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Abstract 

Thermography is a typical sensing approach used for non-destructive testing and evaluation (NDT&E). 

However, the varying surface emissivity of an object leads to illusory temperature inhomogeneity which results in 

influences on defect detection. This paper proposes a new technique to correct the influence of the surface’s varying 

emissivity of an object in active thermography. Two cameras operating at different spectra are used to capture 

infrared and visible images simultaneously. Although the physics behind infrared and optical imaging are very 

different, a close spectrum correlation of two images is identified. An invariant coefficient feature has been 

estimated for an emissivity correction of infrared images with suggested algorithm. The basic hypothesis is that the 

reflectance correlation is proposed to predict surface emissivity of an object with respect to wavelength. 

Experimental validation results show that after correction infrared images are looking like more homogeneous and 

independent of emissivity. It has been tested for a partially painted steel and rail samples with different known 

emissivity. Comparative analysis demonstrates its promising capability for accurate mapping of thermal patterns 

and defect evaluation in thermography NDT&E.   
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1. Introduction  

Infrared thermography has been widely used for non-destructive testing and evaluation (NDT&E), which allows 

inline visualization of thermal patterns to identify defects and material degradations [1-3]. It is effective for material 

variation monitoring by capturing thermal contrast between defective and non-defective areas of test objects [2-4]. 

It has the advantages of non-contact temperature measure, wide spectrum response, high resolution imaging over a 

large area etc., which is suitable for automatic scanning inspection and moving target thermal imaging in real-time 

[5-8]. However, one of the disadvantages of thermography is that the infrared radiation strongly dependent on 

surface emissivity of an object [9-11]. All targets above -273.15°C (0 K) emit radiant energy, where an ideal emitter 

or blackbody is defined as a 100% emitter of energy. The ratio between the actual energy emitted from a real object 

and that of a blackbody emitter is known as emissivity and always ≤1. The emissivity is mainly dependent on 

object surface conditions [9-12], e.g. shiny or roughness, material composition, wavelength. In thermography 

NDT&E, the varying emissivity in local positions influences the accurate mapping of thermal patterns. It leads to 

illusory temperature inhomogeneity of infrared images which results in influences on defect detection and 

characterization [12-15].  

To reduce surface emissivity influence, various methods have been attempted in previous studies [13-16]. The 

black paint on sample is effective to raise emissivity for uniform distribution. However, this method easily leads to 

the pollution of sample and it is infeasible for online scanning application. To eliminate the emissivity factor from 

the thermal radiation equation, Bai et al. [13] proposed the normalization method to remove emissivity adverse 

influence of eddy current pulsed thermography (ECPT) and improve thermal contrast between defective and defect-

free regions. In Kasemann’s study [16], relative emissivity distribution was employed to correct temperature errors 

based on a ratio of emissivity with the average value. Vellvehi et al. [17] conducted irradiance-based emissivity 



correction to determine true temperature based on two reference thermal images obtained at two uniform 

temperatures. Schubert et al. [18] corrected emissivity changes in rough or textured surface based on mathematical 

deconvolution. The phase information is also used to reduce or to enlarge surface emissivity variation influences 

[14, 19-20]. Gao et al. [21] proposed a thermal pattern separation model to remove emissivity influence. Schmugge 

et al. [22] implemented temperature and emissivity separation from multispectral thermal infrared observation using 

relative emissivity values.  

Additionally, spectral emissivity estimation using single, dual and multiple wavelength approach is available 

to measure temperature accurately [23-25]. The utilization of multi-spectrum information is potential to reduce 

surface emissivity influence [24, 26]. Firstly, optical pyrometers (also known as brightness pyrometers) measure 

temperature in the visible light spectrum of 0.4 to 0.7 µm [23]. Next, infrared thermometers measure temperature 

in the infrared light spectrum of 0.7 to 80 µm. Both optical and infrared temperature measurement are influenced 

by emissivity. But, the emissivity can be addressed based on the center wavelength of the spectral band being utilized 

[24, 27]. By combining infrared and visible imaging information e.g. reflectance in different spectral windows, the 

normalized difference vegetation index (NDVI) [28, 29] was used for emissivity correction in remote sensing. 

