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Emission properties of nanolasers during the transition to
lasing

Weng W Chow1, Frank Jahnke2 and Christopher Gies2

This review addresses ongoing discussions involving nanolaser experiments, particularly those related to thresholdless lasing or

few-emitter devices. A quantum-optical (quantum-mechanical active medium and radiation field) theory is used to examine the

emission properties of nanolasers under different experimental configurations. The active medium is treated as inhomogeneously

broadened semiconductor quantum dots embedded in a quantum well, where carriers are introduced via current injection.

Comparisons are made between a conventional laser and a nanolaser with a spontaneous emission factor of unity, as well as a laser

with only a few quantum dots providing the gain. It is found that the combined exploration of intensity, coherence time, photon

autocorrelation function and carrier spectral hole burning can provide a unique and consistent picture of nanolasers in the new regimes

of laser operation during the transition from thermal to coherent emission. Furthermore, by reducing the number of quantum dots in the

optical cavity, a clear indication of non-classical photon statistics is observed before the single-quantum-dot limit is reached.
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FROM CONVENTIONAL TO NANOLASERS

Advances in nanofabrication have drastically reduced the size and

increased the quality of optical cavities, enabling optical components

with dimensions near the diffraction limit.1–3 Among the driving

forces for substantial miniaturization of lasers are technological appli-

cations, such as optical interconnects for information processing and

communications, where reducing the power consumption is a pri-

ority.4 From a research viewpoint, such efforts are motivated by a

new quantum limit that is reachable with nanolasers consisting of a

few emitters5–7 or even a single emitter8–10 and low intracavity photon

numbers sustained by stimulated emission.11 Entering the regime of

cavity quantum electrodynamics (CQED), nanolasers can provide

non-classical light for applications in quantum information.12

Novel nano-optical structures, such as pillar vertical-cavity surface-

emitting lasers, microdisks, photonic lattices, nanowires and plasmo-

nic resonators,13–16 enable the extension of optical-mode confinement

from one-dimensional to three-dimensional (3D). The features of 3D

mode confinement include spectrally widely separated cavity modes,

allowing for the possibility of only one mode overlapping with the

spontaneous emission spectrum. CQED phenomena include the

enhancement17 or inhibition18 of spontaneous emission.

The spontaneous emission factor b is a quantitative measure of

optical resonator control over spontaneous emission. This factor is

defined as the spontaneous emission rate into the laser mode divided

by the total spontaneous emission rate. For small values of b, which are

typical for conventional lasers, the onset of stimulated emission

produces a distinct jump in output intensity. Recent advances in

micro- and nanocavities with 3D optical mode confinement have

led to b-factors approaching unity. In these cases, the intensity jump

vanishes, which leads to the possibility of ultralow-threshold5–7 or

even thresholdless lasers.1,19–21

The possibility of extremely high-quality (Q-factor) nanocavities

also allows for lasing with very few emitters in the active region.

With a sufficiently small number of emitters, nanolasers producing

non-classical light12 are being termed lasers.11,22 In the ultimate limit

of a single emitter, lasing in the strong light–matter-coupling regime

has also been recently achieved.10,23,24

Furthermore, a new research field has emerged from the use of

plasmonic effects,25which can lead to systems with drastically reduced

optical mode volume and increased light–matter coupling efficiency

compared to purely photonic systems. These prospects have stimu-

lated work on plasmonic lasers,16,26 culminating in the recent demon-

stration of a self-assembled quantum-dot (QD) transition coupled to a

plasmonic resonance.27 With an appropriate choice of parameter

values, e.g., for the confinement factor and the intracavity optical loss,

the theoretical approach described in this review applies equally well to

these new and exciting systems, as well as to conventional photonic

lasers.

