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Emittance Preservation in Linear
Accelerators

M. Minty

Abstract.

In linear colliders preservation of the phase space density of charged particles during
acceleration to high energies is essential. In practice, the electromagnetic fields which
govern the beam transport may not be sufficiently well understood. This may arise,
for example, from magnet and structure alignment and/or manufacturing errors, time-
varying electromagnetic fields due to component vibration or imperfect regulation, or
at high beam currents, from beam-induced fields. These inadequacies may be overcome
using measurements of the beam response. In this report we review such methods for
preserving single-bunch beam emittances with experimental results from the Stanford
Linear Collider.

INTRODUCTION

Minimizing dilutions to the beam’s phase space volume, or emittance, over ex-
tended periods is vital for ensuring the highest possible luminosity at colliders.
The Stanford Linear Collider (SLC) is the first high-energy linear collider and
much practical experience on emittance preservation comes from operating this ac-
celerator. Since considerable understanding of beam dynamics in linear colliders
was motivated, stimulated, and triggered by observations from the SLC, it may be
helpful if one has been made familiar with this accelerator. For this a brief overview
of the SLC is given.

The geometry of the SLC is shown in Fig. 1. The 3 km linac accelerates three
bunches simultaneously - a positron followed by two electron bunches. The con-
stant gradient structures are driven by klystrons at 2856 MHz with a 120 Hz repeti-
tion frequency. Typical beam parameters include the bunch populations of 4×1010

particles, the bunch lengths σz ∼ 1 mm, the energy spreads δ < 0.1%, and nor-
malized transverse emittances of γǫx = (4 − 5) × 10−5 m-rad horizontally and
γǫy = (0.5 − 1.0) × 10−5 m-rad vertically measured at the end of the linac at 50
GeV.



FIGURE 1. Overview of the SLC. Two electron bunches are produced at the source, accelerated

to 1.2 GeV, and injected into the electron damping ring where they are damped by emission of

synchrotron radiation and rf acceleration. The two bunches are then extracted, compressed, and

then accelerated to high energy in the main linac. The leading electron bunch is extracted at 20

GeV and deflected onto to the positron production target. The trailing bunch is accelerated to

50 GeV and transported to the interaction point through the collider arc and final focus. The

positron beam is transported at low energy through the beam transport line, accelerated to 1.2

GeV, and radiation damped in the positron damping ring. The positron bunch is then extracted,

compressed, accelerated to 50 GeV (leading the 2 electron bunches), transported through the arc,

and brought into collision with the electrons at the interaction point

.
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Shown in Fig. 2 are measurements [1] of the normalized horizontal emittance
made after several years of SLC operation measured at various locations along the
collider as a function of bunch charge. By this time many emittance enlargement
effects had been reduced significantly such as optical mismatches in the ring-to-
linac transport line [2–4], dilutions arising from quadrupole and accelerator mis-
alignments [5–9], and coupling generated in the nonplanar collider arcs [10]. In
addition, both long and short term variations in the beam properties at injection
[11] and in the main linac were controlled using orbit feedback [12–20] and BNS
damping. At injection, fluctuations and drift of the transverse beam position and
angle were regulated using launch feedback loops [13,14] while the injection phase
was held nominally constant by maintaining the phase of the injected beam using
analog feedback between the rf systems of the linac and damping ring [21].

From Fig. 2, emittance growth in the ring-to-linac transport line was dominated
by chromatic effects [22] which were exaggerated by high-current bunch lengthen-
ing in the damping rings [23–29] and bunch compression. In the main linac the
emittance dilutions were governed by both wakefield and chromatic effects which
became increasingly important at high beam currents [8,22,30–33]. Minimizing and
stabilizing such current-dependent dilutions proved essential for achieving routine,
high-luminosity operation. By the end of the SLC program, the emittance growth
from the (uncoupled) damping rings to the end of the linac was routinely main-
tained to less than (15-20)% at bunch charges of 4×1010 both horizontally and
vertically compared with nearly a factor of 3 increase seen in Fig. 2.

FIGURE 2. Emittance growth from the SLC linac entrance to the final focus as a function of

bunch population. Measurement locations are denoted by D at the exit to the damping ring, R

at the linac entrance, L at the end of the linac, and F in the final focus. Courtesy J. Seeman

(2000).
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In this report emittance preservation during acceleration in the linac proper will
be discussed. In sections 2 and 3 basic concepts in transverse and longitudinal
emittance preservation, respectively, will be reviewed. In section 4 will be de-
scribed commonly applied steering algorithms. A conclusion is given in section 5.
In appendix A the emittance is defined. In appendix B emittance measurement
procedures are described.

TRANSVERSE EMITTANCE PRESERVATION

The transverse dynamics of a single particle in a linac is governed by three
variables: the transverse wakefield W⊥, acceleration dE

ds
, and k the lattice focussing.

In the following we will consider special cases of the general equation of motion
[34,35] given by1

d

ds

[

E(s)
dx(z, s)

ds

]

+ E(s)k2(s)x(z, s) = e2
∫ ∞

z
ρ(z′)W⊥(z′ − z)x(z′, s)dz′, (2)

where s represents the longitudinal coordinate and z gives the longitudinal co-
ordinate relative to the bunch center. Here ρ(z) is the longitudinal distribution
function of the beam which, in the approximation of zero transverse dimension as
in reference [34], is equal to the line density of particles in the bunch. This approxi-
mation is valid provided that the beam sizes are much less than that of the vacuum
chamber so that the transverse wakefield may be taken to be uniform across the
bunch’s transverse dimensions. For a particle at position z the transverse wakefield
is evaluated over the preceeding particles only. In the special cases to be discussed
below, the lattice strength k(s) will be assumed to be smoothly varying rather than
consisting of discrete quadrupoles.

Case i: W⊥ = 0 - zero current limit
E = E0, the beam energy at injection, or dE

ds
= 0 - no acceleration

k = k0 - constant gradient
In this case with initial conditions at injection x(0) = x̂ and x′(0) = 0,

d2x

ds2
+ k0

2x = 0 (3)

with solution x(s) = x̂ cos k0s which represents betatron oscillations of peak ampli-
tude x̂ about a reference trajectory xc +xη. In general, the deviation of the particle
trajectory is given by

1) the original notation of refs. [34] and [35] has been modified slightly noting

γ(s) =
E(s)

mc2
and k(s) =

2π

λ(s)
, (1)

where γ is the Lorentz factor, E is the beam energy, mc2 is the particle rest mass, λ(s) is the
instantaneous wavelength of betatron focusing, and e2 = r0mc2, where r0 is the classical electron
radius.

4



x = xc + xβ + xη

= xc + xβ + ηδ. (4)

For notational simplicity, the solutions for x in Eq. 3 as in the remainder of this
chapter will refer to xβ (the subscript will be omitted). In Eq. 4 xc represents the
central trajectory which is defined as the mean orbit that an on-energy particle
would follow through the lattice. Ideally this term is zero if the orbit is flat (for
a planar linac) passing through perfectly aligned structures and magnets. Due to
misalignments xc is in practice not perfectly linear. The term xη = ηδ gives the
additive contribution arising from an energy deviation of the particle, where η is
the dispersion, and δ is the relative energy deviation of the particle from that of
the design particle.

