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Abstract. Since the publication of the compilation of

biomass burning emission factors by Andreae and Mer-

let (2001), a large number of studies have greatly expanded

the amount of available data on emissions from various types

of biomass burning. Using essentially the same methodology

as Andreae and Merlet (2001), this paper presents an updated

compilation of emission factors. The data from over 370 pub-

lished studies were critically evaluated and integrated into a

consistent format. Several new categories of biomass burn-

ing were added, and the number of species for which emis-

sion data are presented was increased from 93 to 121. Where

field data are still insufficient, estimates based on appropriate

extrapolation techniques are proposed. For key species, the

updated emission factors are compared with previously pub-

lished values. Based on these emission factors and published

global activity estimates, I have derived estimates of pyro-

genic emissions for important species released by the various

types of biomass burning.

1 Introduction

Biomass burning, in the form of open vegetation fires and

indoor biofuel use, is one of the largest sources of many

trace gases and aerosols to the global atmosphere. For some

important atmospheric pollutants, like black carbon (BC)

and primary organic aerosol (POA), biomass burning is the

dominant global source; based on the estimates of Bond et

al. (2013), it accounts for 59 % of BC emissions and 85 % of

POA emissions worldwide. Open vegetation fires alone rep-

resent about one-third to one-half of global carbon monoxide

(CO) and 20 % of nitrogen oxide (NOx) emissions (Olivier

et al., 2005; Wiedinmyer et al., 2011). Fires are also a major

source of greenhouse gases, including carbon dioxide (CO2),

methane (CH4), and nitrous oxide (N2O) (Ciais et al., 2013;

Tian et al., 2016; Le Quéré et al., 2018). While a signifi-

cant fraction of the emitted CO2 is taken up again by veg-

etation regrowth, much of it remains in the atmosphere for

years and potentially even up to centuries, e.g., in the case

of tropical deforestation fires or peat soil burning (van der

Werf et al., 2017). Model simulations suggest that in the

absence of fires, atmospheric CO2 concentrations would be

about 40 ppm lower, indicating the importance of fires for the

atmospheric carbon budget and climate (Ward et al., 2012).

Biomass burning is the second largest global source of non-

methane organic gases (NMOGs, also referred to as volatile

organic compounds, VOCs) (Yokelson et al., 2008; Akagi et

al., 2011). Numerous other studies have reached similar con-

clusions about the importance of biomass burning for atmo-

spheric composition (e.g., Crutzen and Andreae, 1990; An-

dreae and Rosenfeld, 2008; Andreae et al., 2009; Kaiser et

al., 2012; van der Werf et al., 2017).

The resulting perturbations of the atmospheric burdens of

trace gases and aerosols have important consequences for cli-

mate, biogeochemical cycles, and human health. Aerosols

from biomass burning affect the regional and global radia-

tion balance and impact cloud properties and precipitation

(Andreae et al., 2004; Andreae and Rosenfeld, 2008; Rosen-

feld et al., 2008, 2014; Ward et al., 2012; Tosca et al., 2013;

Jiang et al., 2016; Braga et al., 2017; Cecchini et al., 2017;

Hamilton et al., 2018; Thornhill et al., 2018). By shifting

the proportions of direct and indirect solar radiation, they

also influence primary productivity and thereby forest growth

and agricultural production (Artaxo et al., 2009; Rap et al.,
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2015; Malavelle et al., 2019; McKendry et al., 2019). Fires

mobilize nutrients, such as nitrogen, phosphorus, and potas-

sium, which can deplete local ecosystem nutrient reservoirs

on the one hand and provide nutrients to other ecosystems

by atmospheric transport on the other (Andreae, 1991; An-

dreae et al., 1998; Mahowald et al., 2008; Y. Chen et al.,

2010). The VOCs and NOx in biomass smoke undergo smog

photochemistry in the atmosphere, leading to the produc-

tion of ozone, secondary organic aerosols, and other pol-

lutants, which impact plant productivity (Crutzen and An-

dreae, 1990; Andreae, 1991; Robinson et al., 2007; Jaffe and

Wigder, 2012; May et al., 2013; Pacifico et al., 2015; Hatch

et al., 2017; Yue and Unger, 2018). These gaseous pollu-

tants, and even more so the particulate matter from biomass

burning, pose grave risks to human health (Naeher et al.,

2007; Akagi et al., 2014; Dennekamp et al., 2015; Knorr

et al., 2017; Apte et al., 2018). Recent estimates of global

excess mortality from outdoor air pollution range from 4.2

to 8.9 million annually (Cohen et al., 2017; Lelieveld and

Pöschl, 2017; Shiraiwa et al., 2017; Burnett et al., 2018;

Lelieveld et al., 2019), with smoke from open vegetation

burning accounting for up to 600 000 premature deaths per

year globally (75th percentile of model estimates; Johnston

et al., 2012). In addition to outdoor exposure, pollution from

indoor solid fuel use, much of it biofuel burning, has been es-

timated to cause 2.8 million premature deaths annually (Ko-

dros et al., 2018).

In view of the immense impact of biomass burning emis-

sions on climate, ecosystem function, and human wellbeing,

it is disconcerting that large uncertainties persist regarding

the amounts emitted and their spatial and temporal distribu-

tion. For bottom-up emissions estimates, two basic types of

information are required: the amount of the various types of

biomass burned as a function of time and space and the emis-

sion factors for the various emitted species, i.e., the amount

of a given species emitted per unit mass of biomass burned.

Considerable effort has gone into quantifying the magni-

tude of open biomass burning by remote-sensing approaches

(Mouillot et al., 2006; Reid et al., 2009; Mieville et al., 2010;

Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku and El-

lison, 2014; Darmenov and da Silva, 2015; Chuvieco et al.,

2016; van der Werf et al., 2017), but the estimates in these

studies of the annual amounts of carbon released still range

over a factor of 3 from 1.5 to 4.7 Pg a−1. A model inter-

comparison based on state-of-the-art dynamic global vege-

tation models (DVGMs) yielded an even wider range of 1.0

to 4.9 Pg a−1 (F. Li et al., 2019).

Efforts to narrow the uncertainties in the emission fac-

tors for the large number of species emitted from the di-

verse types of burning are ongoing in the form of numer-

ous field campaigns and laboratory studies. The results of

these studies are, however, widely dispersed among hun-

dreds of papers in a large number of journals, each deal-

ing with a particular campaign or experiment. Over the last

two decades, there have been two efforts to synthesize these

data on a global scale, one by Andreae and Merlet (2001;

hereafter referred to as A&M2001) and the other by Ak-

agi et al. (2011). The latter included more recent data and

additional species and burning types and is available in up-

dated form at http://bai.acom.ucar.edu/Data/fire/ (last access:

27 June 2019). As part of the Fire INventory from NCAR

(FINN) model, Wiedinmyer et al. (2011) selected data from

these two sources into a “best estimate” set of emission fac-

tors.