LASING CRITERIA

Historically, lasing has been understood in many ways, ranging from

amplification driven by stimulated emission28 to a feedback process

leading to oscillations.29 These descriptions lead to the phenomenon

of a lasing threshold, where an abrupt transition occurs in the laser

1Sandia National Laboratories, Albuquerque, NM 87185-1086, USA and 2Institute for Theoretical Physics, University of Bremen, 28334 Bremen, Germany

Correspondence: Dr WW Chow, Sandia National Laboratories, Albuquerque, NM 87185-1086, USA

E-mail: wwchow@sandia.gov

Received 27 March 2014; revised 17 May 2014; accepted 20 May 2014

OPEN

Light: Science & Applications (2014) 3, e201; doi:10.1038/lsa.2014.82
� 2014 CIOMP. All rights reserved 2047-7538/14

www.nature.com/lsa

www.nature.com/lsa


intensity and noise. This abruptness has been studied in terms of a

phase transition.3,30 Both experiment and theory indicate that the

traditional concepts of laser action must be re-examined for nanola-

sers. For example, there is debate on the criteria for lasing and lasing

thresholds in the absence of an intensity jump.2,3,29,31 Additionally,

few-emitter nanolasers exhibit sub-Poisson photon statistics, in con-

trast to the Poisson photon statistics dictated by the randomness of

spontaneous emission after the onset of lasing.12

It is widely agreed that a careful examination of photon statistics is

necessary. A discussion in terms of well-established laser rate equa-

tions1,32–34 is unable to provide the photon statistics or to capture the

semiconductor effects that strongly determine device behavior. A fully

quantum-mechanical laser model is necessary to investigate in addi-

tion to the changes in the intracavity photon number also the first- and

second-order photon correlation functions. The latter provides a

description of the quantum optical properties of light, distinguishing

between thermal, coherent and non-classical emission.

QD NANOLASERS

Todevelop amicroscopic theory for predicting photon statistics under

new regimes of nanolaser operation, we consider an active medium

consisting of semiconductor QDs. Self-assembled Stranski–Krastanov

semiconductor QDs are increasingly used in semiconductor lasers and

are strong candidates for replacing quantum wells (QWs) in future

generations of ultrahigh-efficiency optoelectronic devices.35,36The 3D

carrier confinement in a QD causes strong localization of electron–

hole pairs, resulting in high emission efficiency. Additionally,

Stranski–Krastanov QDs are embedded in semiconductor materials.

Interactions between the carriers in the localized QD states and those

in the continuum states of thewetting layer and barriermaterials result

in fast scattering processes and enable efficient carrier generation,

especially via electrical pumping, which is highly desirable for optoe-

lectronic applications.

The general findings from the model regarding nanolaser operation

in the limit of b51 should apply to both QW and bulk active regions.

Our investigations involve a comparison between a laser with a well-

defined threshold and the ideal nanolaser with b51. The results are

analyzed in terms of the intracavity photon number, coherence time

and second-order photon correlation versus pump rate for different

cavity photon decay rates. We will also look for evidence of carrier

population clamping and hole burning in inhomogeneously broa-

dened QD distributions.

One reason for our choice of a QD active region is that it allows for

an investigation of the effect of reducing the number of emitters to

produce non-classical light. A single QD in a 3D nanocavity represents

the miniaturization limit and the crossover domain to non-classical

light sources, which are of high relevance for quantum information

applications. We would like to investigate nanolaser behavior in the

few-emitter limit, where several experiments have been performed,5–7

and to determine whether novel emission properties arise, including

non-classical light generation, without reaching the single-QD limit.

NANOLASER MODEL INCORPORATING SEMICONDUCTOR

QUANTUM OPTICS

In this section, we describe the development of a model for a current-

driven, semiconductor QD, nanocavity laser for computing the intra-

cavity photon number, coherence time and second-order intensity

correlation (see Figure 1 for an overview). The model is based on a

previously developed semiconductor CQED theory37 and improves

on the rate-equation description typically used to illustrate the effects
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Figure 1 (a) Sketch of a generic nanolaser used in developing the quantum-electrodynamics model. The basic features include an active medium inside an optical

cavity with dimensions of less than (l/2n)3, where l is the lasing wavelength and n is the background refractive index. Central to the physics is the treatment of light–

matter correlations (see the red double arrow), characterized by the coupling coefficient g (Equation (2)). (b) Hanbury–Brown–Twiss setup for determining the

intensity correlation, which is proportional to the product of the photocurrents, i.e., g(2)(0)/ Æi1(t)i2(t)æ. (c) Different types of light classified by aHanbury–Brown–Twiss

measurement. (d) A possible combination of observables providing precise information on lasing in an experiment with b51, where complete channeling of

spontaneous emission into the lasing mode is realized. QD, quantum dot.
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of b in atomic–molecular–optical systems.1,32 This aim is accomp-

lished with a consistent derivation of photon correlations along with

the equations of motion for carrier and photon populations. We also

include a description of QD excitation via the surrounding QWs in

terms of carrier injection, capture and escape, as well as inhomogen-

eous broadening due to QD size and composition fluctuations.