Hagqvist et al. [25] used historical emissivity and temperature information for estimating the current emissivity, 

which is named emissivity compensated spectral pyrometry. Tachikawa et al. [30] combines the thermography and 

visible imaging to separate the influence of emissivity and temperature. 

This paper proposes a new technique to correct the influence of the surface’s emissivity of an object in active 

thermography. The infrared and visible light cameras operating at different spectra are used to capture two modality 

images simultaneously. Based on the optical properties of metals and the physics behind infrared and optical 

imaging [31-33], a close spectrum correlation of two modality images is identified. An invariant coefficient feature 

is suggested for an emissivity correction of infrared images. Experimental studies have been implemented on the 

optimized ECPT system and two partially painted samples with different known emissivity. The validation and 

comparative results demonstrate the promising capability of the method for accurate mapping of thermal patterns 

and further defects characterization under natural environments. The rest of this paper is organized as follows. 

Section 2 introduces theoretical background and the proposed method for emissivity influence correction. Section 

3 demonstrates experimental studies using the optimized ECPT system with two modality cameras. Section 4 

implements results and comparative analysis based on two samples with different known emissivity. Conclusions 

and future works are derived in Section 5.   

2. Theory and Proposed Method 

Based on the physical principles of infrared and optical imaging [26, 31], a close spectrum correlation of 

infrared and visible images is identified. The method using two cameras measurement is proposed for an emissivity 

correction of infrared images. The images pre-processing including automatic registration, segmentation and the 

algorithms with calculation of correction coefficient [34, 35] are implemented. It is used to reduce the varying 

emissivity influence on the accurate mapping of thermal patterns for defect evaluation.  

 

2.1 Physical basis of infrared radiation and thermography  

Thermography allows a direct measure of the emitted infrared radiation energy, then temperature distribution 

of an object is determined in a non-contact way by using infrared camera. According to the Stefan-Boltzmann law 

[13], the radiation energy from an object can be expressed as: 𝑗⋆ = 𝜀𝜎𝑇4        (1) 

where the irradiance 𝑗⋆ is energy radiated per unit time per unit area. It is directly proportional to the fourth power 

of the black body’s temperature 𝑇. The Stefan-Boltzmann constant 𝜎 derives from other known constant of nature 𝜎 = 5.67 × 10−8𝑊𝑚−2𝐾−4. An actual object emits less total energy than a black body and is characterized by an 

emissivity 𝜀 (0 < 𝜀 < 1). The emissivity of an object is given by the ratio between energy emitted by a blackbody 



and actual object having same temperature. It presents a material’s ability to emit thermal radiation and is an optical 

property of matter [11, 12]. To understand the nature of emissivity for real object at steady-state, infrared energy 

exhibits the properties of absorption, reflection and transmission to varying degrees [30, 33]. The opaque object e.g. 

metal exhibits very low transmission of infrared energy, hence, there is a simple balance between emissivity and 

reflectivity which can be expressed as:  𝜀 + 𝜌 = 1      (2) 

where 𝜌 denotes as surface reflectance of an object. Based on the equation (2), reflectance is proposed to predict 

spectral emissivity of an object in a specific range of spectrum. Additionally, the emissive and reflective behaviors 

of materials have some correlation in both visible and infrared spectra [30, 31]. The metal object with shiny surface 

condition demonstrates lower emissivity and higher reflectance. Hence, reflectance 𝜌 can be used as a proxy for 

1- 𝜀, which paves a way to quantify the emissivity character and surface conditions of an object [24]. As described 

in [23-25], one essential requirement for multi-wavelength pyrometry is obviously the choice of an adequate 

emissivity model for normalization [36]. Because no universal model exists, various models for different range of 

spectrum e.g. MWIR and optical spectra that could possibly be adapted to various specific cases should be studied. 