In the present study, I am presenting an updated set of

emission factors, which includes the results of studies pub-

lished since the writing of the two previous compilations. It

provides emission estimates for 28 more chemical species,

for which a sufficient amount of field data has become avail-

able since A&M2001, as well as an extended set of burning

types. The extratropical forest category is differentiated into

boreal and temperate forest burning, domestic biofuel use is

separated into non-dung and dung burning, and peat fires and

domestic waste burning are added as new categories. Based

on these emission data and recent activity estimates, I present

a compilation of global emission amounts and make some

recommendations regarding priorities for future investiga-

tions.

2 Methods

2.1 Data selection

This paper applies the same methodological approach as

A&M2001, and therefore the Methods section will only pro-

vide a brief overview of the definitions and calculation meth-

ods used and highlight those points where the present ap-

proach differs from the previous one. For all other details,

the reader is referred to A&M2001. The original data, which

form the basis of the emission factor averages presented in

Table 1, can be found in an Excel spreadsheet in the Supple-

ment.

With few exceptions, and consistent with the approach

used in A&M2001, I only used results from field measure-

ments in young fire plumes for the compilation of the emis-

sion factor data in Table 1. Ideally, these measurements had

been made within minutes after the smoke was released from

the fires to avoid significant chemical changes during atmo-

spheric aging, especially in the case of reactive trace gases.

This is only possible, however, when sampling at the ground

or from aircraft very close to the fire. In many other cases,

aircraft were sampling at some distance from the fires, of-

ten without actually knowing the exact location of the fire. In

such cases, I have rejected the data for the more reactive trace

gases. A special case is presented by emission data calcu-

lated from remote sensing by either satellite measurements or

ground-based solar Fourier transform infrared (FTIR) spec-

trometry. Here, the authors have often included a correction

for atmospheric transformations, using model calculations
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involving transport times and reaction rates of the species

concerned. Because of their large spatial and temporal cover-

age, such measurements are quite valuable, and I have there-

fore included some of them in this assessment, as long as they

were either dealing with long-lived species or used appropri-

ate correction methods (i.e., chemistry-transport model cal-

culations to correct for atmospheric transformations) (Rins-

land et al., 2007; Mebust et al., 2011; Tereszchuk et al., 2011,

2013; Schreier et al., 2015; Viatte et al., 2015; Lutsch et al.,

2016; Adams et al., 2019). They can be compared with in

situ measurement results by referring to the original data in

the Supplement spreadsheet.

Another special case are the emission factors for gaseous

elemental mercury (Hg0). Here, only relatively few actual

field emission measurements are available for most of the

combustion types listed in Table 1. Therefore, I have fol-

lowed the approach of Friedli et al. (2009) and included Hg0

emission factors from studies that are based on the Hg con-

tent of the fuels and the assumption of total volatilization of

Hg from the fuel during combustion, which appears well jus-

tified for this volatile element.

Generally, the results from laboratory combustion studies

have not been included in the emission factor averages for

the different fire types in Table 1, but they are given for com-

parison in a separate column in Table 1. The reason for this

decision is that such experiments often do not reproduce real-

istic burning conditions in the field. For example, it has been

shown that the emissions of many trace gases are strongly de-

pendent on fuel moisture, temperature, wind, and other fire

environment parameters (e.g., L.-W. A. Chen et al., 2010;

Robertson et al., 2014; Liu et al., 2017; Thompson et al.,

2019). The fuels in lab experiments, however, may be well

aged and dried and thus have a much lower moisture content

than fuels in the field, and the wind conditions in the field are

impossible to reproduce in the lab. This can be seen in the

values of the modified combustion efficiency (MCE; the ra-

tio of 1CO2/(1CO2+1CO)) in many lab studies, which are

much higher than those typical of field burns, an extreme ex-

ample being the study by Sirithian et al. (2018), who reported

a mean MCE of 0.9996 in a lab study on biofuel burning.

Therefore, lab results are only used in some special cases,

where little or no field data are available, and where the lab

data appear representative based on their MCE (e.g., Chris-

tian et al., 2003) or had been adjusted to reflect field condi-

tions using “overlap species”, emission ratios (ERs), or MCE

as discussed in Yokelson et al. (2013b). Some lab values are

also used as estimates in Table 1; they are shown in italics

and indicated as “LV” in the last column.

The studies on emissions from biofuel burning for cooking

or heating represent a borderline case, as they are often con-

ducted in a laboratory environment but with an effort to sim-

ulate the actual fuel use conditions and stove setups used in

households. Here, I have favored studies performed in actual

households but also included results from lab studies that ap-

peared to realistically emulate field conditions. Results from

Atmos. Chem. Phys., 19, 8523–8546, 2019 www.atmos-chem-phys.net/19/8523/2019/
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modern residential biofuel combustion units, such as auto-

mated pellet burners or modern low-emission stoves, have

not been included. A more detailed analysis of emissions

from different types of domestic biofuel use can be found

in Akagi et al. (2011), albeit without the benefit of the nu-

merous papers that have been published on these emissions

in the last decade. A special review on this issue would be

desirable but is beyond the scope of this paper.

In contrast to gaseous compounds, which are chemically

well defined, aerosols are complex and variable mixtures of

organic and inorganic species and comprise particles across

a wide range of sizes. This affects in particular the measure-

ments of organic aerosol, black/elemental carbon, and size-

fractionated aerosol mass. Organic aerosol is usually mea-

sured either by a variety of thermochemical or mass spectro-

metric methods, both of which may have positive and neg-

ative artifacts, for which different authors have applied dif-

ferent corrections. Since some techniques report the result

as organic aerosol mass and others as organic carbon mass

concentrations, a conversion had to be applied. To convert

between organic carbon and organic matter (OM), a default

OM/OC mass ratio of 1.6 is used in the absence of spe-

cific information. This value is based on the data from fresh

biomass smoke aerosol in the literature (Turpin and Lim,

2001; Aiken et al., 2008; Yokelson et al., 2009; Takahama

et al., 2011; Kostenidou et al., 2013; Brito et al., 2014; Col-

lier et al., 2016; Fang et al., 2017; Tkacik et al., 2017; Ahern

et al., 2019; Lim et al., 2019). Where only O/C ratios were

given, they were converted to OM/OC ratios using the rela-

tionship given in Aiken et al. (2008).