We consider an activemedium consisting of In0.3Ga0.7AsQDs and a

wetting layer embedded in a GaAs QW. By assuming a cylindrical QD

shape 2-nm tall and 18-nm in diameter, the electronic structure cal-

culation36,38 predicts only one electron bound state and one hole

bound state because of the shallow quantum confinement. This simple

electronic structure is well suited for illustrating the nanolaser beha-

viors of interest.

To derive the equations of motion, we use the Jaynes–Cummings

Hamiltonian39 for the light–matter interaction, with commutation

relations for the photon operators and anti-commutation relations

for the electron and hole operators. In the dipole and rotating-wave

approximations, the Hamiltonian describing the light–matter inter-

action has the form:

H~h�v b{bz
1

2

� �

z

X

n

eQD
e,n c

{
ncnze

QD
h,n v

{
nvn{ih� gbc{nvn{g1b{v{ncn

� �

h i

ð1Þ

where h–v is the photon energy, b{ and b are the photon creation and

annihilation operators, ee,n
QD and eh,n

QD are the single-particle electron

and hole energies of the nth QD, c{n and cn are the creation and anni-

hilation operators for conduction-band electrons, v{n and vn are the

corresponding operators for valence-band electrons, and the sum-

mation is taken over the inhomogeneous QD distribution. The

light–matter coupling coefficient is:

g~2

ffiffiffiffiffiffiffiffiffiffiffi

v

h� bV

r

W RQD

� �

X

n

C Rnð ÞV Rnð Þ ð2Þ

where 2 is the bulk material dipole matrix element, V is the optical

mode volume, W is the amplitude of the passive optical mode eigen-

function at RQD, the location of the QDs within the optical cavity, and

the summation involves the overlap of electron and hole envelope

functions over all unit cells within the active region. The light–matter

coupling coefficient g can also be determined experimentally.

Working in the Heisenberg picture, we derive equations of motion

for the polarization pn~Sbc{nvnT, photon population np5Æb{bæ and

carrier populations nQD
e,n ~Sc{ncnT and nQD

h,n ~1{Sv{nvnT, respectively:

dpn

dt
~{ i n{vnð Þz czccð Þ½ �pnzg1 nQD

e,n n
QD
h,nz nQD

e,n zn
QD
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ð3Þ
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X
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dt
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ð5Þ

where 2cc is the photon decay rate in the cavity, cnl is the spontaneous

emission rate into non-lasing modes, cnr accounts for non-radiative

carrier loss and s5e(h) indicates electron (hole). Inhomogeneous

broadening due to QD dimension or composite non-uniformity is

modeled by including a QD population distribution in Equation (4):

ninh vnð Þ~ NQD
ffiffiffiffiffi

2p
p

Dinh

exp {
h� vn{v0ð Þ

ffiffiffi

2
p

Dinh

� �2
" #

ð6Þ

where NQD is the total number of QDs in the active region, v0 is the

central transition frequency of the inhomogeneous distribution and

Dinh is the inhomogeneous width. We group the QDs into bins of

width h–c, each with an average transition frequency energy vn and

QD number ninh(vn). The closed set of Equations (3)–(5) is obtained

from the operator equations by using a correlation function expan-

sion,36,37,40 keeping only correlations at the doublet level. The limita-

tions that arise from neglecting higher-order light–matter correlations

will be discussed later, when we look at few-QD emitters.