This paper proposes two cameras measurement to obtain infrared and visible images simultaneously. As two 

cameras operate at different spectra, the thermal emissivity and optical reflectance cannot meet the equation (2) 

directly in the corresponding pixels. The basic hypothesis is that the surface emissivity in the infrared and the 

reflectivity in the visible light behavior should be a refined correlated way e.g. using different weights. Algorithms 

and coefficient feature are suggested to compute the weights and to perform an emissivity correction of the infrared 

images.  

 

2.2 Spectrum correlation of infrared and visible images for emissivity correction  

To achieve an emissivity correction of infrared images, two cameras are used to capture both infrared and 

visible images simultaneously. The visible image provides brightness information to identify surface spectral 

reflectance, color and surface roughness of an object. The thermal image gives us the total infrared radiation coming 

from object surface, which includes reflection and emission. Although two cameras operate at different spectra with 

different physics, there are some close correlations between visible and infrared images response to a same object, 

e.g. higher reflectance and lower emissivity in shiny conditions [30]. Based on the physical characters of infrared 

and visible imaging, the paper uses the brightness of an optical image as a proxy for reflectance 𝜌 and identify the 

relationship to infrared image. The procedure and weighting functions with coefficient feature are proposed for an 

emissivity correction of infrared images as illustrated in Fig. 1. The input information from the visible and infrared 

images should be obtained independent on any surrounding environment influences. A uniform incident light source 

and special shielding arrangements can be used to avoid the ambient undesired lighting and the reflection effect due 

to external thermal radiation. The de-noising, scaling and rotation of two images are carried out in pre-processing 

for automatic registration. When presenting the setup, it is recommended that the spatial compensation between 

pixels and angular of the modality images are corresponded as the work [37]. The image segmentation is carried 

out to identify spectrum correlation of infrared and visible images in different local areas. The algorithms and 

invariant coefficient calculation for emissivity correction of infrared images is carried out by two steps below with 

respect to wavelength. The validation of the proposed method is implemented and discussed by experiments and 

comparative analysis with previous methods [4, 13]. 



  

Fig. 1 Diagram of emissivity correction using spectrum correlation of infrared and visible images 

 

Step 1: To compensate infrared and visible imaging scales using k weight. 

For the two cameras operate at different spectra, the pixel value of infrared image 𝐼𝑇(𝜀, 𝑇) depends on surface 

emissivity 𝜀  and temperature T of an object according to equation (1), and the brightness of visible image 𝐼𝑉(𝜌, 𝐼𝑐𝑑)  indicates surface reflectance 𝜌  of an object and incident light source intensity 𝐼𝑐𝑑 . With a same 

temperature on the surface of an object, infrared image 𝐼𝑇(𝜀) is only related to the emissivity of each pixel point 

with respect to a specific wavelength. It also can be written as 𝜀(𝐼𝑇) under a specific temperature T. By using a 

uniform incident light source, visible image values 𝐼𝑉(𝜌) demonstrate surface reflectance distribution of an object, 

which is defined as reflected light intensity by a surface, divided by that received by that surface. It also can be 

written as 𝜌(𝐼𝑉) under a specific incident light intensity𝐼𝑐𝑑. Hence, combine the 𝜀(𝐼𝑇) and 𝜌(𝐼𝑉) based on the 

equation (2) with proper weights, it can be rewritten to the equation (3) where the infrared and visible images are 

added together and equal to a constant. It is in the conditions that there is a specific roughness on the surface of an 

object and without any influences of the surrounding temperature and lighting of ambient environment. The suitable 

calibration of two cameras is required for spatial compensation between pixels and angular of images [37]. The 

integration of infrared and visible images is applied with different scale factors 𝑘 including surface emissivity, 

lighting condition, camera characters including gain balance as well as surface characteristics in line with equation 

