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Abstract: Emotions constitute an indispensable component of our everyday life. They consist of
conscious mental reactions towards objects or situations and are associated with various physiological,
behavioral, and cognitive changes. In this paper, we propose a comparative analysis between different
machine learning and deep learning techniques, with and without feature selection, for binarily
classifying the six basic emotions, namely anger, disgust, fear, joy, sadness, and surprise, into two
symmetrical categorical classes (emotion and no emotion), using the physiological recordings and
subjective ratings of valence, arousal, and dominance from the DEAP (Dataset for Emotion Analysis
using EEG, Physiological and Video Signals) database. The results showed that the maximum
classification accuracies for each emotion were: anger: 98.02%, joy:100%, surprise: 96%, disgust:
95%, fear: 90.75%, and sadness: 90.08%. In the case of four emotions (anger, disgust, fear, and
sadness), the classification accuracies were higher without feature selection. Our approach to
emotion classification has future applicability in the field of affective computing, which includes
all the methods used for the automatic assessment of emotions and their applications in healthcare,
education, marketing, website personalization, recommender systems, video games, and social media.

Keywords: emotion classification; machine learning; feature selection; affective computing;
biophysical sensors

1. Introduction

Emotions influence our quality of life and how we interact with others. They determine the
thoughts we have, the actions we take, subjective perceptions of the world, and our behavioral
responses. According to Scherer’s theory [1], emotions consist of five synchronized processes, namely
cognitive appraisal, bodily symptoms (physiological reactions in the central and autonomic nervous
systems), action tendencies (the motivational component that determines us to react or take action),
facial or vocal expressions, and feelings (inner experiences, unique for each person apart). Affective
computing is the study of systems or devices that can identify, process, and simulate emotions.
This domain has applicability in education, medicine, social sciences, entertainment, and so on. The
purpose of affective computing is to improve user experience and quality of life, and this is why
various emotion models have been proposed over the years and efficient mathematical models applied
in order to extract, classify, and analyze emotions.
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In the 1970s, Paul Ekman identified six basic emotions [2], namely anger, disgust, fear, joy, sadness,
and surprise. Russell and Mehrabian proposed a dimensional approach [3] which states that any
emotion is represented relative to three fundamental dimensions, namely valence (positive/pleasurable
or negative/unpleasurable), arousal (engaged or not engaged), and dominance (degree of control that a
person has over their affective states).

Joy or happiness is a pleasant emotional state, synonymous with contentment, satisfaction and
well-being. Sadness is the opposite of happiness, being characterized by grief, disappointment,
and distress. Fear emerges in the presence of a stressful or dangerous stimulus perceived by the
sensory organs. When the fight or flight response appears, heart rate and respiration rate increase.
Also, the muscles become more tense in order to contend with threats in the environment. Anger is
defined by fury, frustration, and resentment towards others. Surprise is triggered by an unexpected
outcome to a situation, ranging from amazement to shock, whereas disgust is synonymous with dislike,
distaste, or repugnance, being the most visceral of all six emotions.

The DEAP database [4] was created with the purpose of developing a music video recommendation
system based on the users’ emotional responses. The biophysical signals of 32 subjects have
been recorded while they were watching 40 one-minute long excerpts of music videos eliciting
various emotions. The participants rated each video in terms of valence, arousal, dominance,
like/dislike and familiarity on a scale from one to nine. The physiological signals were: galvanic skin
response (GSR), plethysmograph (PPG), skin temperature, breathing rate, electromyogram (EMG),
and electroencephalography (EEG) from 32 electrodes, decomposed into frequency ranges (theta, slow
alpha, alpha, beta, and gamma) and the differences between the spectral power of all symmetrical pairs
of electrodes on the left and right brain hemispheres. Other well-known databases are MAHNOB, SEED,
and eNTERFACE06_EMOBRAIN. The MAHNOB database [5] contains the physiological signals of 27
subjects in response to 20 stimulus videos who rated arousal, valence, dominance and predictability on
a scale from one to nine. The SEED database [6] stores facial videos and EEG data from 15 participants
who watched emotional video clips and expressed their affective responses towards them by filling in
a questionnaire. The multimodal eNTERFACE06_EMOBRAIN dataset [7] contains EEG, frontal fNIRS
and physiological recordings (GSR, respiration rate, and blood volume pressure) from five subjects in
response to picture stimuli.