Pumping of theQD states takes place via the QWcarrier population

n
QW
s,k :

dnQW
s,k

dt
~

I

eN
p
s

f e
QW
s,k ,mps,Tp

� �

1{nQW
s,k

� �

{cnrn
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s,k {f e
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� �h i
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QW
s,k {f e
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where k is the two-dimensional carriermomentum, I is the current, e is

the electron charge and

Np
s~

X

k

f e
QW
s,k ,m

p
s,Tp

� �

ð8Þ

is the steady-state QW carrier population created by the injection

current when all radiative processes are switched off. The injected

carrier distribution f e
QW
s,k ,mps,Tp

� �

is assumed to be a Fermi–Dirac

function with chemical potential mps and temperature Tp.

Scattering effects lead to polarization dephasing, as well as carrier

capture and escape. The model accounts for these effects using a phe-

nomenological approach41 that has been shown to reproduce the

results of quantum kinetic treatments42 when carrier–carrier and car-

rier–phonon scattering rates are distinctly different. This is the case for

electrically driven devices, where the carrier–phonon scattering rate is

roughly an order of magnitude lower than that of carrier–carrier scat-

tering. In this situation, carrier–carrier scattering first tries to drive a

non-equilibrium carrier distribution to a Fermi–Dirac distribution

given by some chemical potential and plasma temperature, ms and

T, respectively. Then, the carrier–phonon scattering further relaxes

the carriers to another Fermi–Dirac function given by chemical poten-

tial mls and lattice temperature Tl.

The above description is included in the above equations via the

terms containing c (dephasing rate), cc–c (carrier–carrier scattering

rate) and cc–p (carrier–phonon scattering rate). The asymptotic

Fermi–Dirac distributions approached through carrier–carrier scat-

tering are f(es,n
QD,ms,T ) and f e

QW
s,k ,ms,T

� �

. Their chemical potential

ms and plasma temperature T are computed by the conservation

of carrier population and energy. For asymptotic distributions

associated with carrier-phonon scattering, f es,n
QD,mls,Tl

� �

and

f e
QW
s,k ,mls,Tl

� �

, the chemical potential mls is obtained from the con-

servation of carrier population, where the lattice temperature Tl is

an input quantity.

As mentioned in the introduction, to address issues regarding

lasing thresholds, one must examine the photon statistics. Here,

we look at the coherence time and the second-order correlation

function. The coherence time of the radiation in the stationary

situation is given by:
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where

g 1ð Þ tð Þ~ Sb{b tð ÞTss
nssp

ð10Þ

with ss indicating that the expectation values are computed using the

steady-state values for np, pn, n
QD
e,n and n

QD
h,n . To derive the equation of

motion for Æb{b(t)æ, we again work in the Heisenberg picture and use

the Hamiltonian described by Equation (1). This gives:

dG 1ð Þ

dt
~{ccG

1ð Þ
z2

X

n

ninh vnð ÞRe g1Pnð Þ ð11Þ

dPn

dt
~ i n{vnð Þ{ czccð Þ½ �Pnzg1 nQD
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where we factored out the rapid oscillations in t by defining

G(1)(t)5Æb{b(t)æsse
int and Pn(t)5Æb{vn

{(t)cn(t)æsse
int, as discussed in

Ref. 43.

For the equal-time second-order correlation,

g 2ð Þ 0ð Þ~Sb{b{bbT

n2p
ð13Þ

where we introduce the following expectation values:

dSb{b{bbT~Sb{b{bbT{2n2p ð14Þ
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n cnT{np pnð Þ1ð15Þ
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ð17Þ

Continuing with the derivation to the quadruplet level, we obtain

the necessary equations of motion:

ddSb{b{bbT

dt
~

{4ccdSb
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X

n
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The calculation inputs include the light–matter coupling strength,

carrier and photon loss rates, and capture and relaxation rates, which

are given in terms of effective carrier–carrier and carrier–phonon

relaxation coefficients. Assuming a mode volume of (l/2nB)
3, where

l is the emitter wavelength and nB is the background refractive index,

and a dipole matrix element of e30.5 nm, the light-matter coupling

coefficient is g52.6831011 s21. The remaining relaxation and

loss coefficients are c51013 s21,cnr5109 s21,cc–c51013 s21 and

cc–p51012 s21. From the electronic structure calculation, the QD elec-

tron and hole states are 40 meV and 30 meV below their respective

QWband edges. In the following figures, cnl50 and cnl51.431012 s21

are used to give b51 and b50.01, respectively. b is determined via

b~
2
P

n Re gp’nð Þ
ss

P

n 2Re gp’nð Þsszcnln
QD
e,n n

QD
h,n

h i ð22Þ

where

dp’n
dt

~g1nQD
e,n n

QD
h,n ð23Þ

is solved together with Equations (3)–(6) until a steady state is

reached.