(2). Of course, the 𝑘 weight is varied with different locations considering surface temperature distribution of an 

object and incident light source intensity.  𝑘 × 𝐼𝑇 + (1 − 𝑘) × 𝐼𝑉 = constant  (3) 

where the 𝐼𝑇  denotes as the pixel value of the infrared image with a specific temperature, and the 𝐼𝑉  is the 

brightness value of the visible image with a specific incident light source intensity. According to the equation (3), 

the linear relationship between infrared and visible images against emissivity is illustrated in Fig. 2. The pixel value 

of an object thermal image is ranging from 𝐼𝑇0 to 𝐼𝑇1 with different emissivity 𝜀. The brightness value of visible 

image is ranging from 𝐼𝑉0  to 𝐼𝑉1  with different reflectance 𝜌 or 1- 𝜀 . In consideration of equation (3), the 

infrared and visible values variation against different emissivity, e.g. from shiny to black body behaviors, are 

changing to the opposite trend. Considering the slopes of the infrared and visible values variation in Fig.2, the 𝑘 

weight can be calculated based on the derivation of the equation (3) to emissivity 𝜀, which is defined as 𝑘 =(−∆𝐼𝑉)/(∆𝐼𝑇 − ∆𝐼𝑉).  



  

Fig. 2 Linear relationship between infrared and visible values against emissivity 

 

Step2: To correct emissivity influence through infrared image to ‘black body’ image 

In order to reduce emissivity influence on the mapping of thermal patterns, the aim is to make the infrared 

image behaving more homogeneous with a specific temperature and looking like to a same or uniform emissivity 

behavior in each pixel point. Hence, a specific condition that infrared value of the blackbody 𝐼𝑇−𝐵𝐵 is selected to 

define the “constant” in equation (3). With the ideal situation of blackbody behavior, the brightness value of visible 

image 𝐼𝑉−𝐵𝐵 is equal to zero because the reflectance of ideal blackbody is zero. The algorithm for emissivity 

correction is to make the different pixel values of thermal image are independent on the emissivity and close to the 

“constant” value 𝐼𝑇−𝐵𝐵, which is like a blackbody object behaves to a specific temperature.  

To implement an emissivity correction of infrared images, an invariant coefficient feature ∆𝐼𝑇/∆𝐼𝑉 is extracted 

through the equation (4). This equation is obtained from Fig. 2 considering the slopes of infrared and visible values 

response to different emissivity. Because the ∆𝐼𝑇/∆𝜀 and ∆𝐼𝑉/∆𝜀 are based on the physical spectrum responses 

to surface emissivity and reflectance of an object [30, 31], the invariant coefficient feature ∆𝐼𝑇/∆𝐼𝑉 is independent 

of the contents e.g. unknown emissivity of imaging results in different local areas. Then, the emissivity influence is 

reduced and corrected according to the equation (5) with coefficient feature and an extra correction factor 𝛼. The 𝛼 is an additional correction factor considering actual object and surrounding environmental influences in real 

applications [8, 32]. It makes infrared image more homogeneous under a specific temperature and independent of 

emissivity, which is close to the one behaving like blackbody with uniform emissivity distribution. The corrected 

infrared images including accurate mapping of thermal patterns are used for further defect detection based on 

thermography NDT&E. Experimental studies using two partially painted samples including slot-like artificial 

cracks and natural cracks are conducted for validation and comparative evaluation.  Invariant coefficient  =  ∆𝐼𝑇/∆𝜀∆𝐼𝑉/∆𝜀 = ∆𝐼𝑇∆𝐼𝑉 = 1 − 1/𝑘                     (4)           Corrected IR image = 𝐼𝑇 + ∆𝐼𝑇∆𝐼𝑉 × 𝐼𝑉 + 𝛼 = 𝐼𝑇 + (1 − 1/𝑘) × 𝐼𝑉 + 𝛼          (5) 

3. Experimental studies and validation  

To validate the proposed method for an emissivity correction of infrared images, experimental studies have 

been performed on a steel plate and rail samples with different known surface emissivity. The diagram of the 

optimized ECPT system using both infrared and visible cameras is illustrated in Fig. 3. Two images on the surface 

of a same object are captured and recorded by two cameras simultaneously for processing.  