We divided the recordings from de DEAP into six groups, corresponding to the basic six emotions,
according to the valence-arousal-dominance ratings. Each emotion has been binary classified into
two classes: 1 (emotion) and 0 (lack of emotion). For emotion classification, we have used four deep
neural network models and four machine learning techniques. The machine learning techniques were:
support vector machine (SVM), linear discriminant analysis (LDA), random forest (RF) and k-nearest
neighbors (kNN). These algorithms have been trained and cross-validated, with and without feature
selection, on four input sets, containing EEG and peripheral data:

(1) Raw 32-channel EEG values and the peripheral recordings, including hEOG
(horizontal electrooculography), vEOG (vertical electrooculography), zEMG (zygomaticus
electromyography), tEMG (trapezius electromyography), galvanic skin response (GSR), respiration
rate, plethysmography (PPG), temperature;

(2) Petrosian fractal dimensions of the 32 EEG channels and the peripheral recordings mentioned
in (1).

(3) Higuchi fractal dimensions of the 32 EEG channels and the peripheral recordings mentioned
in (1).

(4) Approximate entropy for each of the 32 EEG channels and the peripheral recordings mentioned
in (1).

Feature selection has been ensured by using a Fisher score, principal component analysis (PCA)
and sequential forward selection (SFS).
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This work is a continuation of the research presented in [8], wherein, using the same techniques,
we classified fear by considering it to be of low valence, high arousal, and low dominance. Similarly,
classification has been based on the physiological recordings and subjective ratings from the DEAP
database. In the current approach, we extend our study of emotion classification by including all six
basic emotions from Ekman’s theory. Our research has impact in the field of affective computing, as
we can understand better the physiological characteristics underlying various emotions. This could
lead to the development of effective computational systems that can recognize and process emotional
states in the fields of education, healthcare, psychology, and assistive therapy [9,10].

2. Materials and Methods

2.1. Emotion Models

Various theoretical models of emotions have been developed and most of them have been used
for automatic emotion recognition.

Paul Ekman initially considered a set of 6 basic emotions, namely sadness, happiness, disgust,
anger, fear and surprise [2]. This model is known as the discrete model of emotions. Later, he expanded
the list to 15 emotions: amusement, anger, contempt, contentment, disgust, embarrassment, excitement,
fear, guilt, pride in achievement, relief, sadness/distress, satisfaction, sensory pleasure and shame [11].
In 2005, Cohen claimed that empirical evidence does not support the framework of basic emotions and
that autonomic responses and pan-cultural facial expressions provide no basis for thinking that there
is a set of basic emotions [12].

In contrast to the discrete model, the dimensional model provides ways to express a wide range of
emotional states. Using this model, an emotion is described using two or three fundamental features
and the affective states are expressed in a multi-dimensional space [13–15]. Russell’s circumplex model
is an early model, in which an affective state is viewed as a circle in the two-dimensional bipolar
space [15]. The proposed dimensions are pleasure and arousal. Pleasure (valence) reflects the positive
or negative emotional states, and a value close to zero means a neutral emotion. Arousal expresses
the active or passive emotion component. In this space, 28 affective states are represented: happy,
delighted, excited, astonished, aroused, tense, alarmed, angry, afraid, annoyed, distressed, frustrated,
miserable, sad, gloomy, depressed, bored, droopy, tired, sleepy, calm, relaxed, satisfied, at ease, content,
serene, glad, and pleased.

