather too high value of ��, equal to 0.6�10�4

eV. And the condition Ly��↑ ,�↓ would not be satisfied.
For these reasons, we show in Fig. 3�b� an alternate flat

shape for F2 . This gives ���[�0Hz(�0Hz�MS)]1/2, where
Hz is12 an external in-plane field, and �0 is the permeability
of the vacuum. Thus, smaller and tunable � values are
achievable, but the spin-wave polarization is elliptical.
Finally, a large external field �0Hx�MS could be

applied12 normal to the same F2 plate �Fig. 3�c��. Then
���(�0Hx�MS), also tunable down to low values, but
with circular polarization. Now, M1 and M2 are parallel to

j x , but this is immaterial as long as they are kept parallel to
each other by the field.
One technical problem is the magnetostatic coupling be-

tween F1 and F2 . It leads to energy losses in F2 unless F1
and F2 are both precessing, in phase with each other.
Akhiezer, Baryakhtar, and Peletminskii13 and Coutinho

Filho, Miranda, and Rezende14 have suggested that an elec-
tron flow would cause amplification of spin waves, even in
bulk samples. We believe �see Sec. I� that bulk samples are
not good for that purpose.

VII. VOLTAGE ACROSS THE INTERFACE

The energy needed to create magnons must come from
the dc current flowing through the sample. Hence, in addition
to the usual ohmic voltage, a voltage �V must exist across
the interface, given by energy conservation

j x�VLyLz���
dnm
dt . �24�

We combine Eqs. �18�, �19�, �23�, and �24�, and obtain

�V�sin2�� �1�1
�1�1

� � 3
2vN

� vx
↑�vx

↓

�1�kx
↑/kx

N��1�kx
↓/kx

N�
� � �

e � .

�25�

We assume �/2��10 GHz, �1�1, sin��0.5, and note that
the round bracket is probably of order unity. Then �V�10
�V. The form �V���/e of Eq. �25� resembles the Joseph-
son voltage across a superconducting junction. It also re-
sembles the predicted ‘‘ferro-Josephson’’ voltage across a
precessing magnetic domain wall.15 Note that the voltage
persists in the absence of the current, if the spin wave is
excited with an external microwave.

VIII. SPIN-WAVE COHERENCE

So far, we have only considered spin waves of near-zero
wave number q . Actually, the electrons interact equally with
spin waves of a wide range of q values, leading to possibly
very incoherent spin-wave emission in our SWASER. In the
following, we suggest how the lowest spin-wave mode could
be selected, and coherence achieved.
Consider the configuration of Fig. 3�b� with a flat F2

made of Ni81Fe19 . In very thin films �L 2x�10 nm�, the
lowest-energy spin waves have q in the in-plane y or z di-
rections. Assuming spin pinning12 only at the boundary
planes normal to y and z , the two lowest modes correspond
to n�1 and n�2, where n is the number of half-wavelengths
within Ly or Lz . Assuming Ly�Lz�0.5 �m, difficult but not
impossible to achieve, and an in-plane field �0H�0.03 T, we
find a magnon-energy difference ���2��1� which is 6% of
��1 itself. Then, using a current such that �����1�0,
�����2 would still be appreciably positive in Eq. �19�;
only the n�1 mode would be emitted, leading to very coher-
ent spin waves. Spin pinning at the boundaries normal to y
and z could be realized12 through a slight diffusion of oxy-
gen from I into F2 where they touch.
An interesting paper by J. C. Slonczewski16 covers some-

what similar ideas. Most of the remarks at the end of Sec. V

FIG. 3. �a� Possible configuration for a SWASER experiment,
where layer F2 is a rod with square cross section. The magnetiza-
tions M1 and M2 of F1 and F2 must be parallel if the conductivity
ratios �1 , �2 of F1 , F2 are both larger than one. �b� Case with F2
in the shape of a plate with in-plane field Hz . �c� Case with plate F2
and field Hx normal to layer plane.
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apply to this paper, too. For example, his drive torques de-
pend on a ratio P of tunneling densities of states �his Eq.
�11��, while ours depend on a ratio �1 of conductivities, i.e.,
of mean free paths in F1 �our Eq. �23��.
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