Black carbon (BC) and elemental carbon (EC) are an

even more problematic category. Various definitions for these

species have been used (Andreae and Gelencsér, 2006), but

most commonly BC refers to carbon with specific optical

properties (light absorption) and is measured by optical tech-

niques, whereas EC is defined by its chemical properties and

determined by a variety of thermochemical methods. Not all

authors, however, adhere to these definitions, and the terms

soot, EC, and BC are often used interchangeably. Unfortu-

nately, while some techniques have been shown to have less

bias than others (H. Y. Li et al., 2019), there is no general

answer as to which technique is best, and which property,

optical or chemical, is more representative. In view of the

lack of a better alternative, both BC and EC data have been

merged in the “BC” category here.

The size distribution of biomass smoke aerosols is a con-

tinuum ranging from tens of nanometers to millimeters (Reid

et al., 2005), with most of the mass present in a mode at a few

hundred nanometers. Mass concentration measurements are

typically reported as PM1, PM2.5, PM10, or TPM, referring

to the size ranges below 1, 2.5, and 10 µm, and total mass, re-

spectively. For convenience, data reported as PM1 and PM2.5

have been grouped together in the PM2.5 category, which in

view of the typical biomass burning (BB) aerosol size distri-

bution is not expected to result in significant bias. The same

applies to the PM10 and TPM data, which were grouped to-

gether in the TPM category.

Emission data for ionic species and trace metals are not

included in this data set. They are tabulated in Akagi et

al. (2011), and additional information can be found in a num-

ber of papers (e.g., Goetz et al., 2018; Jayarathne et al.,

2018a, b).

Another problematic “species” is the total concentration

of non-methane organic gases (NMOGs), also referred to as

volatile organic compounds (VOCs). The diverse methods

used for these compounds measure different sets of NMOGs,

which in some instances may be quite incomplete. In gen-

eral, the more recent studies from the last 5–7 years are

much more comprehensive and show that the early studies

were severely underestimating the amounts of NMOGs emit-

ted. Regrettably, these new techniques have been so far used

mostly in lab studies and could therefore not be considered

for the combustion category emission estimates. To highlight

this issue, I have added the NMOG emission factors from the

online updates to Akagi et al. (2011) in Tables 1 and 3.

2.2 Definitions

In the literature, emission information is generally found

as either emission ratios (ERs) or emission factors (EFs).

Strictly speaking, most data presented as “emission ratios”

are actually enhancement ratios (EnR), often also referred to

as normalized excess mixing ratios (NEMRs; Akagi et al.,

2011). They are defined as the ratio of the excess mixing ra-

tio of the species of interest in the plume, (1X), to the excess

mixing ratio of a reference species, e.g., carbon monoxide

(1CO):

EnRX/CO =
1X

1CO
=

(X)plume − (X)backgr

(CO)plume − (CO)backgr
,

where 1 stands for the difference between the mixing ratio

in the plume and in the background atmosphere (in molar

units). Because of its abundance in fire emissions and its rel-

atively low ambient background concentration, CO is most

commonly used as reference species, but other gases, such as

carbon dioxide (CO2), methane (CH4), or acetonitrile have

also been used. The use of CO2 can introduce large errors be-

cause it also has strong surface sources and sinks, which can

lead to erroneous estimates of the background concentration,

as discussed in detail in Yokelson et al. (2013a). A statistical

method using multiple fire tracers (Mixed Effects Regres-

sion Emission Technique, MERET), which can resolve the

problems associated with variable CO2 background concen-

trations, has recently been developed (Chatfield et al., 2019).

An enhancement ratio can be interpreted as an emission ra-

tio when it is assured that the concentrations of both species

X and the reference species have not been affected by chem-

ical production or loss since the emission and that both con-

centrations have changed proportionally during dilution of

the plume with background air. In the case of very long-lived

www.atmos-chem-phys.net/19/8523/2019/ Atmos. Chem. Phys., 19, 8523–8546, 2019



8532 M. O. Andreae: Emission of trace gases and aerosols from biomass burning

substances, e.g., acetonitrile, EnRs can be very close to ERs

even after days, while for reactive compounds, e.g., nitric ox-

ide (NO), significant changes can occur in minutes. For very

rapidly reacting species, it becomes difficult to define an ap-

propriate time after emission at which an EnR can be treated

as an effective ER. A good example is the emission of pri-

mary organic aerosol mass, whereby the apparent EnR de-

creases substantially (by about a factor of 2) over the first few

minutes to hours as a result of the evaporation of semivolatile

compounds during plume dilution (May et al., 2013; Kono-

valov et al., 2019). Whether the ER at the moment of emis-

sion or the EnR after cooling and dilution to typical am-

bient conditions is the more meaningful value will depend

on the intended application. In general, field measurements

are likely to represent somewhat more aged conditions (tens

of minutes to a few hours), whereas lab measurements of-

ten represent very fresh emissions. For further discussion of

the advantages and disadvantages of the different reference

gases, the effects of flaming vs. smoldering combustion, and

ground-based vs. airborne sampling, see A&M2001, Burling

et al. (2011), and Akagi et al. (2011).

While the measurement of ERs is relatively straightfor-

ward in the field, because it requires only the measurement

of the atmospheric concentrations of target and reference

species, it is generally desirable to obtain the amount of a

species emitted per unit mass of fuel burned, i.e., the emis-

sion factor, EF. For biomass burning, this is usually expressed

as the mass of target species X released per mass of dry fuel

burned, in units of grams per kilogram (g kg−1). This, how-

ever, requires knowledge of the mass of fuel burned, which

can easily be measured in the lab but is difficult to obtain in

the field. As an alternative, the mass balance method can be

used, whereby the mass of fuel burned is approximated by

the sum of carbon contained in the emitted carbon species

(CO2, CO, CH4, volatile organic compounds (VOCs), or-

ganic aerosol carbon (OC), and elemental carbon (EC) or

black carbon (BC)), divided by the carbon fraction in the

fuel. Often, the carbon mass is approximated by the sum of

CO2 and CO, and a default fuel carbon content of 45 % is

assumed.

To provide a uniform representation of the various types of

data found in the literature in the form most useful to mod-

elers, all emission data were converted to emission factors,

in units of grams per kilogram (g kg−1) of dry fuel burned.

Where emission factors relative to other fuel mass indicators

were given, e.g., the mass of carbon burned or released, I ap-

plied appropriate conversion factors, such as the known or

assumed carbon content of the fuel. Very frequently in the

literature, only EnRs or ERs in units of mole / mole are pro-

vided. These can in principle be easily converted to EFs by

the following equation:

EFX = ER(X/Y )

MWX

MWY

EFY ,

where EFX is the emission factor for species X, ER(X/Y )

is the emission ratio of species X relative to the reference

species Y , MWX and MWY are the molecular weights of the

species X and the reference species Y , and EFY is the known

or assumed emission factor of the reference species (often

CO or CH4). When the value of EFY was not known for a

specific study, the mean EFY for the appropriate type of fire

(forest, savanna, etc.) was applied to derive an estimate of

EFX.