We note that in rate-equation models, b is typically a free para-

meter. In the microscopic theory, the rates of emission into the laser

mode and into non-lasing modes are explicitly determined according

to the system parameters, and the b-factor follows accordingly. For a

homogeneously broadened QD sample (Dinh50), the value of b, eval-

uated in this manner, is excitation-independent. Lastly, using np, pn,

nQD
e,n and n

QD
h,n , we evaluate Equations (9)–(21) for the coherence time

and the equal-time second-order correlation.

We end this section by illustrating some differences between pre-

vious models1,32,37 and the present one, which incorporates the details

of a self-assembled Stranski–Krastanov semiconductor QD active

region. Figure 2a presents a comparison of the intracavity photon

number versus injection current. The black curve shows the result

from an earlier QD-CQED model,37 which, for the parameters used,

basically reproduces the familiar rate equation result for the mean

photon number versus pump rate of the QD states (which, in this case,

is assumed to be directly proportional to the injection current). The

blue curve represents the result of including the QW states, where

electron and hole injection occur, and the red curve includes an addi-

tional QD inhomogeneous broadening, Dinh520 meV. All curves are

computed for a 50-QD sample with a cavity loss rate cc51010 s21. One

difference lies in the threshold current between the black curve and the

other curves, originating from the carrier injection being moved from

directly into the QD levels to the QW states. A further difference

occurs in terms of the output saturation at a high pump rate arising

from the reduction in the number of QDs effectively interacting with

the cavity photons due to inhomogeneous broadening. This effect is

shownmore clearly in the inset, where the curves are superimposed on

each other by referencing the current to the respective threshold cur-

rents. The photon number rollover distorts the familiar ‘S’ shape,

which complicates the common practice of extracting b from a log–

log plot of output versus input, using rate equations and assuming b to

be independent of the excitation.

ð15Þ

ð18Þ
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Figure 2b illustrates the same comparison for b51. The plot shows

that the introduction of non-radiative carrier loss, as well as pumping

via the QW states, causes a deviation from the linear input-output

behavior predicted from the rate equations for the ‘thresholdless’ b51

limit. QD inhomogeneous broadening of Dinh520 meV does not

appreciably alter the photon number or g(2)(0) dependence (not

shown) on injection current. However, the effect of broadening on

the coherence time is significant, as illustrated in the inset in Figure 2b.

EMISSION AND COHERENCE OF NANOLASERS

We now apply the model described in the previous section to analyze

the emission of a laser with a well-defined threshold and that of the

ideal nanolaser with b51. The comparison is provided in terms of the

intracavity photon number, coherence time and second-order photon

correlation versus pump rate. Different cavity losses are chosen to

illustrate the device operation as a laser, a cavity-enhanced LED and

an LED.

Figure 3a shows the input-output curves for b50.01. With suffi-

ciently low cavity losses, lasing is possible, as indicated by the ‘S’ shape

input–output photon number dependence (black and blue curves).

With the greater cavity losses, the photon number jump vanishes and

the devices remain below the lasing threshold indefinitely (red and

green curves). As shown in Figure 3b, the equal-time second-order

photon correlation changes from essentially 2 to 1 in the transition to

lasing for the curves with the two lowest cavity losses. Figure 3c pre-

sents the injection current dependence of the coherence time. The

product of coherence time and cavity loss is used to enable the curves

to be superimposed for better comparison. For cc5531011 s21, the

cavity effects are weak, as evidenced by the vanishing injection current

dependences of the second-order correlation and coherence time.