Case ii: W⊥ = 0 - zero current limit
E = E0(1 + G · s) - linear acceleration with gradient G
k = k0 - constant gradient

The equation of motion is

d2x

ds2
+

1

E
(
dE

ds
)
dx

ds
+ k0

2x = 0, (5)

with solution for x(0) = x̂ and x′(0) = 0

x(s) = x̂

√

E0

E(s)
cos k0s. (6)

This result shows that the betatron oscillations damp as 1√
E

.

Damping of the beam’s transverse dimensions in a linear accelerator is concep-
tually easy to visualize. Sketched in Fig. 3a is the particle momentum at energy
E0 decomposed vectorially into its transverse momentum p⊥ and longitudinal mo-
mentum p‖. The angle x′ is

x′ = tan−1(
p⊥
p‖

) ≈ p⊥
p‖

for p⊥ << p‖. (7)

In Fig. 3b the decomposed momentum after acceleration by p‖
′∆s is shown. The

particles’ transverse momentum p⊥ is unchanged by the acceleration and

x′(s + ∆s) ≈ p⊥

p‖(1 +
p‖′

p‖
∆s)

≈ p⊥
p‖

(1 − p‖
′

p‖
∆s)

≈ x′(s)(1 − p‖
′

p‖
∆s). (8)

Differentiating gives
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x′′(s) ≡ x′(s + ∆s) − x′(s)

∆s
≈ −p‖

′

p‖
x′(s) or

x′′ +
E ′(s)

E0

x′(s) = 0 (9)

which is Eq. 5 with k = 0.

(a)  E=E0

p
p⊥

p
�

(b)  E >E0

� x´(s)

p´ 

p
� p´

�
 (�s)

p⊥

x´(s+�s)�

FIGURE 3. Illustration of damping of transverse oscillations in linear accelerators.

From appendix A the final emittance scales as

ǫ ∼ < x2 >
1
2 ∼ E0

E
ǫ0 =

γ0

γ
ǫ0, (10)

where γ is again the Lorentz factor. That is, the emittance ‘damps’ as 1
γ
. For this

reason, in practice one often expresses emittances as γǫ along the linac as it is this
quantity which is conserved in the absence of dissipative forces.

So far the transverse motion of only a single particle has been considered. For
a bunch consisting of multiple particles, the situation is more complicated since
particles of different energy are focussed differently. The lattice focussing depends
on the beam energy as

k2 =
ec

Eβ

∂Bz

∂x
, (11)

where βγ =
√

γ2 − 1 and ∂Bz

∂x
describes the quadrupole magnetic fields. The motion

of the bunch centroid (defined as the position of the mean of the bunch charge
distribution) after a net displacement of the bunch may therefore not be damped
as 1√

E
. That is, a macroparticle approximation for centroid motion breaks down if

the bunch has an internal energy spread.
The measured horizontal beam centroid motion is shown as a function of position

along the SLC linac [1,8] in Fig. 4 for different bunch populations. At low current
the centroid motion decays faster than as 1√

E
. This is due to the bunch energy

spread which causes a spread in the phase advance of the particles within the
bunch. At 2.5× 1010 particles the longitudinal profile had been optimized and the
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centroid motion is seen to decay at least initially as 1√
E

like that of a single particle.

Towards the end of the linac and at higher bunch charge, the transverse dynamics
is more complicated and W⊥ �= 0 must be considered.

FIGURE 4. Measured horizontal trajectories versus charge at the SLC under identical injection

conditions with the overall linac phase adjusted to minimize the final energy spread. Courtesy J.

Seeman (2000).

Case iii: W⊥ = W⊥
′z - wakefield linear along the bunch’s longitudinal extent

E = E0 or dE
ds

= 0 - no acceleration
k = k0 - constant gradient

The equation of motion is

x′′(z, s) + k0
2x(z, s) =

e2

E(s)

∫ ∞

z
ρ(z′)W⊥(z′ − z)x(z′, s)dz′. (12)

The essential features of the general solution [35] may be visualized using a sim-
plified macroparticle model [1,8]. Here, the bunch is divided into three slices each
having a rectangular distribution. The head (h) has charge N

4
, the core (c) has
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charge N
2
, and the tail (t) charge N

4
. The core is separated from the neighboring

slices by the rms bunch length σz. The equations of motion for each macroparticle
are

x′′
h + k0

2xh = 0 by causality the leading slice has no driving term

x′′
c + k0

2xc = Bxh the driving term is given by the effect of the head

on the core

x′′
t + k0

2xt = 2Bxh + 2Bxc, (13)

where in the last equation the first term has a factor of 2 representing the 2σz

displacement of the head relative to the core, and the second term has a factor of
2 since the core has twice the charge of the head. The factor B is

B =
e2

E
(
N

4
)W⊥σz. (14)

The solutions for Eq. 13 with initiappeal condition x′(s = 0) = k0x̂ are

xh = x̂ sin k0s

xc = x̂[(1 +
B

4k0
2 ) sin k0s −

B

2k0
s cos k0s]

xt = x̂[(1 +
2B

k0
2 ) sin k0s −

2B

k0

s cos k0s −
B2

4k0
2s2 sin k0s]. (15)

In the 3-slice macroparticle model the amplitudes of the head, tail, and core are
all linear in the initial displacement x̂. Each slice adds an additional power of
(Bs) which is proportional to the product NW⊥s which suggests an exponential
growth of the tail of the beam in the limit of many slices [8]. Shown in Fig. 5
are profile monitor measurements and trajectories for three different initial vertical
displacements (settings of a vertical dipole corrector magnet) from the SLC [8].
The middle plots correspond to an optimized orbit. In the top plots the beam is
kicked in one direction and in the bottom plot in the other direction. The increase
in vertical amplitude towards the tail of the bunch shows the intrabunch particle
displacements due to the transverse wakefields as described in Eq. 15. Also evident
from this measurement is a position-energy correlation2. The observed decrease in
energy along the bunch depends subtely on the cancellation between the rf slope
and the slope of the accelerating rf. This will be discussed further in the next
section.

While the emittance of a slice of the beam in Fig. 5 seems nearly preserved, for
experiments the projected emittance (seen by projecting the distribution onto the
y axis) is important and is observed here to be larger than the slice emittances.

2) these measurements were obtained by deflecting the beam onto a fluorescent screen using a
kicker magnet located in a dispersive region (in the collider arcs) so that the measured horizontal
position indicates an energy deviation; i.e. the profile monitor shows y(E).
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m
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FIGURE 5. Profile monitor measurements in a region of nonzero dispersion after the end of

the SLC linac and vertical centroid trajectories with a positive perturbation to the particle orbit

(top), under nominal conditions (middle), and with a negative perturbation (bottom). Courtesy

J. Seeman (2000).

Shown in Fig. 6 are now the transverse beam profiles measured at the end of the
SLC linac for various initial beam displacements [36]. These measurements were
made [37] by deflecting the beam using fast kicker magnets located within the
linac so that the true transverse profile y(x) is represented. Based on the above
analysis we may interpret the faint tail seen with large amplitude excitations as the
off-energy and off-axis tail generated by the transverse wakefields.