2.3 Estimates for which no data are available

For some combinations of fire type and emitted species, no

suitable field data are available to provide a basis for estimat-

ing EFs. Where possible, I have used appropriate methods to

derive estimates (shown in italic font in Table 1) based on

other information. For each species, the estimation method is

given in column EM. For species predominantly emitted dur-

ing smoldering combustion, e.g., most VOCs, I have based

the estimate on the assumption that their emission factors for

the various fire categories are proportional to those of CO

for the same categories. The estimate was then obtained by

calculating the mean of the ratios EFX/EFCO for the fire cat-

egories with available data and multiplying this mean ratio

by the EFCO of the fire category for which an estimate was

needed (labeled CO in column EM). Where no suitable ratios

ERX/ERCO were available from field studies, the lab ratio

was used instead (labeled LV). For some species containing

heteroelements (N2O, SO2, DMS, and HCl), the mean of the

ERs from fire categories with available data, weighted by the

amounts of biomass globally burned in those categories, was

used (labeled AV). Subjective “best estimates” are labeled

BE. Specifically, for missing values of total particulate car-

bon emissions, the sum of OC and EC emissions was used,

and for aerosol potassium emissions in boreal forest fires I

used the temperate forest value.

3 Results and discussion

3.1 Combustion process and pyrogenic emissions

Our fundamental understanding of the biomass combustion

process has remained unchanged since the 1990s, as re-

viewed in A&M2001 and other papers (Lobert and Warnatz,

1993; Yokelson et al., 1996, 1997; Akagi et al., 2011) and

will thus be summarized here only briefly. As the flaming

or glowing front of a fire moves towards the uncombusted

fuel, the fuel is heated by radiative and sensible heat trans-

fer, leading first to evaporation of water and other volatiles,

then to pyrolytic decomposition and the release of volatile

and semivolatile (tar) decomposition products (Collard and

Blin, 2014). When this released mixture ignites, flame chem-

istry sets in, which breaks down the more complex pyrol-

ysis compounds to small molecules and radicals but also

produces new larger molecules by radical chemistry, such
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as alkynes, polycyclic aromatic hydrocarbons (PAHs), soot,

and organohalides. In addition to volatile matter being con-

sumed by flaming combustion, char undergoes gas–solid re-

actions between oxygen and other gases and solid carbon at

the fuel surface, called gasification or “glowing” combustion,

in which a large fraction of the fuel carbon is released as CO,

part of which is further oxidized to CO2. In a typical vegeta-

tion fire, all these processes occur simultaneously as the fire

propagates through the fuel, so that the fire plumes at any

place and time contain mixtures of flaming and smoldering

(vernacular for a changing mix of distillation, pyrolysis, and

glowing) combustion products in variable proportions.

Depending on the vegetation type and burning condi-

tions, the relative amounts of fuel consumed by flaming and

smoldering combustion can vary considerably. Dry grassland

fires, for example, are dominated by flaming combustion and

a rapid passage of the fire front, with little residual smolder-

ing. Forest fires, on the other hand, especially those in fuels

with relatively high fuel moisture and large diameters, have a

long phase of residual smoldering combustion (RSC), during

which larger-diameter fuels are consumed over time spans of

up to several days (Ward and Hardy, 1991; Ward et al., 1992;

Yokelson et al., 1997; Bertschi et al., 2003; Hao and Bab-

bitt, 2007; Burling et al., 2011; Akagi et al., 2013; Geron and

Hays, 2013; Urbanski, 2014; Reisen et al., 2018). The smol-

dering mode of combustion can become dominant in peat

fires, which often proceed without a flaming phase and be-

low ground (Bertschi et al., 2003; Stockwell et al., 2016b).

Since the rate of heat release during RSC is relatively low,

and much of it occurs during nighttime, the resulting emis-

sions tend to accumulate close to the ground in the bound-

ary layer. At nighttime, emissions are confined in a noctur-

nal boundary layer, often less than 100 m thick, where the

fire-emitted CO2 becomes mixed with CO2 from biologi-

cal respiration. This presents serious problems for measur-

ing accurate and representative fire-integrated emission fac-

tors for fires where RSC emissions are important (Bertschi et

al., 2003). Ground-based studies during the RSC phase can

obtain ERs of trace species, but these are difficult to relate

to the corresponding amount of fuel burned. Aircraft studies

have trouble measuring the RSC component of these emis-

sions, as they are not lofted in the form of discrete plumes to

aircraft altitudes but only mixed upward during daytime con-

vection (or fire blow-ups) where they get distorted by mixing

in the ambient atmosphere (Guyon et al., 2005). The mixing

of biogenic and pyrogenic CO2 in fire plumes that entrain

such boundary layer air into a deeper mixed layer presents

serious problems for deriving fire-integrated ERs and EFs

from aircraft measurements (Yokelson et al., 2013a), which

can potentially be addressed by the multi-tracer MERET ap-

proach (Chatfield et al., 2019).

Because the flaming phase is characterized by CO2 being

the dominant combustion product by far, while the smolder-

ing phase yields relatively large amounts of CO (up to about

30 % of carbon burned), the MCE has been established over

Figure 1. Scatter plots of the emission factors of ethene (a) and

ethane (b) against MCE, based on studies in the different combus-

tion categories.

the last two decades as the key metric representing the rela-

tive role of flaming vs. smoldering combustion in vegetation

fires, spanning a range of 0.77 in peat fires to 0.98 in some

grassland fires (see Supplement). Mean MCE values for the

different combustion categories are presented in Table 1.

Since the MCE was introduced by Ward and

Radke (1993), numerous papers have used this metric

and have shown significant negative correlations for many

trace gases between emission factors and MCE, especially

for the various VOCs that are emitted predominantly during

smoldering combustion (e.g., Korontzi et al., 2003; Yokelson

et al., 2003, 2008, 2013b; Soares Neto et al., 2009; Urbanski

et al., 2009; Burling et al., 2011; Urbanski, 2013, 2014; Liu

et al., 2014; Collier et al., 2016; Coffey et al., 2017; Fortner

et al., 2018; Hodgson et al., 2018; Reisen et al., 2018; Jen et

al., 2019). However, the correlation slopes between EFs and

MCE vary considerably between studies in different fuels

and burning environments, so that a global parameterization

of all EFs based on observed or modeled MCE remains

problematic. As an illustration, I show in Fig. 1a and 1b

plots of the EFs of ethene (C2H4) and ethane (C2H6) vs.