Moreover, a further increase in cc produces very little change from

the cc5531011 s21 results (not shown). Proceeding from an LED

towards lasing diodes, we note that below the lasing threshold, the

cavity effects lead to a decrease in coherence time below that given by

the passive cavity. This decrease translates to an increase in emission

bandwidth or emission rate, a signature of Purcell enhancement (see

the black curve in Figure 2c).17

Figure 4 illustrates the differences that arise when the spontaneous

emission factor is b51. Here, the ‘S’ shape in the input–output curve

disappears, as is well known. There have been considerable discussions

on emission properties, e.g., involving thresholdless lasers or perhaps

infinite threshold devices. Figure 4b indicates that while the transition

is somewhat smoother, there still exist regions with distinct emission

properties. In the case of the second order correlation, a low-current

regime is observed, where g(2)(0) is closer to the thermal radiation

value of 2 than the laser value of 1, as well as the lasing regime (if

the lasing threshold is reachable), where g(2)(0)51. The red curve

shows the case that may be the closest to an infinite threshold laser

in that g(2)(0) approaches, but never reaches, unity. Here, the cavity

losses are sufficiently high such that stimulated emission never do-

minates spontaneous emission. The coherence length behavior in

Figure 4c basically mirrors that of Figure 3c, with significant increases
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difference in coherence time in the presence of inhomogeneous broadening. CQED, cavity quantum electrodynamics; QD, quantum dot; QW, quantum well.
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Figure 3 Injection current dependences of (a) photon number, (b) equal-time second-order photon correlation and (c) coherence time for an emitter consisting of 50

QDs in a cavity with a spontaneous emission factor b50.01. The different curves correspond to photon loss rates cc51010 s21, 531010 s21, 1011 s21 and

531011 s21. QD, quantum dot.
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in the two lasing cases, while smaller or no changes are observed for the

LEDand cavity-enhancedLEDconfigurations.Hence,while Figures 3a

and 4a show a significant change in the input-output behavior, with

the loss of indication of a lasing threshold, the second-order photon

correlation and coherence times maintain transition regions, indi-

cating a crossover from thermal to coherent operation.

Additional insightmay be gained by combining the photon number

and g(2)(0) plots to give g(2)(0) versus photon number. Figure 5a shows

that the transition from thermal to coherent operation depends only

on the photon number and is independent of b. This result arises

because the photon statistics are determined by the relative contribu-

tions from spontaneous and stimulated emission. When the former is

dominant, thermal emission occurs, and when the latter prevails,

coherent radiation is realized. For stimulated emission to dominate,

the photon number per mode must be greater than one. Different b

values result in differences in the currents that are necessary to reach

this condition.

The above argument is reinforced by Figure 5b, where, again, the

b50.01 and b51 curves overlap each other. Here, the active material

with a given QD number cannot produce enough gain to compensate

the cavity losses, even if all emitters are fully inverted at high injection

currents. Hence, spontaneous emission prevails, the mean photon

number does not reach unity and g(2)(0) remains at a value closer to 2.

CARRIER POPULATION CLAMPING

Evidence for lasing also arises in the carrier occupation distributions.

Figure 6b and 6d shows population clamping and hole burning for

bothb50.01 andb51, when the lasing threshold is reached, regardless

of whether the input–output curve exhibits a jump. The data points in

Figure 6a and 6c indicate the injection currents for the carrier occu-

pation distributions shown in Figure 6b and 6d. In the figures, the gray

dotted curves correspond to Fermi–Dirac distributions for si-

milar values of the total hole number and energy. The black curves

indicate a quasi-equilibrium condition for the hole populations in the

QW. However, clear differences between blue and grey curves indicate

non-equilibrium behavior for the QD occupation after the onset of

lasing.

EMISSION FROM FEW-QD SYSTEMS

During the transition to lasing, both Figures 3b and 4b reveal an

interesting feature of g(2)(0)—it drops slightly below unity, which

has also been observed experimentally.11 The results indicate non-

classical photon statistics within a narrow range of injection currents.

Evidence of non-classical light is particularly interesting for applica-

tions in quantum information processing.44 Emitters based on few

QDs are also important in the miniaturization of integrated photonic

systems.45 Figure 7 displays the behaviors as the QD number is

reduced. The effect of a reduced active medium gain is depicted in

Figure 7a, where one notes a decrease in laser output at high current

(blue and red curves), until lasing is no longer possible (green curve).