Case iv: W⊥ = W⊥
′z = W⊥z/l

dE
ds

�= 0 or E = E0(1 + Gs)
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FIGURE 6. Measured beam profiles demonstrating emittance growth due to wakefields as a

function of increasing oscillation amplitude. From left to right the amplitudes in the applied

horizontal trajectory displacement are 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm. The single-bunch

charge was 2×1010 electrons. Courtesy J. Seeman (2000).

(a) k adiabatic3

The solution to the general equation of motion has no closed form expression. It

is obtained [35] by expanding the solution x(z, s) in a power series and solving
recursively. In the asymptotic limit of strong wakefields (|η| >> 1), the peak-to-
initial amplitude given at the end of the linac of length L is [38]

x(z, L)

x0
=

√

E0k0

E(s)k(s)

η− 1
6√

6π
e

3
√

3
4

η
1
3 , (16)

where

η(z) =
eNW⊥

′z2

σz

∫ L

0

ds

E(s)k(s)
>> 1. (17)

The last 2 equations show the lagging particle trajectory increasing exponentially
with the transverse wakefield. Based on such observations first made at the SLC
[39]- [41], this phenomenon has come to be referred to as beam breakup [39]- [42].

Another example of large transverse beam tails is shown [8] in Fig. 7. In this
measurement the bunch was intentionally lengthened to about 2.5σz or 2.5 mm
and made to oscillate both horizontally and vertically to sample the transverse
wakefields. The profile shows y(x). The head of the beam is at the lower right while
the tail of the beam contributes significantly to larger projected beam emittances
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FIGURE 7. Measured transverse profile of a long bunch showing large transerverse displace-

ments of the bunch tail. Courtesy J. Seeman (2000).

in both transverse planes.

(b) k tailored

The cure for the beam breakup instability may be motivated as the follows. With
the same focussing function k experienced by all the particles within a bunch, a
perturbation at the head of the bunch due to the transverse wakefield may reso-
nantly drive particles in the tail of the bunch. By making the focussing function
different across the bunch, such resonant build-up can be avoided. This is precisely
the technique proposed by Balakin, Novokhatsky, and Smirnov known today as
BNS damping [43] in their honor. Using the 3-slice model of ref. [1,8], the head
of the bunch is focussed with k = k0 + α, the core with k = k0, and the tail with
k = k0 − η. Requiring [1,43] that the head and core follow the same trajectories,
the solutions for α and η are

α = e
N

4

W⊥σz

E0k0
, core follows head, and η = 4α. (18)

At the SLC the variation in k was achieved by back-phasing the first part of the linac
(i.e. the bunch preceeds in time the rf wave) and, to restore a small energy spread
at the linac end, by forward phasing the remainder of the linac. This introduced a

3) k is taken to scale with energy such that the instantaneous wavelength λ(s) = 2π/k is constant;
i.e. λ(s) = λ0.
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correlated energy spread within the bunch as shown [44] in Fig. 8 which is just as
desired to achieve BNS damping on a global scale. The optimum choice of phases is
current-dependent and was determined by measuring the peak amplitude response
at the end of the linac following a perturbation applied after injection.

FIGURE 8. Estimated energy spread at the end of the linac (i.e. a projection along the hor-

izontal axis of Fig. 5) for different complements of linac klystron rf phases. The two different

curves are optimized for two different bunch currents. Courtesy F.J. Decker (2000).

Measured transverse centroid oscillations both with and without BNS damping
invoked are shown [1] in Fig. 9 following an intentionally applied initial displace-
ment early in the SLC linac. The measured centroid displacement normalized to
initial kick amplitude was reduced by about a factor of 10 with BNS damping
implemented.

(c) k exact
With BNS damping alone, the projected 6-dimensional beam emittance may as-
sume large values along the linac where the beam energy spread is large. Subsequent
emittance dilution may also occur if the dispersion is not perfectly corrected. Alter-
natively, a general condition on the focussing k may be determined. Substituting
x(s) = x̂0 cos(k0s + φ0) in Eq. 2, leads to [43,45]

k0
2 = k2(z, s) +

r0

γ(z, s)

∫ ∞

z
ρ(z′)W⊥(z′ − z)x(z′, s)dz′. (19)

If k(z, s) can be adjusted to exactly compensate the second term in Eq. 19 for
all particles within the bunch, then the particles within the bunch follow the same
trajectory and experience the same focusing. This allows the small projected 6-
dimensional beam emittance to be maintained over the entire length of the linac.

The condition given in Eq. 19 is refered to as auto-phasing and is hard to realize
in practice [8]. The adjustable parameters are the lattice focussing k, the beam
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FIGURE 9. Measured horizontal trajectories obtained under nominally identical conditions

without BNS damping (top) and with BNS damping (bottom) at 2×1010 particles. Courtesy J.

Seeman (2000).

energy γ, and the longitudinal profile ρ. Of these, the easiest to control is the
longitudinal profile, which is the main topic of the next section.

LONGITUDINAL EMITTANCE PRESERVATION

The energy of the particles with longitudinal density distribution ρ(z) is a sum of
the injected beam energy E0, the energy gained in acceleration from each klystron
∆Ei, and the losses from longitudinal wakefields W‖ [31,45]:

E(z) = E0 +
Nklys
∑

i=1

[

∆Ei cos(φi + φ(z)) + ∆si

∫ ∞

z
W i

‖(z
′ − z)ρ(z′)dz′

]

, (20)

where φi is the klystron phase (i.e. the arrival time of the beam with respect to
the crest of the rf), φ(z) = 2πz

λrf
, λrf = c

frf
is the rf wavelength at frequency frf , and

∆s gives the distance between klystrons.
The energy spread of the bunch σE is obtained by averaging over the particle

distribution after subtracting out the mean energy <E > of the bunch. Normalized
to the mean energy

σE

E
=

1

<E >

[

∫ ∞

−∞
(E(z)− < E >)2ρ(z)dz

] 1
2

, (21)
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where the mean energy of the bunch is

<E >=
∫ ∞

−∞
E(z)ρ(z)dz. (22)

In the low-current limit (ρ(x) ∼ 0, W⊥ = 0, W‖ = 0), the beam does not take
away any energy from the accelerating structures and the beam is placed on the
crest of the rf wave to achieve both maximum acceleration and minimum energy
spread within the bunch. At higher beam currents while invoking BNS damping
(ρ(x) �= 0, W⊥ �= 0) with W‖ = 0, the klystrons in the first part of the linac are
phased to impart relatively higher energy to the head of the bunch while in the
later part of the linac the energy spread is restored (recall Fig. 8).

At even higher bunch currents, (ρ(x) �= 0, W⊥ �= 0) with W‖ �= 0 one must
carefully balance the second and third terms in Eq. 20; that is cancel the energy
variation along the bunch arising from the slope of the rf and that from the longitu-
dinal wakefield. Shown in Fig. 10 are sketches illustrating such cancellation. The
effective rf gain representing the vector sum of all accelerating stations is plotted
versus time together with the projection of the charge distribution which shows the
resultant energy spread of the bunch. At low current, a bunch placed on crest has
minimum energy spread. Off crest, there is a position-energy correlation and the
energy spread is increased. At high current, due to longitudinal wakefield, or beam

loading, a bunch placed on crest has a large energy spread. For short, high inten-
sity bunches, the energy spread may be minimized by placing the beam off-crest as
shown. In this case the beam-induced wakefield exactly cancels the slope of the rf
across the bunch.