MCE, based on the average values from the individual

studies in the supplemental spreadsheet. In both cases, the

results scatter widely, and especially the data from the lab
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studies, biofuel burning, peat fires, and RSC-dominated fires

introduce a large amount of scatter. The limitations in cor-

relation between EFs and MCE have been noted previously

(Yokelson et al., 1997; Bertschi et al., 2003; Burling et al.,

2011; Urbanski, 2014). In the case of ethene, the correlation

using all data points is not significant (R2 = 0.07). However,

when only the data from open vegetation fires are included

(and after removing three outliers), the correlation improves

to an R2 of 0.27. For ethane, the correlation coefficient is

R2 = 0.38 for all data but does not improve substantially by

removing the peat fire data. These results suggest that the

level of aggregation at which MCE is useful as a meaningful

but rough predictor of EFs for at least some species is yet

to be determined. This approach is not pursued further here,

but the data in the original studies listed in the Supplement

can be used by investigators to derive such relationships for

specific compounds and combustion types of interest. An

interesting and novel approach to generalizing VOC emis-

sions is provided by Sekimoto et al. (2018), who showed

that most of the variability in VOC emissions measured in a

lab study using a wide variety of fuels was explained by just

two factors, related to low and high temperature pyrolysis,

respectively.

Using MCE as a predictor variable may be an alternative

to providing separate EFs for smoldering and flaming com-

bustion, which has been frequently requested by the model-

ing community but for which there are still not enough data

to provide robust estimates, as we already remarked previ-

ously in A&M2001. However, once vegetation fire models

are able to provide estimates of the contribution of flaming

and smoldering combustion from a given fire, the resulting

MCE could be predicted. This could then form the basis of

a more fire-specific prediction of trace gas and aerosol emis-

sions based on MCE correlations. An alternative approach

was proposed by Hoffa et al. (1999) and further developed

by Korontzi et al. (2003), who showed a correlation between

vegetation greenness and MCE, which allowed the predic-

tion of seasonally dependent emissions from African savanna

fires (Ito and Penner, 2004; Korontzi et al., 2004; Korontzi,

2005). In view of the limitations seen with regard to more

general parameterizations, it appears that for now one can

keep using the category-average EFs, but be aware they can

vary considerably from region to region and from fire to fire.

3.2 Emission factors for chemical species from the

various combustion categories

In Table 1, I present the updated estimates of emission factors

for the combustion categories, savanna and grassland, trop-

ical forest, temperate forest, boreal forest, peat fires, open

agricultural waste burning (in the fields), biofuels (exclud-

ing dung), dung cakes, charcoal making, charcoal burning,

and garbage burning. As more data have become available,

it was now possible to split the extratropical forest category

into temperate and boreal forest burning. The transition be-

tween these two types is not always clear, but in general, I

have followed the authors’ choice of category; where this was

not possible I have taken a latitude of 60◦ N as a boundary.

The large number of studies on residential biomass burn-

ing, which have been published in the last two decades, has

made it possible to separate dung cakes from the other bio-

fuels, such as fuel wood and agricultural residues. As men-

tioned above, I only included studies that used fireplaces and

traditional or simple “improved” stoves, as are used in de-

veloping countries, and not modern appliances, such as auto-

mated pellet stoves.

The publication of a few papers that provide emissions

data for open garbage burning, still quite prevalent in many

countries and a serious source of pollution especially in ur-

ban areas (Wiedinmyer et al., 2014), has made it possible to

provide EFs for this category.

Obviously, the categories used here are still quite highly

aggregated, but they correspond closely to the fire types used

in many global modeling studies, such as those involved in

the Fire Modeling Intercomparison Project (FireMIP) (F. Li

et al., 2019) and in model- or satellite-based emission inven-

tories (Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku

and Ellison, 2014; Darmenov and da Silva, 2015; van der

Werf et al., 2017). Should a reader require less highly aggre-

gated data, they can use the Supplement to split the data into

subcategories or even use the supplemental references to get

back to the original literature. Valuable detail about the vari-

ous burning types and further breakdown of some categories,

e.g., biofuel use, into relevant subcategories can be found in

Akagi et al. (2011).

For information purposes, I also include a column summa-

rizing the results of laboratory studies. The averages in this

column can only be seen as general indication of the mag-

nitude of emission factors found in the lab studies, since all

types of fuels and burning methods are included in the statis-

tics presented here. However, the original data and references

are provided in the Supplement for readers interested in the

details.

As in A&M2001 and in Akagi et al. (2011), the amount

of information for any given combination of species and fire

category varies greatly – for some combinations we have no

measurements at all, and for others there are as many as 50

values. Accordingly, the uncertainty of the estimates is also

highly variable. In Table 1, I am using the same convention

as in A&M2001 to represent the uncertainty: when three or

more values (based on independent references) are available

for a given table cell, the results are given as means and stan-

dard deviations (x ±s). In the case of two available measure-

ments, they are given as a range, and where only a single

measurement is available, it is given without an uncertainty

estimate. For single measurements, it can usually be assumed

that the uncertainty is no less than a factor of 3.

In spite of the fact that this paper is based on data from

over 370 publications, rather than the 130 papers that formed

the basis for A&M2001, Table 1 shows that there are still
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many species for which there are little or no field data avail-

able. For example, there are still no field measurements of the

emission factors for the alkyl amines, which have recently

become implicated in aerosol nucleation and new particle

formation (Smith et al., 2010; Almeida et al., 2013; Kürten et

al., 2014). In view of the importance of the number concen-

trations of aerosol particles (CN), especially cloud condensa-

tion nuclei (CCN), for climate change, it is unfortunate that

there have only been a few additional measurements of their

emission factors in the last two decades. The rapid coagu-

lation of particles very near the source makes it difficult to

choose the most appropriate plume age for such a measure-

ment (Hobbs et al., 2003; Sakamoto et al., 2016; Hodshire

et al., 2019). However, a survey of available measurements

suggests that the ratio of excess particle number concentra-

tion (1CN or 1CCN) to 1CO stabilizes at the scale of typi-

cal aircraft measurements in plumes, as a consequence of the

sharp decrease of the coagulation rate with increasing dilu-

tion (Janhäll et al., 2010). More field studies on the evolution

of aerosol number concentrations and size distributions as a

function of plume age under different conditions (fire size,

wind speed, flux density, etc.) are warranted.