 



3.1 Optimized ECPT system with two modality cameras  

The optimized ECPT system is based on our previous developed ECPT system, which combines both 

advantages of pulsed eddy current [38, 39] and thermography. The system includes a pulse generator, the Easyheat 

224 induction heater and water cooling devices, excitation coil, an infrared camera and a PC as described in 

references [3, 40-41]. The difference is here we use two cameras to capture both infrared and visible images 

simultaneously as illustrated in Fig. 3. For experimental studies, the electric current with amplitude of 380 𝐴𝑟𝑚𝑠 

and frequency of 256 kHz is applied on the coil to stimulate heat on the surface of an object for a period of 200ms. 

The FLIR A655sc infrared camera with uncooled microbolometer detector and spectral range 7.5-14 𝜇𝑚 is used 

to record surface thermal radiation of test object. A selected resolution with 640 × 240 array and the frame rate 

100 Hz of the IR camera are applied to capture transient infrared images within the duration of 2 seconds. The 

infrared camera has been calibrated by the FLIR Company using blackbody calibration source. An optical camera 

with 1280 × 960 array is used to record the visible image and brightness on the top surface of test object 

simultaneously. Two cameras are placed at the same position and calibrated to same view angle for capturing 

infrared and visible images at the same time. The spatial compensation between pixels and angular is made by two 

cameras calibration and two images registration as the work [37]. A PC is used for images processing and emissivity 

correction using the proposed method. To avoid the surrounding environment influences, the ambient undesired 

lighting and the effect of reflection of external thermal radiation are reduced by special shielding arrangements.  

  

 

Fig. 3 Diagram of the optimized ECPT system with both infrared and visible cameras 

 

3.2 Sample preparation with different known emissivity  

Two samples with different known emissivity are employed for experimental studies as shown in Fig. 4. A steel 

plate includes a slot as well as local shiny and black painting areas as shown in Fig. 4a. The known shiny and black 

painting indicate two different emissivity regions on the surface of the plate. According to the references [10, 17], 

the emissivity of the black painting and steel shiny surface are close to 0.96 and 0.07, respectively, under mid 

wavelength IR windows (MWIR) with spectral band 8 − 14 𝜇𝑚. The size of steel plate is 11.5mm × 17.5mm ×1mm in width, length and thickness, respectively. The heating coil with 6.35mm wire diameter is placed at the 

back of sample for heating and thermography in transmission mode. It is also placed at the middle position of a slot 

with 15mm × 0.5mm in length and width to compare the thermal patterns around the defect. As shown in Fig. 4b 

and 4c, the second sample is a rail head piece including rolling contact fatigue (RCF) multiple cracks. The emissivity 

on the rail sample is known with different shiny, sparse and normal black painting as shown in Fig. 4c, then applied 

full uniform painting in Fig. 4b for comparison. The heating coil is fixed on the top of the rail sample across different 

emissivity areas with 0.5mm lift-off distance. In real applications, image segmentation is implemented along with 

coil direction in order to obtain correction weights and invariant coefficient in different local areas considering 

temperature distribution and incident light intensity. To use the proposed method with unknown emissivity, the 

maximum and minimum values of infrared image under a specific temperature or a calibrated sample with known 

emissivity can be used as a reference for emissivity correction.  



 

 

Fig. 4 Samples with different known emissivity, (a) steel plate including a slot with local shiny and black painting, 

(b) rail head sample with full uniform black painting and (c) local different painting where the defective area 

includes natural multiple cracks  

4. Results analysis and discussion  

To correct the emissivity influence on infrared images and defect detection, experiments on two samples with 

different known emissivity have been carried out to capture infrared and visible images simultaneously. As the two 

images are captured by two different types of cameras operating at different spectra, the scaling, rotation, 

segmentation and automatic registration of two images have been conducted in pre-processing for images pixel-to-

pixel corresponding. A close spectrum correlation between infrared and visible images is verified considering 

surface emissivity and reflectance behavior of the test objects. The validation of the proposed method is discussed 

with comparing results.  