(a)

(b)

FIGURE 10. Effective energy gain and energy spread for low (a) and high (b) current bunches

illustrating optimum klystron phasing for minimum energy spread.
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Measurements of the beam energy spread at the end of the linac versus klystron
phase may be used to determine the optimum phase settings. An example [46] is
given in Fig. 11. The case of highest energy gain, case (f), corresponds to Fig. 10b
for the on-crest bunch. As the rf phase was varied an optimum condition, case (b),
was attained albeit with a long low-energy tail.

FIGURE 11. Measured energy spread at the end of the SLC linac for various relative overall

linac phase. The vertical axis shows relative intensity of the energy distribution of the beam while

the horizontal axis shows the relative beam energy spread. Maximum accelerating gradient, or

zero absolute phase with respect to the rf crest, is seen in subplot (f). Courtesy K. Bane (2000).

Depending on the bunch length and charge the cancellation may be imperfect
resulting in a nonlinear energy variation across the bunch which, as can be seen
in Fig. 11, results in non-Gaussian energy distributions with energy ‘tails’. Such
energy tails have proven to be highly detrimental to collider performance. Highly
motivated to minimize chromatic effects in the downstream final focus systems,
commensurate measures are always taken to understand the longitudinal beam
dynamics [47–50] and to avoid such tails in the beams’ energy distribution. This
may be achieved by shortening the bunch using bunch compression, by shaping
the bunch distribution to modify the wakefield-driven term in Eq. 20 using bunch

shaping or possibly using a combination in a scheme refered to as over compression.
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Bunch Compression
To minimize the effects of imperfect cancellation between the accelerating rf and

the longitudinal wakefields, the bunch length is made shorter before injection into
the main linac using bunch compressors. A schematic view of a bunch compressor
is shown in Fig. 12. It consists of a transport line with initially zero dispersion
containing an acceleration structure. The bunch first passes the accelerating cavity
at the zero crossing (that is, there is no net energy gain averaged over the bunch)
which introduces an energy-position correlation along the bunch. The bunch is
then transported through bending dipoles. The inherent energy-dependent path
length of the transport line is such that particles at the front of the bunch travel a
longer distance while particles in the tail travel a shorter distance which produces
a compression of the bunch length.

power source

compressor
cavity

linear accelerator

�

�

�

�

�

�

(� ,� )

(� ,� )

(� ,� )

1 1

22

33

FIGURE 12. Schematic illustration of the bunch compression scheme implemented at the SLC

(see also Ref. [49]).

For illustration, the bunch length at the entrance to the linac is evaluated. Ini-
tially, the bunch enters the ’compressor cavity’ with particle coordinates (φ1 =
ωz
c

= ω
c
(λ1

2π
), δ1). At the exit of the cavity,

φ2 = φ1

δ2 = δ1 +
eV

E
sin φ1 (23)

At the entrance to the linac, after passing through the dispersive region,

φ3 = φ2 −
R56ω

c
δ2

δ3 = δ2, (24)
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where R56 = dz/dδ represents the lattice property which translates energy into
longitudinal displacement. Combining Eqs. 23-24,

φ3 = φ1 − R56(δ1 +
eV

E
sin φ1) ≈ φ1(1 −

R56eV ω

Ec
) − R56δ1. (25)

The bunch length at the entrance to the linac is

σz3 =
ω

c
σφ3 ≡

ω

c
<φ2

3 >
1
2

=
ω

c
[(1 − R56

eV ω

Ec
)2 <φ1

2 > −2R56(1 − R56eV ω

Ec
) <φ1δ1 > +R56

2 <δ1
2 >]

1
2

≈
√

(1 − ω

c
R56

eV

E
)2σ2

z1 + R2
56σ

2
δ1 ≈ (1 − ω

c
R56

eV

E
)σz1 , (26)

assuming < φ1δ1 >= 0 (i.e. there is no incoming E−z correlation) and that the
incoming energy spread is small so that < δ1

2 > is negligible. The trade-off between
small bunch length and larger energy spread may be evaluated from σδ =< δ3

2 >
1
2 ,

which is usually not of importance. The above analysis holds provided that the
incoming bunch length is small (sinφ1 ∼ φ1) so that only the linear portion of the
accelerating voltage of the compressor cavity is seen by the beam.

Bunch Shaping [51]
The delicate process of canceling the effects of the slope of the rf and the energy

gradient caused by beam loading may be simplified, in principle, by adjustments to
the longitudinal charge distribution ρ(z) in Eq. 20. The energy gained of a particle
after traversing an accelerating structure [51] is

E(θ1) = E0 cos θ1 +
∫ (θ0−θ1)

0
ρ(θ′)W‖(θ0 − θ1 − θ′)dθ′, (27)

where θ0 is the position of the head of the bunch and θ′ varies from 0 at the head
of the bunch to θ0 − θ1 where the net energy is evaluated. To reduce the energy
spread within the bunch, eV (θ1) = E(θ1) should be independent of θ1;

∂V (θ1)

∂θ1
= 0. (28)

Using a realistic model of the longitudinal wakefield of the SLC structures, this
equation has been solved for the charge distribution as shown [51] in Fig 13. The
horizontal axis shows the phase of individual particles with respect to the head of
the bunch (located at phase zero) while the different curves show different phase
offsets of the bunch head relative to the crest of the rf. The points marked by ‘T’
indicate the extent of the bunch for a total of 5×1010 particles. For short bunches
with large phase offsets (as needed for BNS damping), Fig. 13 shows that a charge
distribution peaked towards the head of the bunch is desirable.
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FIGURE 13. Particle distribution, or bunch shape, as a function of phase angle for minimum

energy spread. Courtesy G. Loew (2000).

Overcompression
Overcompression [52,48–50] using the bunch compressor was used at the SLC

for minimization of the energy tails using a combination of bunch compression
and bunch shaping. It served to be particularly useful in the case that sin φ1 �=
φ1 in Eq. 25; that is for the case that the nonlinear fields of the compressor
cavity are important. It is hoped that future linear collider designs make note of
the unfortunate consequences of bunch lengthening in the upstream damping ring
systems (see [24]- [29]) and avoid having to treat such nonlinear effects.

Shown [52] in Fig. 14 are simulations of the longitudinal phase space and resul-
tant energy spread at the entrance to the linac taking into account the nonlinear
rf fields seen by a long bunch of length 1/10 that of the compressor cavity rf wave-
length. The case of undercompression is shown on the left while the distributions
for overcompression at higher compressor cavity voltage on the right. Overcompres-
sion yields two advantages: reduced particles in the energy tails as well as a steeper
rise in the longitudinal distribution at the head of the bunch. The corresponding
rf waveform including beam loading and the energy spread calculated at the end of
the linac are shown [52] in Fig. 15. On the left, the under-compressed bunch has a
longitudinal distribution which does not cancel the slope of the rf. The result is an
extended low energy tail in the energy spectrum. With overcompression, the slope
of the rf and the beam loading compensate one another nearly perfectly resulting
in a small energy spread at the end of the linac.
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0 5 10 15 20

−1

−0.5

0

0.5

d
e
l 
E

 /
 E

  
%

Intensity

0 5 10 15 20

−1

−0.5

0

0.5

d
e
l 
E

 /
 E

  
%

Intensity

−5 0 5

−1

−0.5

0

0.5

z [mm]

d
e
l 
E

 /
 E

  
%

End of Linac

−5 0 5

−1

−0.5

0

0.5

z [mm]

d
e
l 
E

 /
 E

  
%

End of Linac

FIGURE 15. Simulation of the rf waveform and beam energy distributions at the end of the

linac with bunch undercompression (top) and bunch overcompression(bottom). Courtesy F.J.