Another climate-relevant component, for which we have

no field emission data at this time, is brown carbon (BrC)

(Andreae and Gelencsér, 2006), which has been shown to

account for about half of the aerosol light absorption by

biomass smoke at 401 nm (Selimovic et al., 2019) and 25 %–

45 % at 550 nm (Tian et al., 2019). Providing EFs for this

species is problematic because of the very complex and vari-

able mixture of compounds that make up BrC, as well as its

potential for rapid change in abundance and optical proper-

ties during plume evolution (Forrister et al., 2015; Fleming

et al., 2019). To some extent, data on the optical properties

of BB aerosols can substitute direct measurements of BrC

(Stockwell et al., 2016a, b; Goetz et al., 2018; Selimovic et

al., 2018).

Regarding the role of vegetation fires in the global car-

bon cycle, the most problematic uncertainty pertains to the

emission factors of CO2 and CO from forest fires, which is

surprising in view of the many available estimates. This un-

certainty stems from the inadequate knowledge of the contri-

bution from RSC, which has already been referred to above,

and which may significantly contribute to large mismatches

between bottom-up predictions of CO emissions and remote-

sensing measurements from satellite (Pechony et al., 2013;

Deeter et al., 2016). A representative measurement of fire-

average 1CO/1CO2 emission ratios from large forest fires

is very difficult if not impossible, as ground-based measure-

ments in such violent fires are not possible, and aircraft mea-

surements are prone to undersampling the smoldering emis-

sions, especially the contributions from RSC. The uncer-

tainty regarding the 1CO/1CO2 emission ratio also seri-

ously hampers our ability to separate the influence of the

emissions from deforestation burning from those of biologi-

cal carbon fluxes in regional carbon budgets (Andreae et al.,

2012). For example, the uncertainty of the 1CO/1CO2 ra-

tios of tropical forest burning is large enough that it can even

change the inferred sign of the net carbon flux between the

Amazon forest and the atmosphere (Gatti et al., 2014). A

novel multi-tracer statistical technique (MERET; Chatfield et

al., 2019) may be able to provide improved estimates of the

CO ERs and EFs from such fires.

Figure 2 presents a comparison between selected EFs from

this study with those published in Akagi et al. (2011) in the

form of ratios between the EFs from these studies. For this

comparison, I have selected species that are of major climatic

or chemical significance or are important BB tracers, and

for which there are enough data to allow a meaningful com-

parison. Data are presented for the combustion types with

the largest total global emissions, i.e., savanna and grass-

land, tropical, temperate, and boreal fires, and biofuel use.

In the case of biofuel use, the comparison is made with Ak-

agi et al.’s “open cooking” category because its MCE shows

good agreement with that for the “biofuel use” category in

this paper. Figure 2 shows close agreement for the main car-

bon species CO2 and CO as well as for MCE, suggesting

that the averages derived for both species capture compara-

ble combustion conditions. For most other species, the EF

ratios fall within a factor of 2, with no obvious systematic

shift for either the individual species or for the combustion

types. A slight exception are the EFs for savanna and grass-

land, which tend to be somewhat higher in the present study.

In one case (isoprene) this is the result of higher values from

an individual study, i.e., the lab-adjusted-to-field EFs from

Stockwell et al. (2015), but generally the differences appear

to be the result of including a larger set of studies from this

category in the present study. The lower EFs for glycolalde-

hyde in this study are the result of corrections made by the

Yokelson group to their data based on improved spectral data

(see https://www.atmos-chem-phys-discuss.net/12/C11864/

2013/acpd-12-C11864-2013.pdf, last access: 27 June 2019),

which have been incorporated here and in the online updates

to Akagi et al. (2011), but for consistency the values from

the original paper were used for Fig. 2. The largest and most

systematic difference is seen for the NMOG category, where

the values from Akagi et al. (2011) are as much as a factor

of 10 higher than the averages from the published field stud-

ies in Table 1. This is largely due to differences in the an-

alytical techniques used in the original studies. Most of the

older studies, especially in field campaigns, were measuring

only a very limited subset of NMOGs (e.g., non-methane hy-

drocarbons), whereas Akagi et al. (2011) in the original pa-

per and in the subsequent updates used techniques that mea-

sured practically all NMOGs, including unidentified species.

To address this issue, I am including both the field study aver-

ages (labeled VOCs) and the corresponding values from the

online updates to Akagi et al. (2011) (labeled NMOGs) in Ta-

ble 1. The latter values may be more appropriate as input for

modeling studies that require an estimate of total NMOGs.
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Figure 2. Comparison between the emission factors for selected species between this study and the values in Akagi et al. (2011).

3.3 Emissions from global biomass burning

In 2001, we estimated the total amount of biomass burned by

all combustion types to be 8.6 Pg dry matter annually, with

an uncertainty of ±50 % (A&M2001). This estimate was

based on bottom-up inventories and had not yet benefitted

from remote-sensing detection and quantification of fires. At

present, there are several operational fire detection and emis-

sion estimation products based on remote sensing. Three of

them (for example) use an approach based on burned area

and hotspot detection: Fire INventory from NCAR (FINN;

Wiedinmyer et al., 2011), Fire Locating and Modeling of

Burning Emissions (FLAMBE; Reid et al., 2009), and Global

Fire Emissions Database (GFED; van der Werf et al., 2017).

The other three products are based on fire radiative power

(FRP): Quick Fire Emission Dataset (QFED; Darmenov and

da Silva, 2015), Global Fire Assimilation System (GFAS;

Kaiser et al., 2012), and Fire Energetics and Emissions Re-

search (FEER; Ichoku and Ellison, 2014). The amounts of

biomass burned annually in open fires estimated by these sys-

tems still span a wide range, from 4.3 Pg (GFAS) to 11.6 Pg

(FLAMBE) (for the FRP-based products, which do not use

biomass burned in their calculations, the biomass estimate

was based on the stated emission of carbon compounds and

an assumed carbon fraction of 45 % in the biomass).

For domestic biofuel use, there are three recent global

estimates: 2.1 Pg a−1 (Fernandes et al., 2007), 2.5 Pg a−1

(Steven J. Smith, personal communication, 2019, based on

the Community Emissions Data System (CEDS) model;

Hoesly et al., 2018), and 2.3 Pg a−1 (Zbigniew Klimont, per-

sonal communication, 2019, based on the methodology in

Klimont et al., 2017). These recent estimates are all some-

what lower than those of A&M2001 (2.9 Tg a−1) and Yevich

and Logan (2003) (3.1 Tg a−1). For charcoal burning, I am

also using the estimate of 53 Tg a−1 given for 2014 by FAO

Forestry Policy and Resources Division (2015), and for char-

coal making I am assuming a 25 % yield of charcoal relative

to dry wood (Yevich and Logan, 2003).