Whissell also used a bi-dimensional space with activation and evaluation as dimensions [14].
Later, he refined his model and proposed the wheel of emotions as follows: quadrant I (positive
valence, positive arousal), quadrant II (negative valence, positive arousal), the third quadrant (negative
valence, negative arousal) and quadrant IV (positive valence, negative arousal). Examples of emotional
states and their positions in the wheel are as follows: joy, happiness, love, surprised, contentment in
QI; anger, disgust, fear in QII; sadness, boredom, depression in QIII and relaxation, calm in QIV [16].

Plutchik developed a componential model in which a complex emotion is a mixture of fundamental
emotions. The fundamental emotions considered by Plutchik are joy, trust, fear, surprise, sadness,
anticipation, anger, and disgust [13].

A three-dimensional model, called the pleasure-arousal-dominance (PAD) model or
Valence-Arousal-Dominance (VAD), was introduced by Mehrabian and Russell in [3,17–19]. In the PAD
model, there are three independent dimensions: pleasure (valence), which ranges from unhappiness
to happiness and expresses the pleasant or unpleasant feeling about something, arousal, the level
of affective activation, ranging from sleep to excitement, and dominance, which reflects the level of
control of the emotional state, from submissive to dominant. Figure 1 presents the distribution of
Ekman’s basic emotions within the dimensional emotional space, spanned by the valence, arousal, and
dominance axis of the VAD model [20], with ratings taken from Russell and Mehrabian [3].
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Figure 1. The VAD (Valence-Arousal-Dominance) model spanned across the six basic emotions.

Russell and Mehrabian provided in [3] a correspondence between the VAD model and the discrete
model of emotions. The values for the six basic emotions, in terms of emotion dimensions, are presented
in Table 1.

Table 1. Values for the six basic emotions in terms of emotion dimensions.

Valence Arousal Dominance

Anger –0.43 0.67 0.34

Joy 0.76 0.48 0.35

Surprise 0.4 0.67 –0.13

Disgust –0.6 0.35 0.11

Fear –0.64 0.6 –0.43

Sadness –0.63 0.27 –0.33

2.2. Emotions and the Nervous System

In everyday life, each of us is trapped in the chain of emotions, an important component of
behavior. Attempts to define and characterize emotions date back to ancient times, but from the 19th
century, research has begun to be scientifically documented. It is well known that there is a close
correlation between brain functions and emotions. In particular, the limbic system (hypothalamus,
thalamus, amygdala, and hippocampus), the paralimbic system, the vegetative nervous system, and the
reticular activating system are involved in processing and controlling emotional reactions. Particular
importance is given to the prefrontal cortex, anterior cingulate cortex (ACC), nucleus accumbens,
and insula.

The limbic system categorizes our emotions into pleasant and unpleasant (valence). Depending
on this, chemical neuro-mediators (noradrenaline and serotonin) increase or decrease, influencing
the activity of different regions of the body (posture, mimicry, gestures), in response to different
emotional states.

The amygdala, a structure that gives an emotional connotation of events and memories, is located
deep within the right and left anterior temporal lobes of the brain [21]. The amygdala is a neural
switch for fear, anxiety and panic.

The hypothalamus is responsible for processing the incoming signals in response to internal
mental events such as pain or anger. Hypothalamus triggers corresponding visceral physiological
effects like a raised heart rate, blood pressure, or galvanic skin response [22].

The insula, the part of the limbic system located deep in the lateral sulcus (Sylvius), is part of the
primary gustatory cortex. Regarding the perception of emotions, in this region is perceived the feeling
of disgust, which comes as a variant of an unpleasant taste. The experience of disgust protects us from
the consumption of spoiled or poisonous foods [23,24].
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The hippocampus reminds us of the actions responsible for certain emotional states. Hippocampus
abnormalities are associated with mood and anxiety disorders [25].

The reticular activating system controls arousal, attention, sleep, wakefulness, and reflexes [26].