Decker (2000).

19



Measurements of the beam at the end of the linac in a dispersive region are shown
[52] in Fig. 16 with undercompression (left) and with overcompression (right). The
absence of the low energy tails justified the routine use of over-compressed beams
at the SLC.

FIGURE 16. Measurements of the beam profile at a dispersive location at low compressor

voltage (left) and with bunch overcompression (right). Courtesy F.J. Decker (2000).

TRAJECTORY STEERING

Motivation and perspective for this section is given with the following consider-
ations. Recall from Appendix A that

ǫ =
σx

2

β
with σx

2 = <x2 >
1
2 . (29)

As discussed previously, the horizontal (x) or vertical (y) trajectory is given by a
superposition of terms (c.f. Eq. 4):

x = xc + xβ + xη

= xc + xβ + ηδ. (30)

In chapter 2 was described how to minimize contributions from the term xβ while
chapter 3 focussed on minimization4 of xη by minimization of the beam energy

4) in the absence of cross-correlations of the form <xcxη >= 0, for example, the dispersive term
xη = ηδ contributes in quadrature
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spread δ. In this section steering procedures which aim to minimize emittance
dilutions arising from deviations in the central trajectory xc and from the dispersion
η will be described.

Increased beam emittances may arise from beam-to-magnet or beam-to-structure
position deviations as shown conceptually in Fig. 17. The beam passing through a
single misplaced quadrupole experiences the next lower-order field namely a dipole
field (< xcxβ > �= 0). The misalignment therefore generates a betatron oscillation
and dispersion as higher energy particles are less deflected by the dipole field. In
the case of a displaced structure a betatron oscillation is also induced due to the
transverse wakefield. Recall that the driving term is linear in the wakefield times the
initial displacement. In either case, the ensuing orbit is such that further emittance
dilutions may result downstream of the perturbation due to the initial errors.

s

s

(a)

(b)

FIGURE 17. Conceptual drawing illustrating orbit perturbations due to misaligned

quadrupoles (a) or structures (b).

A One-to-one steering

This algorithm aims to steer the beam so that the transverse displacements mea-
sured by beam position monitors (BPMs) are minimized. The BPMs are typically
mounted near the center of quadrupoles since their sensitivity is highest at large
β-function. A conceptual orbit steered one-to-one is shown in Fig. 18. The beam
is successfully kicked to pass through the magnet center and, assuming that the

ση = <xη
2 >

1

2 = η2<δ2 >
1

2 . (31)
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BPM is not offset with respect to the quadrupole, the BPM would show zero dis-
placement. Notice however that one-to-one steering generates dispersion which
contributes to emittance dilutions.

s

FIGURE 18. Conceptual illustration of a closed bump that would minimize the BPM reading

after one-to-one steering.

In a transport line the beam centroid position measured downstream at location
s = j obeys

xj =
j

∑

i=0

√

βiβjθi sin(θj − θi), (32)

which has contributions from each dipole kick θi and depends on the β-functions
at the location of the initial disturbance (i) and at the observation point (j). The
corrector magnet fields to be applied to minimize the BPM readings will be solved
for assuming linear transport; that is, that there are no nonlinear magnetic fields
and the measurements are made at low bunch current so that nonlinear wakefield
effects may be ignored.

In matrix form

�x = M�θ, (33)

where �x is the set of measurements from m BPMs, �θ is the set of kick angles to be
applied by n correctors, and M contains the transfer matrix elements between the
correctors and the BPMs:

xT = (x0, x1, ..., xm) (34)

θT = (θ0, θ1, ..., θn) (35)

Mij =
√

βiβj sin(φj − φi) (36)

Solving Eq. 37 the kick angles to be applied for minimizing the BPM readings are
obtained:

MT�x = MT M�θ or �θ = (MT M)−1MT �x. (37)

If the number of correctors equals the number of BPMs then M is a square matrix

so Eq. 37 reduces to simply �θ = M−1�x. Otherwise the general form is taken. If
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n > m the matrix is overdetermined. For n < m the number of unknowns exceeds
the number of measurements so an independent measurement should be made after
changing some parameter, for example, the beam energy. In a linear accelerator Eq.

32 must be modified [53] to include the energy scaling factor
√

Ei

Ej
. This introduces

m additional unknowns so additional measurements are required to constrain the
solution.

As motivation for the algorithms to be used below in the discussion of beam-
based alignment and dispersion-free steering, the solution is equivalently formulated
in terms of a minimization procedure, which is well adapted to computational
evaluation. The function to be minimized, given by Eq. 33, is

∑

j

[

xj −
∑

i

Mijθi

]2
, (38)

where xj again represents the BPM measurements and the fitting function
∑

i Mijθi

has unknowns θi. The minimization procedure demands

0 =
∂

∂θ

[

∑

j

(xj −
∑

i

Mijθi)
2
]

= 2
∑

j

[

xj −
∑

i

Mijθi

]

Mkj, or

∑

j

Mkjxj =
∑

j

∑

i

MijMkjθi, (39)

which is identical to Eq. 37.

B Beam-based alignment

We define beam-based steering algorithms as ones which provide information
on magnet, BPM, or structure misalignments using measurements with the beam.
With this definition, one-to-one steering may also be considered a beam-based
alignment algorithm since the applied kicks θ are related to the quadrupole dis-
placements ∆x by θ = k∆x, where k is the quadrupole focussing field.

More generally, we take in this example into account that the electrical zero of
the BPMs may not be coincident with the magnetic center of the quadrupoles and
that the quadrupoles themselves may be displaced with respect to the reference
axis. The coordinate system used is sketched in Fig. 19. Here the beam position x
measured with respect to some reference axis, which is common to all magnets, is
given as a sum of the quadrupole displacement xq, the difference in location of the
electrical center of the BPM and the magnetic center of the quadrupole xbpm, and
the measured BPM value xm.

The beam position xk and angle xk
′ at quadrupole k are given [7] by
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FIGURE 19. Coordinate system used in the example of beam-based alignment. (Courtesy C.

Adolphsen (2000).