 

4.1 Spectrum correlation analysis of infrared and visible images  

To identify the emissivity and reflectance responses, Fig. 5 illustrates several line-scanned values of infrared 

and visible images. The images are captured from different known emissivity regions on the rail sample. The line-

scanning direction is parallel to the heating coil with a specific distance as shown in Fig. 4c. The infrared value is 

the pixel value of the thermal image at the end of the heating time. The visible value is the brightness or gray value 

of the visible image. The sum of the infrared and visible value is based on the described method in section 2.2. In 

order to do comparison and avoid the different amplitude scale influence of the two images, the normalized 

amplitude is calculated based on all of the pixel point values of the individual image. A low-pass filter is applied on 

the line-scanned signals to avoid surface roughness influences.  

According to the two line-scanned values on different surface conditions of the sample from Fig. 4c, it can be 

identified that the infrared and visible values present opposite amplitude responses to shiny and black painting areas. 

The line-scanned infrared values of the sample from Fig. 4b are similar along with the coil in different line-scanned 

positions. It means the infrared values demonstrate similar behavior to the similar temperature and emissivity by 

full black painting. The line-scanned infrared values from Fig. 4c present the radiation or emissivity responses 

higher to black painting and lower to shiny surface. On the other hand, the line-scanned brightness values of the 

visible image present higher reflectance to shiny surface and lower one to black painting regions. The opposite 

variation trend of infrared and visible values verified the spectrum correlation and the linear relationship of two 

images response to different emissivity conditions from the shiny, sparse painting to full black painting as shown in 

Fig. 5. Through the sum of infrared and visible values with the specific weight factor, the proposed method gives 

the feasibility to correct the influence of surface’s emissivity of an object in infrared thermography. It demonstrates 

the promising results not only reduce the emissivity variation influence but also improve the measurement 

sensitivity of infrared values in shiny area.  



 

Fig. 5 Line-scanned values of infrared and visible images along the coil with different known emissivity on the rail 

sample from figure 4b and 4c. 

 

4.2 Validation of emissivity correction method on different samples 

The spectrum correlation of infrared and visible response with the monotonic relationship is used to validate 

the proposed method for emissivity correction. According to the line-scanned results in Fig. 5, the sum of infrared 

visible values is based on the equations (3-5), which means the infrared values in different emissivity regions are 

all corrected close to a “constant” value independent of the emissivity and be like infrared values response to black 

painting area. Extending the line-scanned result to full image processing, the emissivity correction of infrared 

images is implemented by experiments and the calculation of various correction coefficients considering different 

emissivity regions. Experimental results including infrared image patterns, spatial and transient responses before 

and after correction have been analyzed with different known emissivity on a steel plate and rail samples.  

 

4.2.1 Validation on steel plate with two emissivity regions  

The emissivity correction results of the steel plate by using two images is illustrated in Fig. 6 for validation. 

The shiny and black painting surface conditions represent two different known emissivity regions. As shown in Fig. 

6a, the infrared image before correction shows different mapping of thermal patterns in two emissivity regions. The 

infrared values in the black painting area are higher than them in the shiny region. In contrast to Fig. 6a, the 

brightness value of the visible image indicates the opposite response to surface conditions of the sample as shown 

in Fig. 6b. The infrared image after emissivity correction provides accurate mapping of thermal patterns around the 

heating coil and slot, which is continuously changed between shiny and painting areas along with the coil direction. 

Compared to previous methods using the normalization and phase features in references [13, 14], the proposed 

method provides real infrared values or temperature for accurate mapping of thermal patterns and defect 

characterization as shown in Fig. 6c. However, it should be noted that the infrared image in Fig. 6c needs more 

improvement by the optimization of algorithm with extra correction factors to reduce surrounding environment 

influences etc. [8, 32].  

 



 

Fig. 6 Emissivity correction of the steel plate sample through the combination of two modality images, (a) infrared 

image at the end of heating, (b) visible image and (c) infrared image after emissivity correction. 