2.3. The Six Basic Emotions and Their Corresponding Physiological Reactions

Happiness is an emotional state associated with well-being, pleasure, joy, and full satisfaction.
This state is characterized by a facial expression in which the mouth corners are raised [27]. Happiness
activates the right frontal cortex, the left amygdala, the precuneus and the left insula, involving
connections between awareness centers - frontal cortex, the insula and the center of feeling– the
amygdala [28].

Sadness, the opposite of happiness and different from depression, is an emotion associated with
the feelings of regret, weakness, mental pain and melancholy. This state is characterized by a facial
expression that causes lowering the mouth’s corners, lifting the inner corner of the upper eyelid, raising
and nearing the eyebrows. The angle with the tip upward between the inner corners of the eyebrows
is a relevant sign of sadness [27]. At the brain level, sadness is associated with increased activity of the
hippocampus, amygdala, right occipital lobe, left insula, and left thalamus [28].

Fear is an innate emotion, considered as an evolutionary mechanism of adaptation to survival,
that appears in response to a concrete or anticipated danger. This emotion is controlled by the autonomic
nervous system which brings the body into a fight-or-flight state. Fear is characterized by an increasing
heart rate and respiratory frequency, peripheral vasoconstriction, perspiration, hyperglycemia, etc.
At the brain level, fear activates the bilateral amygdala that communicates with the hypothalamus,
the left frontal cortex and other parts of limbic system [28].

Anger is an intense primary emotional state that is part of the fight or flight mechanism, manifested
in response to threats or provocations. During the anger state, as a result of the stimulation of the
sympathetic vegetative system, a rising of the adrenaline and noradrenaline discharges occurs, followed
by an elevation of blood pressure, increasing heart rate and respiratory frequency [27]. Anger activates
the right hippocampus, the amygdala, the left and right part of the prefrontal cortex and the insular
cortex [28].

Disgust is often associated with avoidance. Unlike other emotions, in the case of disgust the heart
rate decreases. At the facial level disgust is characterized by raising the upper lip, wrinkling the nose
bridge and raising the cheeks [27]. Disgust implies an activation of the left amygdala, left inferior
frontal cortex and insular cortex [28].

Surprise is the hardest emotion to immortalize, being an unexpected and short-lived experience.
After the surprise passes, it turns into fear, anger, disgust, or amusement. When someone experiences
surprise, the bilateral inferior frontal gyrus and the bilateral hippocampus are activated. The person
tends to arch their brows, open the eyes widely and drop their jaw. The hippocampus is also activated,
as it is strongly associated with memory and experiences one had or did not have before [28,29].

2.4. Biophysical Data

Electroencephalography (EEG) is a method of exploring the electrical potentials of the brain.
The encephalogram is the graph obtained from the registration of electric fields at the scalp level. EEG
is efficient for detecting affective states, with good temporal resolution. There are four types of waves
commonly recorded in humans.

Delta waves have high amplitude and low frequency (0.5–3 Hz). They are characteristic of
psychosomatic relaxation states, being recorded in deep sleep phases. They can also be encountered in
anesthetic states, following the blocking of nerve transmission through the reticular activating system.
They can appear in any cortical region, but predominate in the frontal area [30]. The theta waves have
a frequency of 3–8 Hz. This rhythm occurs during low brain activities, sleep, drowsiness or deep
meditation. An excess of theta waves is related to artistic, creative, or meditative states. The alpha
waves, so-called ‘basic rhythm’, are oscillations of small amplitude with average frequencies around
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8–12 Hz. Under normal conditions, their amplitude increases and decreases regularly, the waves being
grouped into characteristic spindle. They appear in the occipital cortex and indicate a normal wakeful
state when the human subjects are relaxed or have their eyes closed. The beta waves are characterized
by a frequency of 12–30 Hz. Unlike the alpha rhythm, beta waves are highly irregular and signify a
desynchronization of cortical neural activity. Their maximum incidence is in the anterior parietal and
posterior frontal regions of the brain. This wave is associated with active thinking or concentration
and is related to consciousness, brain activities and motor behaviors. The gamma waves are the fastest
brainwaves (30–42 Hz), usually found during conscious perception and related to the emotions of
happiness and sadness [31]. During memorization tasks, the activation of the gamma waves is visible
in the temporal lobe. The predominance of these waves has been associated with the installation of
anxiety, stress, or arousal states [32].