Combining these estimates of open and domestic burn-

ing yields a mean estimate of 8.8 Pg (with a range of 6.4 to

14.1 Pg) dry biomass burned annually. Interestingly, this is

almost identical to the values given in A&M2001: 8.6 Pg a−1,

with an estimated range of 4.3 to 12.9 Pg a−1. Table 2 sum-

marizes these emission estimates. For the various categories

of open burning, the satellite-derived emission estimates vary

greatly, in some cases by an order of magnitude. Differences

in the definitions of the burning categories between the differ-

ent retrieval algorithms, differing ability to detect small fires,

and the fundamental difference between the burned-area and

FRP-based techniques may all play a role here.

In Table 3, I use the average of the available estimates

from the different inventories shown in Table 2 as activity

estimates for the combustion categories to derive emission

values for major species emitted from biomass burning. For

comparison, the last column in Table 3 shows the global to-

tal emissions estimated in A&M2001. The totals of the ma-

jor emitted carbon species and many minor species remain

fairly close to those in our previous assessment. Given the
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Table 2. Estimates of biomass burned (Tg dry matter) annually in the various fire categories.

Source Savanna/ Tropical Temperate Boreal Peat Agricultural Total Years

grassland forest forest forest residues open fires

FINNa 1920 3200 260 137 – 210 5730 2005–2010

GFED4.1sb 2980 690 100 330 161 290 4550 2005–2015

GFAS1.2c 2540 910 110 460 183 63 4260 2003–2018

QFEDd 3690 850 280 200 – – 5560 2003–2012

FEERe – – – – – – 9330 2000–2012

FLAMBEf 870 8750 750 1120 – 99 11580 2005–2015

ECLIPSE V6ag – – – – – 530 – 2005–2010

Average 2400 2880 300 450 172 240 6440

Wood etc. Charcoal Charcoal Agricultural Dung Total

making burning waste biofuel

Fernandesh 1350 156 39 500 75 2120 2000

FAOi – – 53 – – – 2014

ECLIPSE V6ag 1780 – 44 350 89 2270 2005–2010

CEDSj 1590 – 46 580 88 2490 2010

Average 1570 180 45 480 84 2360

Grand total from all biomass burning 8800

a Wiedinmyer et al. (2011). b From http://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt (last access: 27 June 2019) assuming 45 % C in biofuel.
c Imke Hüser, personal communication 2019, based on methodology in Kaiser et al. (2012). d Anton Darmenov, personal communication 2019, based on

methodology in Darmenov and da Silva (2015). Emissions from boreal fires were calculated from extratropical fires north of 50◦ N, and temperate emissions were

calculated by subtracting boreal from extratropical emissions; emissions from crop residue burning fires are included in the grassland fire category. e Ichoku and

Ellison (2014), not included in category averages because breakdown not available. f Edward Hyer, personal communication 2019, based on methodology in Reid

et al. (2009). Temperate and boreal emissions were calculated by splitting extratropical burning 40 % / 60 %. g Zbigniew Klimont, personal communication 2019,

based on methodology in Klimont et al. (2017). h Fernandes et al. (2007). i FAO Forestry Policy and Resources Division (2015). j Steven Smith, personal

communication 2019, based on methodology in Hoesly et al. (2019).

large number of measurements for the emission factors for

the major species, CO2, CO, and CH4, the standard error of

the mean is much smaller than the standard deviation, and

thus the relative uncertainties of the mean for these emission

factors are quite small, 1 %–3 % for CO2, 4 %–9 % for CO,

and 6 %–18 % for CH4 from the major burning categories

savanna, forests, and biofuel. Consequently, the global emis-

sion uncertainties for these species are completely dominated

by the large uncertainties in the activity estimates.

The best independent “reality check” for these emissions

may still come from the inverse modeling of the CO budget.

This species is the most appropriate for such a comparison

because its emission factors are well constrained, biomass

burning is a large fraction of all global sources, and there is

a large body of measurements both from ground stations and

remote sensing. Estimates of CO emissions from the various

inversion models range from 190 to 560 Tg a−1 from biofuel

burning and 360 to 610 Tg a−1 from open burning for the

years around 2000 (Park et al., 2015, and references therein).

The model of Park et al. (2015), which uses a joint inver-

sion of CO concentrations and oxygen isotopic composition

and therefore is likely to be the most reliable in separating

the different source types, predicts CO emissions of 380 to

610 Tg a−1 from open burning, 400 to 520 Tg a−1 from bio-

fuel use, and 780 to 1130 Tg a−1 for all biomass burning.

Using the EFs from Table 1 and the activity estimates from

Table 2, we obtain a range of 390 to 1210 Tg a−1 for the

CO emissions from open burning, in reasonable agreement

with the inverse results. The range of biofuel CO emissions

estimated from Tables 1 and 2 is only 181–196 Tg a−1, ac-

counting for less than one-half of the inverse estimate. This

suggests either that the amount of biofuel use is significantly

underestimated in present bottom-up budgets or that the in-

versions attribute some of the open burning inaccurately to

biofuel use. This could likely be the case for agricultural

burning, which uses similar fuels and takes place in sim-

ilar regions as biofuel use. The inverse analyses may also

be useful to indicate unlikely estimates based on remote-

sensing techniques. For example, the burning of 8750 Tg

dry matter in tropical forests estimated by FLAMBE, com-

bined with the corresponding EFCO (105 g kg−1), would pro-

duce CO emissions of 900 Tg a−1 from this biome alone,

well above the range of inverse CO emission estimates for

all open burning (see also the comments by Reviewer 1;

https://doi.org/10.5194/acp-2019-303-RC1).

Major differences between the present emission estimates

and A&M2001 are seen for the oxygenated volatile organic

compounds and for HCN (as already noted in Akagi et al.,

2011), which all are significantly greater in the present as-

sessment than in A&M2001. This is due to the large num-

ber of new and more accurate emission factor measurements

www.atmos-chem-phys.net/19/8523/2019/ Atmos. Chem. Phys., 19, 8523–8546, 2019
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Table 3. Global emission of selected species based on the emission factors in Table 1 and the biomass burning estimates in Table 2 (Tg a−1).