⎛

⎜

⎝

xk

xk
′

1

⎞

⎟

⎠ = Rj+1,k

{

Rj,j+1

[

⎛

⎜

⎝

x
x′

1

⎞

⎟

⎠

j

+

⎛

⎜

⎝

−xq

0
0

⎞

⎟

⎠

]

+

⎛

⎜

⎝

xq

0
0

⎞

⎟

⎠

}

(40)

where ()j gives the beam position and angle with respect to the quad center, the
term in [] is the beam position with respect to the reference axis, Rj,j+1[] is the
beam position with respect to the reference axis transported between quad j and
quad j + 1, and the term in {} is the beam position and angle with respect to the
quad center transported between quads j and j + 1. Rearranging terms gives

⎛
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xk

xk
′

1
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⎟

⎠ = R0,k
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⎜

⎝
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⎠

0
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∑
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(Rj+1,k − Rj,k)

⎛

⎜

⎝

xq,j

0
0

⎞

⎟

⎠ , (41)

where the sum is taken over upstream quadrupoles. The function to be minimized
is then

∑

k

[

xm − (xk − xq − xbpm)
]2

, (42)

where xm are the measurements and (xk − xq − xbpm) is the fitting function with
unknowns xq, xbpm and the initial position and angle x0 and x0

′.
The number of measurements is about twice the number of unknowns so the

system is underconstrained. To constrain the solution, two independent measure-
ments are required. An independent set of data may be obtained by scaling all the
quadrupoles and correctors by a common factor and repeating the measurements.
Multiple such scalings may be used to overdetermine the system which reduces the
sensitivity of the solution to statistical errors.
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C ‘Wakefield bumps’

Through the early 1990’s emittance dilutions were controlled by imposing tight
tolerances on injection errors as precursor to BNS damping [11,34], steering us-
ing both one-to-one correction and localized beam-based alignment [7,54], and by
invoking BNS damping. As the beam currents were increased, a more localized
emittance preservation technique was developed in which empirically determined
trajectory oscillations (‘bumps’) were used to cancel emittance dilutions from trans-
verse wakefields and dispersive errors. While the origins of the disturbances could
not be easily localized longitudinally along the linac, the accumulated effects could
be cancelled using such bumps and the emittance dilution could be reduced by a
factor of almost ten [55]. The effect of the beam was determined by emittance
measurements near the end of the linac (see Appendix B).

Two trajectories in both x and y are shown [55] in Fig. 20. Both trajectories
produced about the same small emittance measured near the end of the linac.
Notice the vertical scale which shows excursions of nearly 750 µm peak-to-peak.
While wakefield bumps were used for many years, it became clear as the currents
were increased that this technique was inherently unstable; small (e.g. thermal)
changes in the reference line phase, for example, changed the phase advance over the
bump range so that even this more localized correction scheme was not sufficiently
local to be stable against realistic variations in the accelerator. Both trajectories
in Fig. 20 resulted in about the same final beam emittances indicating that the
procedure was not deterministic.

Physical insights were gained by simulations carried out using the program LIAR
[56]. The model included representative amplitudes of the wakefield bumps which
minimized the relative emittance growth at the locations of the measurements. The
relative growth in normalized emittance is shown [57,58] in Fig. 21 as a function
of position along the linac. There are several important conclusions to be drawn
from this simulation result:

• Comparison with Fig. 8 shows that at the first emittance measurement, the
optimization had been made in a location where the energy spread of the beam
was large; that is, a compromise was made using wakefield bumps between
correction of dispersive and wakefield-induced errors.

• Between the emittance measurement stations, there was uncontrolled emit-
tance growth.

• Between the final emittance measurement station and extraction of the beam
from the linac, there was significant emittance growth.

• Most importantly, being nonlocal in nature, small changes in the phase ad-
vance could destroy this delicate cancellation. In practice this caused signifi-
cant time-dependent variations in the measured emittances [37]- [62].
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FIGURE 20. Two measured orbits with empirically determined coherent betatron oscillations

used to cancel accumulated wakefield and dispesion errors. Courtesy J. Seeman (2000).
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FIGURE 21. Simulated emittance growth as a function of position along the linac. The loca-

tions of the feedback loops, which controlled the amplitude of the wakefield bumps, are shown

along with the locations of the emittance measurements. Courtesy R. Assmann (2000).

D Dispersion-free steering

So far we have described one-to-one steering which is a first step in orbit optimiza-
tion but is imperfect as minimization of the BPM reading in a displaced quadrupole
generates dispersive errors, beam-based alignment of quadrupole displacements
which works beautifully at low beam currents where there is no wakefield-generated
dispersion, and wakefield bumps which while more local than BNS damping is
highly sensitive to small perturbations in the electromagnetic optics. With perfect
implementation of either procedure, dispersive emittance dilutions may still result.
As an example, consider a closed trajectory bump of the kind illustrated in Fig. 17.
It has been shown [65] using LIAR and realistic optical parameters of the SLC linac
that a closed 100 µm π-bump at a quadrupole located early in the linac generates
nearly 0.5 mm dispersion at the end of the linac. Naively, about 6 such bumps
acting independently would produce a dispersive emittance contribution equal to
the final emittances typically achieved at the SLC.

Dispersion-free steering [63–65] is an algorithm which corrects even more locally
dispersive errors from misaligned quadrupoles and dispersive errors arising from
transverse wakefields. For mostly technical reasons (e.g. data acquisition and
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processing time) implementation was unduly delayed at the SLC. Dispersion-free
steering (and rf phase stability [66–68]) proved crucial for maintaining stable linac
emittances at the SLC.

The centroid trajectory5 is given by

xj =
j−1
∑

i=1

√

Ei

Ej

√

βiβjθi sin(φj − φi) (43)

=
j−1
∑

i=1

R12
ijθi, (44)

where the damping factor
√

Ei

Ej
has been included. To constrain the system, one

can equivalently change the beam energy (which is in practice difficult) or as before
scale the lattice. Then

∆xj =
j−1
∑

i=1

[

R12
ij − κ

√

Ei

Ej

√

βiβj sin(φj − φi)
]

θi

=
j−1
∑

i=1

R12,k
ijθi, (45)

where the change in lattice focussing is given by

κ =
∆K

K
+ 1, (46)

where K is the quadrupole strength.
The function to be minimized is

∑

j

[

xj −
∑

i

Mijθi

]2
, (47)

where xj is an M ×1 vector containing the difference measurements and the fitting
function is given by

∑

i Mijθi where θi is an N × 1 vector of unknowns. The Mij

represents an M × N matrix containing the transfer matrix elements.
In practice it is not difficult to minimize not only the difference orbit but simul-

taneously the absolute orbit. In this case xj is a 2M × 1 vector containing the
difference measurements and the absolute orbit, Mij is a 2M × N matrix and θ
remains an N × 1 matrix. This approach was used at the SLC where in addition,
to overconstrain the solution and minimize systematic errors arising from magnet
hysteresis, the measurements were performed for 4-5 values of κ corresponding to
energy variations of +5% to -30%. In later years, the problem of hysteresis was
eliminated and the application became noninvasive as two independent measure-
ments could be obtained without changing the lattice by measuring independently
the orbits of the electrons and positrons which passed through the same lattice.

5) a reminder: intrabunch position-energy correlations, when projected, may result in measured
centroid displacements which underestimate the contributions from off-axis bunch tails
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Shown in Fig. 22 are absolute (κ = 1.0) and difference trajectories (κ =0.9,
0.8, and 0.7) measured after trajectory steering of the SLC linac [65] using 20-
pulse BPM averaging. With an equivalent energy change of 30% (κ = 0.7), a
difference trajectory of up to 1.5 mm was observed. Similar measurements made
after iteration of dispersion-free steering [65] are given in Fig. 23. Iteration proved
useful to reduce sensitivity to errors in the assumed optics even though experience
showed that the first iteration yielded the largest improvements. With κ = 0.3,
neglecting the errant point due possibly to a bad BPM near sector 20, the maximum
orbit difference after dispersion-free steering was reduced from 1.5 mm to less than
200 µm. Notice that the rms of the measurements of the absolute orbit are actually
larger following dispersion-free steering. This suggests significant BPM and/or
quadrupole misalignment errors.
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FIGURE 22. Absolute and difference vertical trajectories measured after trajectory steering

before dispersion-free steering of the SLC linac. Courtesy R. Assmann (2000).