 

The differences of spatial and transient infrared values with different emissivity between black painting and 

shiny areas are used to evaluate the performance of the proposed method and estimate the error for emissivity 

correction. The Fig. 7 illustrates infrared values from the line-scan and selected two points A and B as shown in Fig. 

6c. As shown in Fig. 7a, the line-scanned low infrared value in shiny areas is amplified similar to the big value in 

paint regions. It is easier to identify the defect information based on the higher thermal contrast around the slot as 

shown in the green dotted circle area in Fig. 7a. The continuous variations of line-scanned values after correction 

demonstrate the correct thermal response in different positions, which is independent on the surface emissivity of 

the sample. The Fig. 7b shows that infrared values of the point B are corrected and enhanced close to the point A 

value during the whole heating and cooling times. Comparing the point B values before and after correction, the 

measurement sensitivity of the infrared value in the shiny condition is improved. Because the points A and B are 

neighbor to each other along the coil direction, they should have same temperature responses regardless of the black 

paint and shiny surface conditions. Based on the Fig. 7b, the mean square error (MSE) of the point B to the point A 

is calculated between the original and recovered infrared images. The MSE value before correction with 0.84 and 

after correction with 0.0059 give the objective assessment of the method for emissivity correction of infrared images. 

The results in Fig. 6 and Fig. 7 demonstrate the promising capability of the proposed method for emissivity 

correction and accurate mapping of thermal patterns for defect characterization.  

 

Fig. 7 Infrared images values comparison before and after emissivity correction, (a) specific line-scan infrared value 

and (b) transient thermal response with selected two points A and B from figure 6. 

 

4.2.2 Validation on rail sample with complex emissivity distribution and natural cracks 

 The proposed method is expected to reduce emissivity influence and improve defect detectability of ECPT 

technique for rail inspection. The infrared and visible images of a rail sample from Fig. 3c with complex emissivity 

distribution and natural cracks are illustrated in Fig. 8 for the validation. It can be seen that the cracks in the black 



painted area are clearly indicated by thermal patterns and contrast as shown in Fig. 8a. However, there is no distinct 

thermal contrast in the shiny region for crack characterization because of the emissivity influence. The visible image 

presents higher reflectance in the shiny area than black painted one as shown in Fig. 8b. After emissivity correction, 

Fig. 8c presents the recovered thermal patterns to indicate all of the natural cracks information without the influence 

of the sample surface conditions and emissivity. The infrared values in the shiny area are enlarged with higher 

thermal contrast for crack evaluation. The proposed method by using two images provides the accurate mapping of 

thermal patterns, which is independent of the complex surface emissivity. It improves the performance of the ECPT 

technique for natural crack characterization [4] with better measurement sensitivity of infrared values and higher 

thermal contrast between defective and non-defective areas in the shiny surface conditions of the sample.  

 

Fig 8. Emissivity correction of rail sample through the combination of two modality images, (a) infrared image 

before correction, (b) visible images and (c) infrared images after emissivity correction 

 

The Fig. 9 illustrates a specific line-scanned infrared values and the transient thermal responses of point A as 

marked in Fig. 8. After correction, the line-scanned infrared values in the shiny area are enlarged close to the value 

of black paint conditions as shown in Fig. 9a. The higher infrared values contrast around cracks in shiny region 

shows the improved performance for defect detection. The transient thermal responses of point A in Fig. 9b 

demonstrate that the infrared values before correction are enlarged like that of black painted response in the heating 

stage. However, the correction results in the cooling stage as shown in Fig. 9b need more improvement by the 

optimization of the method, e.g. better selection of weight coefficient or additional correction factors. Compared to 

the infrared image of the black paint sample, the MSE calculation of the original infrared value in Fig. 9b with 2.58 

and the recovered one with 0.33 validate the robust capability of the proposed method for emissivity correction.  



 

Fig. 9 Infrared images values comparison before and after emissivity correction, (a) specific line-scan infrared 

value and (b) transient thermal response with selected point A from figure 8.   