Galvanic skin response (GSR) or electrodermal activity (EDA) is a handy and relatively noninvasive
tool used to study body reactions to various stimuli, being a successful indicator of physiological and
psychological arousal. The autonomic control regulates the internal environment and ensures the
body’s homeostasis [33]. It is considered that the skin is an organ that responds preponderantly to the
action of the sympathetic nervous system through the eccrine sweat gland [34]. For this reason, the
data acquisition made from the skin can offer information about the attitude of the body’s “fight or
flee” reactions. Skin conductance is quantified by applying an electrical potential between two contact
points on the skin and measuring the current flow between them. EDA has a background component,
namely skin conductance level (SCL), resulting from the interaction between the tonic discharges of
the sympathetic innervations and local factors [35], and a fast component - skin conductance responses
(SCR), which results from the phasic sympathetic neuronal activity [36]. A high level of SCL indicates
a high degree of anxiety [37].

Facial electromyography (EMG) uses the corrugator supercilii (“frowning muscle”) activity to
track emotional valence.

Heart rate (HR) and HR variability (HRV) are other parameters used to assess human emotions.
They have good temporal resolution and can monitor variations or trends of emotions. HRV is
associated with cerebral blood flow in the amygdala and in the ventromedial prefrontal cortex [38].
Individuals with high HRV tend to better regulate their emotions [39].

Respiration is an important function for maintaining the homeostasis of the internal environment.
Respiratory regulation is achieved by correlating the respiratory centers and the brainstem, the limbic
system, and the cerebral cortex. Breathing rate also changes according to emotional responses [40].

2.5. Machine Learning Techniques for Emotions Classification

The interest in the field of automatic recognition of emotions is constantly increasing. The data
used in emotion recognition systems is primarily extracted from voice, face, text, biophysical signals
and body motion [41]. In this section, we performed a brief analysis of the machine learning techniques
involved in automatic emotion recognition systems using biophysical data.

Three binary classifications have been performed in [4]: low or high arousal, low or high valence,
and low or high liking. The authors used the Gaussian naïve Bayes algorithm for classification,
alongside Fisher’s linear discriminant for feature selection and leave-one-out cross validation for
classification assessment. To measure the performance of the proposed scheme, F1 and average
accuracies (ACC) were used. To draw a final conclusion, a decision fusion method was adopted.

Atkinson and Campos [42] used the minimum-redundancy maximum-relevance (mRMR) method
for feature selection and Support Vector Machine for binary classification into low/high valence and
arousal. The reported accuracy rates were: 73.14% for valence and 73.06% for arousal. The study
was performed by extracting and processing the EEG features from the DEAP database. Yoon and
Chung [43] used the Pearson correlation coefficient for feature extraction and a probabilistic classifier
based on the Bayes theorem for resolving the binary classification problem of low/high valence and
arousal discrimination, with an accuracy of about 70% for both: 70.9% for valence and 70.1% for
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arousal. For the three-level classification (low/medium/high), the accuracy for high arousal was 55.2%
and for valence, 55.4%. Similarly, emotion recognition has been performed based on the EEG data
from the DEAP dataset.

A similar approach is presented in Naser and Saha [44], where the SVM algorithm led to accuracies
of 66.20%, 64.30%, and 28.90% for classifying arousal, valence, and dominance into low and high
groups. Dual-tree complex wavelet packet transform (DT-CWPT) was used for feature selection.