E Errors

For simplicity of expression, measurement errors have been neglected up to now.
Error sources and their typical rms contributions include BPM resolution errors
σ(xj) < 10 µm, bpm misalignments σbpm ∼ 100 µm, and systematic errors arising
from beam jitter and/or slow drifts σsys ∼ 20 µm. To propagate the measurement
errors used in the minimization procedures, a weighting function may be defined
as
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ing in the SLC linac. Courtesy R. Assmann (2000).

wj =
1

∑

j σm,j
2
, (48)

where the subscripts m give the different error sources and j is a sum over the BPM
measurements. The functions to be minimized then are (c.f. Eqs. 38, 42, and 47)

∑

j

[xj −
∑

i Mijθi)
∑

m σm,j
2

]2
, one−to−one

∑

k

[xm − (xk − xq − xbpm)
∑

m σm,j
2

]2
, beam−based alignment

∑

j

[xj −
∑

i Mijθi
∑

m σm,j
2

]2
, dispersion−free steering (49)

A goodness of fit parameter, or χ−squared may be correspondingly constructed.
In the dispersion-free steering example given above for which both the trajectory
and the trajectory differences were to be simultaneously minimized,

χ2 =
∑

j

[ xj
2

σbpm
2

+
∑

κ

∆xj,κ
2

σsys
2

]

, (50)

where the second summation over κ corresponds to the different energy scalings
under which the measurements were made. The errors from BPM resolution were
assumed to be negligible and the summation over errors has been simplified to
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reflect the dominating errors; that is, the systematic errors contribute less than
the alignment errors in the measurements of the absolute trajectories while in
the difference trajectory measurements the BPM misalignments cancel and are
therefore set to zero.

CONCLUSION

In this report we reviewed various mechanisms causing emittance dilution in lin-
ear accelerators. We concentrated on those effects which were important for the
Stanford Linear Collider. Many experimental measurement techniques were de-
veloped and used to suppress emittance growth. In particular powerful procedures
were applied to overcome inadequacies in the precision to which the electromagnetic
fields governing the beam transport were known. The described methods all con-
tributed to the steady improvements [1,23,57,69–78] in the collider performance,
which is summarized [78] in Fig. 24. For the next generation of linear colliders
careful control of the beam emittances will be even more important as alignment
tolerances are stricter at higher rf frequency. The methods described in this report
should be applicable at least during initial commissioning.
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Appendix A - Definition of the Beam Emittance
The reader is refered to Ref. [79]. The beam emittance ǫ describes the phase

space area occupied by the beam. For a Gaussian beam with standard deviation
σ, the phase space area containing a fraction F of the beam is

ǫ = −2πσ2

β
ln(1 − F ), (51)

where β is the β-function at the observation point (the Twiss parameters α, β, and
γ are described in numerous texts such as in Refs. [80]- [83]). Various definitions,
which depend on the choice of F , are used depending on the particular application.
In this report, we take F = 15% so that

ǫ =
σ2

β
. (52)

The standard deviation σ is often taken to represent the root-mean-square (rms)
of the distribution. It is given by

σx =
√

<x2 >−<x>2, (53)

where x represents either the horizontal or the vertical plane. Here < x > and
<x2 > are the first and second moment of the beam distribution, respectively. For
an intensity distribution f(x),
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<x> =

∫ ∞

0
xf(x)dx

∫ ∞

0
f(x)dx

<x2 > =

∫ ∞

0
x2f(x)dx

∫ ∞

0
f(x)dx.

(54)

Often the physical quantity of interest is given by Eq. 53 with the static position
offset of the beam intensity centroid omitted so that

ǫ =
<x2 >

1
2

β
. (55)

Appendix B - Measurements of the Beam Emittance

The transformation between an initial beam matrix σ0 and the beam matrix σ
at a desired observation point is given by

σ = Mσ0M
T , (56)

where the beam matrix, in terms of the Twiss parameters ( [80]- [83]), is

σ = ǫ

(

β −α
−α γ

)

(57)

In an uncoupled system,

σ =

⎛

⎜

⎜

⎜

⎝

σ11 σ12 0 0
σ21 σ22 0 0
0 0 σ33 σ34

0 0 σ43 σ44

⎞

⎟

⎟

⎟

⎠

and M =

⎛

⎜

⎜

⎜

⎝

M11 M12 0 0
M21 M22 0 0
0 0 M33 M34

0 0 M43 M44

⎞

⎟

⎟

⎟

⎠

(58)

The beam matrix is symmetric with σ12 = σ21, but in general M12 �= M21.

Single wire measurement of the beam emittance [84]
An (invasive) measurement of the beam emittance can be made by varying the

field strength of a quadrupole located upstream of a single wire or screen. The
transfer matrix is M = SQ, where S is the transfer matrix of the quadrupole:

Q =

(

1 0
k = ± 1

f
1

)

(59)

using a thin-lens approximation for which the length of the quadrupole is short
compared to it’s focal length f . After mutiplying matrices,

M =

(

S11 + kS12 S12

S21 + kS22 S22

)

. (60)
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Expanding the matrix product σ = (SQ)σ0(SQ)T and equating the (11) element
on both sides, the beam size is

σ11 = (S2
11σ110 + 2S11σ120 + S2

12σ220) + (2S11S12σ110 + 2S2
12σ120)k + S2

12σ11k
2, (61)

which is quadratic in the field parameter k.

Procedure (for a single-wire wire scanner measurement)
1. For each value of quadrupole field strength k, scan the wire to obtain detector
counts as a function of wire position.
2. For each wire scan at fixed k, fit the measured distribution to a Gaussian of the
form

f(x) = f0 + fmaxe
− (x−<x>)2

2<x2> , (62)

where f0 is the basline level offset and fmax is the peak value of the Gaussian
distribution.
3. Plot the fitted <x2 > as a function of k.
4. Fit this result to a parabola. One parametrization for the fit is

σ11 = A(k − B)2 + C

= Ak2 − 2ABk + (C + AB)2. (63)

5. Reconstruct the σ matrix by equating coefficients:

A = S2
12σ11 (64)

−2AB = 2S11S12σ11+2S2
12σ12 (65)

C + AB = S2
11σ11+2S11S12σ12 + S2

12σ22, (66)

and solve for σ11, σ12 (= σ21), and σ22. The results are

σ11 =
A

S2
12

,

σ12 = − A

S2
12

( B +
S11

S12
),

σ22 =
1

S2
12

[(AB2 + C) + 2AB(
S11

S12
) + A(

S11

S12
)2] (67)

6. Calculate the beam emittance from the determinant of the beam matrix ǫ =√
det σ and propagate errors:

det σ = σ11σ22 − σ2
12

=
AC

S4
12

so ǫ =

√
AC

S2
12

. (68)
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One can also obtain the ellipse parameters α, β, and γ:

β =
σ11

ǫ
=

√

A

C

α = −σ12

ǫ
=

√

A

C
(B +

S11

S12

)

γ =
1

ǫ
=

S2
12√
AC

[(AB2 + C) + 2AB
S11

S12

+ A(
S11

S12

)2]. (69)

As a check, the ellipse parameters should satisfy βγ − 1 = α2.
An example emittance measurement made in two transverse planes is shown in

Fig. 25. The graphics output shows the square of the measured beam size in µm2

as a function of the quadrupole field strength in kG
m

m. The first two rows of text
show the measured emittance (ǫ) and the normalized emittance (γǫ).
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FIGURE 25. Transverse beam emittance measurements from the SLC made using a quadrupole

scan and a single wire.