 

In contrast to the transient thermal response of a specific point A in Fig. 9b, the infrared images of the rail 

sample before and after correction are illustrated in Fig. 10 considering the different heating and cooling times. The 

infrared images before correction shows significant emissivity variation influence on thermal patterns in the shiny 

and black paint areas. In the heating stage with frames 10 and 30, the infrared images after correction using the 

proposed method demonstrate the accurate mapping of thermal patterns for crack characterization. However, the 

different thermal pattern responses between the shiny and paint areas in the cooling stages e.g. frames 50 and 100 

still need more improvement by the optimization of the method.  

 

Fig 10. Emissivity correction results of infrared images Frame 10, 30, 50 and 100 at different heating and cooling 

times with demonstration (a, c, e, g) before correction and (b, d, f, h) after emissivity correction 

4.3 Comparative analysis and discussion 

To compare the proposed method with previous studies [4, 13], different infrared imaging results of the sample 

in Fig. 4c are illustrated in Fig. 11. The original infrared image before correction is shown in Fig. 11a. The infrared 

image after emissivity correction using the proposed method is shown in Fig. 11b. The normalized feature based on 

the Ref. [13] is shown in Fig. 11c. The Fig. 11d is the infrared image of Fig. 4b with full black paint. In contrast to 

Fig. 11a, all of the three correction results demonstrate more accurate results of thermal patterns for natural multiple 

cracks characterization as shown in Figs. 11b-11d. As discussed in references [13, 14], the normalization method 

eliminates the emissivity factor from the radiation equation (1) and uses the ratio or contrast results for defect 



characterization. Several abnormal thermal contrast in local areas as shown in Fig. 11c demonstrate its limitation 

for quantitative evaluation. The infrared image with uniform black paint presents accurate thermal patterns without 

emissivity influence as shown in Fig. 11d. However, as we all know, it is difficult for the real application of 

thermography NDT because of the complex painting procedure and the pollution on test object. In contrast to the 

infrared image in Fig. 11d, the MSE calculation of the original image in Fig. 11a with 2.32 and the recovered image 

in Fig. 11b with 9.12 demonstrate the improved capability of the method to obtain accurate thermal patterns. Visually, 

Fig. 11b is most close to Fig. 11d. Above all, the propose method provides more advantages for emissivity correction 

and NDT applications: 1) it provides real thermal values and accurate infrared mapping of thermal patterns; 2) it 

does not need any complex painting procedure and with no pollution on test object; 3) it is independent on the 

surface emissivity variation influence and provides more information from both of the optical and infrared spectra 

by using two images.   

 

Figure 11. Comparison of emissivity correction results with (a) infrared image before correction, (b) correction by 

using two images, (c) normalization results and (d) infrared image with full black paint  

5. Conclusion and future works  

This paper proposes a new emissivity correction method by using two cameras measurement in different spectra. 

It has been applied for the optimized design of our developed ECPT system. A close spectrum correlation of infrared 

and visible images is identified to the monotonic relationship based on the physics behind the emissivity and 

reflectance. According to the retrieved spectrum correlation, the algorithms and invariant correction coefficient are 

developed to reduce the influence of the varying emissivity of an object in infrared thermography with respect to 

wavelength. It is used to correct the infrared values in shiny area for emissivity correction, which make it 

independent of emissivity. Experimental studies are performed for validation on a steel plate and rail samples with 

different known emissivity. The finding from the obtained results demonstrates the improved capability of the 

method for emissivity correction of infrared images. In contrast to previous methods, the proposed method presents 

much more advantages for further defect detection and quantitative NDE (QNDE) applications [4, 8].  

Future works will be carried out to correct the infrared image with the unknown emissivity variation influences 

from different materials, surface roughness, coating layers e.g. with oil, water, oxidation on the top surface of 

metallic object [42, 43] with quantitative pseudo color different computation as measurement errors. The robustness 

evaluation of the proposed method will be conducted based on the providing information and results obtained with 

other different IR and visible cameras. The optimized ECPT system with two cameras will be developed for the 3D 

thermography by using the RGB-D device and for the QNDE [44] as well as the scanning inspection in high speed 

railway NDT applications [4, 8].  
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