Figure 7b shows that the dip of g(2)(0),1 increases with decreasing

QD number. For five QDs in the active region, the g(2)(0),1 region

extends indefinitely to high injection currents. For this 5-QD situ-

ation, Figure 7c indicates that there is no increase in coherence time

with excitation. We note that current semiconductor-based single-

photon-on-demand sources producing radiation with g(2)(0),0.5

can be realized with individual QD emitters in low-Q optical cavities.

Here, one realizes partial antibunching with a finite number of emit-

ters in a higher-Q cavity. With the possibility of increasing the light–

matter coupling due to a high Purcell factor and a small mode volume

in active nanoplasmonics, this pathmay lead to bright alternative non-

classical light sources.
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Figure 4 Injection current dependences of (a) photon number, (b) equal-time second-order photon correlation and (c) coherence time for an emitter consisting of 50

QDs in a cavity with a spontaneous emission factor b51. The different curves correspond to photon loss rates cc51010 s21, 531010 s21, 1011 s21 and 531011 s21.
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The approximation of light–matter correlations in Equations (3)–

(5) limits the extent to which the QD number can be reduced within

our model because contributions from higher-order light–matter cor-

relations increase with decreasingQDnumber.We verified the present

results by comparison with a model in which correlations are kept to

the quadruplet level. To handle the higher-order correlations without

substantially increasing computation demands, the comparisons are

made without inhomogeneous broadening in the QDs or the effects of

the QWs. For the same reason, the effect of super-radiant coupling

between the QD emitters is neglected. The comparisons verify the

truncation at the doublet level for the parameters considered. We

found the super-radiant coupling to be strongly hampered by dephas-

ing and inhomogeneous broadening. However, further investigations

are necessary to quantify the increasing role of super-radiant coupling

with decreasing QD number.

CONCLUSIONS

This review is motivated by ongoing discussions involving recent

nanolaser experiments, in particular, those related to the criteria

for lasing and the determination of a lasing threshold, where much

ambiguity exists in cases suggesting thresholdless lasing.Our approach

employs a fully quantized laser model to investigate the intensity and

coherences of nanolasers. The active medium is treated as inhomo-

geneously broadened semiconductor QDs embedded in a QW, where

carriers are introduced via current injection. Comparisons are made

between a typical nanolaser configuration and situations approaching

a spontaneous emission factor of unity or few-QD systems. It was

found that in general, the combined information of intracavity photon

number, coherence time, photon autocorrelation function and carrier

spectral hole burning provide a unique and consistent picture for

nanolasers in the new regimes of laser operation.

For the situation involving a spontaneous emission factor of unity,

the model predicts a smoothing of the intracavity intensity versus

pump dependence, which is well known. However, indications remain

for the transition from thermal to coherent radiation in the coherence

time and in the second-order correlation function, which serve in

locating the laser threshold. This finding does not corroborate the

notion of thresholdless lasing. While the output intensity benefits

from channeling all of the emission into useful optical modes, the

emission prior to the onset of stimulated emission will exhibit the
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Figure 6 (a) and (c) display input–output curves for 50 QDs with cavity loss cc51010 s21, and inhomogeneous broadening Dinh520 meV. The points indicate the

current for the occupation distributions plotted in (b) and (d). QD, quantum dot; QW, quantum well.
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Figure 7 Injection current dependences of (a) photon number, (b) second-order photon correlation and (c) coherence time for a cavity with a spontaneous emission
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intensity fluctuation and low coherence of thermal sources. Still, a

b51 device is attractive for some applications, such as the next gen-

eration of highly efficient lighting, where a spatial concentration of the

output beam is desirable, while coherence and intensity fluctuations

on the scale governed by the randomness of spontaneous emission are

not.

Lastly, preliminary simulations were performed for nanocavities

with only a few QDs to provide gain. It is found that as the total

number of QDs in the optical cavity is reduced, pronounced evidence

for non-classical photon statistics exists for QD numbers as high as

ten.
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