Savanna and Tropical Temperate Boreal Peat Agricultural Biofuel Charcoal Charcoal Total A&M2001

grassland forest forest forest fires residues burning making burning

Tg dry matter burned 2400 2880 300 450 172 240 2134 180 45 8800 8600

CO2 3980 4670 470 690 270 340 3310 90 110 13 900 13 400

CO 170 300 34 55 45 18 180 17 9.4 820 690

CH4 6.5 19 1.6 2.5 1.6 1.4 15 3.4 0.27 50 39

Total VOCs 12.2 16 4.0 2.7 3.7 1.8 17 4.8 0.3 62 49

Total NMOGs∗ 72 149 11.7 26 23 12.3 123 58 0.5 480 49

C2H2 0.75 1.0 0.09 0.13 0.02 0.07 1.4 0.05 0.012 3.6 3.7

Methanol 3.2 8.1 0.7 1.0 0.4 0.8 4.3 2.3 0.04 21 12.7

Formaldehyde 2.9 6.9 0.6 0.8 0.2 0.4 1.9 – 0.02 14 5.5

Acetaldehyde 2.0 6.5 0.36 0.37 0.20 0.43 0.87 – 0.01 10.8 3.5

Acetone 1.1 1.81 0.23 0.72 0.16 0.17 0.74 0.05 0.07 5.1 3.0

Acetonitrile 0.40 1.42 0.07 0.14 0.10 0.06 0.21 – – 2.4 1.3

Formic acid 0.5 1.4 0.3 0.5 0.1 0.1 0.49 0.03 0.00 3.3 5.9

Acetic acid 5.5 9.5 0.8 1.7 0.8 1.5 8.4 8.4 0.08 37 12.6

H2 2.3 8.9 0.6 0.7 0.2 0.6 3.9 – 0.21 18 15.3

NOx 6.0 8.1 0.9 0.5 0.2 0.6 2.7 0.04 0.11 19 21

N2O 0.41 0.58 0.08 0.11 – 0.02 0.15 0.00 0.016 1.36 1.31

NH3 2.1 3.8 0.29 1.11 0.71 0.2 0.9 0.68 0.03 10.0 10.3

HCN 1.06 1.26 0.19 0.24 0.76 0.10 0.83 0.02 – 4.5 0.9

N2 6.3 7.6 0.8 1.2 – 0.6 5.6 – – 22 26

SO2 1.1 2.21 0.21 0.34 0.73 0.19 1.20 – 0.026 6.0 3.5

COS 0.06 0.14 0.01 0.03 0.02 0.01 0.04 – – 0.31 0.27

CH3Cl 0.15 0.08 0.01 0.03 0.03 0.04 0.39 – 0.0005 0.73 0.65

CH3Br 0.007 0.022 0.000 0.001 0.002 0.0003 0.001 – – 0.034 0.029

CH3I 0.0017 0.0196 0.0001 0.0002 0.0021 0.00004 0.0002 – – 0.024 0.014

Hg 0.0001 0.0003 0.00006 0.00010 – 0.00001 0.0001 – – 0.0007 0.0008

PM2.5 16 24 5.5 8.4 3.2 2.0 14.5 3.6 0.14 77 58

TPM 21 31 5.5 6.9 0.0 3.1 14.9 2.5 0.09 85 82

TC 7.6 16 2.5 4.4 2.5 1.3 7.3 – 0.09 41 42

OC 7.3 12.8 3.3 2.7 2.4 1.2 6.6 – 0.10 36 36

BC 1.3 1.46 0.17 0.19 0.02 0.10 1.7 – 0.01 4.9 4.8

K 0.95 0.93 0.05 0.08 0.001 0.12 0.28 – 0.03 2.4 1.9

CN 5.5E+28 1.1E+28 2.8E+27 1.9E+27 – 1.2E+27 6.3E+27 – 2.2E+26 7.9E+28 2.9E+28

CCN (1 % SS) 1.9E+27 4.8E+27 6.0E+26 7.3E+26 – 2.5E+26 2.4E+27 – – 1.1E+28 1.7E+28

N (>∼ 0.12 µm) 3.0E+27 7.9E+27 3.0E+26 4.5E+26 – 2.4E+26 2.1E+27 – – 1.4E+28 9.0E+27

∗ Using EFs from online updates to Akagi et al. (2011).

for these compounds, which have been made possible by im-

provements in analytical techniques since the 1990s.

4 Conclusions

We are left with the somewhat frustrating conclusion that, in

spite of the great progress in emission factor measurements

and detection and quantification of fires, the overall uncer-

tainty of global biomass burning emissions has not decreased

significantly for most substances since our previous analy-

sis almost 20 years ago. Evidently, there is a great need for

improved accuracy in the activity estimates, both for open

burning and especially for biofuel use. For open burning, co-

ordinated regional CO studies in regions and at times of high

biomass burning activity, including both FRP- and burned-

area-based remote-sensing approaches as well as inversions,

may be a way to resolve discrepancies and improve accuracy.

This would be of great benefit for testing and improving fire

emission models, which also give quite divergent results and

have difficulties in capturing interannual variations and tem-

poral trends. For example, the modeled estimates of carbon

emitted from open burning in the nine models participating

in the FireMIP project span from 1.0 to 4.9 Pg a−1 (F. Li et

al., 2019).

With regard to emission factors, Table 1 can serve as a

guide to prioritizing future research activities. Photochemi-

cally active species and toxic compounds for which there are

only a few measurements from important fire types deserve

more intense study. An example is the emission of PAHs, for

which we have only one study from boreal fires and none

at all from tropical forest fires. Given the toxicity of these

compounds and the increasing exposure of populations in

these regions to biomass smoke as a result of climate change

and population growth, this seems an important knowledge

gap. Another example are the emissions of semivolatile and

intermediate-volatile compounds (I/SVOCs), which are im-

portant in the context of organic aerosol production from

biomass burning but for which at this time only laboratory

measurements are available (Hatch et al., 2018). I have al-

ready referred to the lack of field measurements of alkyl
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amine emissions, which may be of importance for new parti-

cle formation. In view of the grave health risk associated with

aerosol particles (see, e.g., Lelieveld et al., 2019, and refer-

ences therein) and the growing exposure to wildfire smoke

in areas like the western USA, the accuracy and fire condi-

tion dependence of PM emissions need to be improved. Em-

phasis should be on field measurements under a variety of

representative conditions, to represent the influence of pa-

rameters like fuel moisture and fire weather. While the ap-

proach in this paper is focused on global averages, future

work should also emphasize regional and seasonal differ-

ences in order to better support more highly geographically

resolved modeling. A spreadsheet containing Table 1, the un-

derlying data, and the corresponding references is available

at https://doi.org/10.17617/3.26 (Andreae, 2019), where pe-

riodical updates will also be provided.

Data availability. A spreadsheet containing Table 1, the data on

which the averages in Table 1 are based, and the corresponding

references is available at https://doi.org/10.17617/3.26 (Andreae,

2019).

Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/acp-19-8523-2019-supplement.
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