39



Multiple wire measurement of the beam emittance [83]
The beam emittance may be measured (in many applications noninvasively) using

a minimum of 3 wires if there are no coupling elements or using 4 wires with
coupling. The optimum wire locations for maximum sensitivity are such that the
separation between wires corresponds to a difference in betatron phase advance
∆φ of 90◦

Nw
, where Nw is the number of wires used in the measurement. Letting σi

denote the measured σ11’s for wire i, and considering the case of 4 wires, the matrix
equation to be solved is

⎛

⎜

⎜

⎜

⎝

σ1

σ2

σ3

σ4

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

c2
1 2c1s1 s2

1

c2
2 2c3s2 s2

2

c2
3 2c3s3 s2

3

c2
4 2c4s4 s2

4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎝

σ11

σ12

σ22

⎞

⎟

⎠ , (70)

where ck and sk are elements of the point-to-point transformation matrix from the
reference point (x0, x0

′) and the location of the wire (xk, xk
′); i.e. xk = ckx0 +skx0

′.
Notice that M need not be a square matrix. Rewriting Eq. 70 as A = MC, then
MT A = MT MC, or C = (MT M)−1MT A; that is,

⎛

⎜

⎝

σ11

σ12

σ22

⎞

⎟

⎠ = (MT M)−1MT

⎛

⎜

⎜

⎜

⎝

σ1

σ2

σ3

σ4

⎞

⎟

⎟

⎟

⎠

(71)

which gives the beam matrix elements (σij) in terms of the measured sigmas.

Procedure (for multiple-wire wire scanner measurement)
1. Scan each wire to obtain detector counts as a function of wire position.
2. For each wire scan, fit the distribution to a Gaussian function using Eq. 62.
3. Reconstruct the σ matrix using Eq. 62, the transfer matrix elements Mi from
the model, and the σi from the measurements.
4. Calculate the emittance ǫ =

√
det σ.

5. Calculate the ellipse parameters α = −σ12

ǫ
, β = σ11

ǫ
, and γ = σ22

ǫ
.

Graphics
Increased tuning efficiency may be obtained from meaningful graphical represen-

tation of the experimental data. In the multiple wire emittance measurement it is
useful to project the measurements to a single point along the accelerator and to
plot the normalized phase space. Defined in terms of the ellipse parameters, the
emittance is

ǫ = γx2 + 2αxx′ + βx′2. (72)

Since βγ = 1 + α2,
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ǫ =
1

β
[x2 + (αx + βx′)2]

=
1

β
(x + p2

x), (73)

where px = αx + βx′ is the canonically conjugate coordinate to x.

Procedure (for graphical representation of the emittance measurement)
1. Plot the design rms ellipse in the phase space (a circle)

(
x√
β

,
αx + βx′

√
β

) (74)

at some reference point s along the trajectory. Normalize the design ellipse to unit
radius.
2. In the same figure, plot the ellipse obtained from the measurements of the ellipse
parameters at the reference point. Apply the same normalization as in step 1.
3. Using the model of for the lattice, for each wire project its orientation back to
the reference point and add the result to the figure; that is, for each point along
the wire (x, x′)w, do an inverse mapping to the reference point

(

x
x′

)

ref pt

= MT

(

x
x′

)

w

. (75)

The display should summarize the measurements which might include the measured
and expected beam widths at each of the wires, the measured and design beam
emittances, and the beam intensity.

An example of such graphics from measurements at the SLC is shown in Fig. 26.
From Fig. 26 it is immediately obvious that while the measured ellipse has roughly
the same area as the design circle, the orientation of the ellipse is incorrect. From
the figure, can be immediately deduced the degree of phase space coverage spanned
by the wires. In the horizontal plane, for example, the wire orientations are about
0◦, -45◦, -22.5◦, and -67.5◦, which is ideal for the 4-wire measurement.

The ‘measured ellipse’, that is the ellipse that was reconstructed from the indi-
vidual wire scans based on the measured beam widths and the model-dependent
transport matrices, does not in this specially selected case represent the true rms
distribution of the beam. The raw data used in this measurement are given in Fig.
27. For these complex particle distributions a better characterization of the rms
was obtained using an ‘asymmetric Gaussian’ distribution fucntion for which the
left and right hand sides of the measured beam profile were independently fit with
two separate Gaussian functions. The fitting function used was

f(x) = f0 + fmaxe
− (x−<x>)2

2<x2>(1+α[sign(x−<x>)] (76)

where α represents an asymmetry factor and is zero for a perfectly Gaussian beam
distribution. The σ for the left and right hand sides of the fitted distribution are
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FIGURE 26. Transverse beam emittance measurements from the SLC injector made using

multiple wires.

σ =< x2 > (1 ± α). For the ellipse reconstruction the average σ was used. When
large tails are present in the raw data this more accurately represents the beam
distribution. Based on the raw data however it is clear that even with the modified
fitting algorithm, the fit only marginally represents the actual beam distributions.

For reasonably well ‘matched’ beams, the graphical summary display is most use-
ful. In this example however, the raw data are more revealing: the double-humps in
the raw data are characteristic of an upstream error: a beam, if kicked transversely
will filament (lose coherency due to the natural spread in betatron phase advance)
resulting in such double-humps and an increased projected emittance.

If a wire is mounted at 45◦ with respect to x and y, then it is also possible to
measure the coupling between x and y. The full σ-matrix is

⎛

⎜

⎜

⎜

⎝

σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

⎞

⎟

⎟

⎟

⎠

(77)

where for example σ14 represents the coupling between x and y′. Notice that
σ14 �= σ23 so that, whereas for the single plane the uncoupled beam matrix recon-
struction required a minimum of 3 measurements, to fully reconstruct the coupled
beam matrix a total of at least 10 measurements are needed. This includes 3 mea-
surements in the x plane, 3 measurements in the y plane, and 4 measurements in
the u plane. An example of a coupled emittance measurement is presented in Figs.
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28-31. In this case the raw data are well fit using a Gaussian function. In the text
of Fig. 28 the parameters ǫ1 and ǫ2 represent the emittance one would measure in
the absence of coupling. They are in good agreement with the measured emittances
ǫx and ǫy.

FIGURE 27. Raw data showing individual wire scans used in the emittance measurement

summarized in Fig. 26 and ‘asymmetric’ Gaussian fits (c.f. Eq.76).

43



FIGURE 28. Summary display for a 4-dimensional emittance measurement in the SLC linac.

FIGURE 29. Raw x-plane data corresponding to the 4-dimensional emittance measurement

summarized in Fig. 28.
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FIGURE 30. Raw y-plane data corresponding to the 4-dimensional emittance measurement

summarized in Fig. 28.

FIGURE 31. Raw u-plane data corresponding to the 4-dimensional emittance measurement

summarized in Fig. 28.
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