In [45], two classifiers, linear discriminant analysis and SVM were used for two-level classification
of valence and arousal. The results showed that SVM produces higher accuracies for arousal and the
LDA classifier is better in the case of valence. By applying the SVM technique on the EEG features,
classification accuracies of 62.4% and 69.40% were achieved during a music-induced affective state
evaluation experiment whereby the users were required to rate their currently perceived emotion in
terms of valence and arousal. In the case of the LDA classifiers, the accuracies were 65.6% for valence
and 62.4% for arousal. Liu et al [46] conducted two experiments in which visual and audio stimuli
were used to evoke emotions. The SVM algorithm, having as input fractal dimension features (FD),
statistical and higher order crossings (HOC) extracted from the EEG signals provided the best accuracy
for recognizing two emotions - 87.02%, in the case of the audio database and 76.53% in the case of
the visual database. The authors provided a comparison between the performances of the proposed
strategies applied on their databases and a benchmark database, DEAP. Having DEAP as data source,
the mean accuracy for two emotions recognition was 83.73% and 53.7% for recognizing 8 emotions,
namely happy, surprised, satisfied, protected, angry, frightened, unconcerned, and sad. A comparative
study of four machine learning methods (k-nearest neighbor, SVM, regression tree, Bayesian networks
(BNT)) showed that SVM offered the best average accuracy at 85.8%, followed by regression tree with
83.5% for the classification of five types of emotions, namely anxiety, boredom, engagement, frustration,
and anger into 3 categories, namely low, medium, and high [47].

In the case of the two-class classification for arousal, valence and like/dislike ratings, for EEG
signals, the average accuracy rates were 55.7%, 58.8%, and 49.4% with SVM. Having as input features
the peripheral physiological responses, the classification average accuracies recorded 58.9%, 54.2%,
and 57.9% [48].

Based on the MAHNOB dataset and using the SVM algorithm with various kernels, Wiem et al. [49]
reached a classification accuracy between 57.34% and 68.75% for valence and between 60.83% and
63.63% for arousal when discriminating into low/high groups and between 46.36% and 56.83%,
respectively, 50.52% and 54.73% for classification into 3 groups. The features were normalized and a
level feature fusion (LFF) algorithm was used. The most relevant features were the electrocardiogram
and the respiration volume.

In [50], a deep learning method based on the long-short term memory algorithm was used for
classifying low/high valence, arousal and liking based on the EEG raw data from the DEAP dataset [4],
with accuracies of 85.45%, 85.65% and 87.99%. Jirayucharoensak et al. [51] used a deep learning
network implemented with a stacked autoencoder based on the hierarchical feature learning approach.
The input features were the power spectral densities of the EEG signals from the DEAP database, which
were selected using the principal component analysis (PCA) algorithm. Covariate Shift Adaptation
(CSA) was applied to reduce the non-stationarity in EEG signals. The ratings from 1 to 9 have been
divided into 3 levels and mapped into “negative”, “neutral”, and “positive” for valence and into
“passive” “neutral”, and “active” for arousal. A leave-one-out cross validation scheme was used to
evaluate the performance. They were finally classified with an accuracy of 49.52% for valence and
46.03% for arousal.

A 3D convolutional neural network–based schema has been applied on the DEAP data set in [52]
for a two-level classification of valence and arousal. The authors increased the training samples
through an augmentation process adding noise signals to the original EEG signals. The schema
consisted of 6 layers: input layer, middle layers (two pairs of convolution and max-pooling layers)
and a fully-connected output layer. In both convolution layers, rectified linear unit (RELU) is used
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as activation function. The recorded accuracies for the proposed method were: 87.44% for valence
and 88.49% for arousal. Random forest is not a very common technique used for emotion recognition.
In [53], the authors reported a 74% overall accuracy rate for emotions classification into amusement,
grief, anger, fear and a baseline state using the random forest classifier. Leave-one-subject-out cross
validation was used for evaluating the classifier.

In Table 2, we present the performance of the ML techniques used for emotion recognition.

Table 2. Emotions classification performance.

Reference Open Data Source Classifiers Classification
Feature

Selection/Processing
Measure of Performance (%)

[4]
2012 DEAP Gaussian Naïve Bayes Two-level class: arousal,

valence, liking
Fischer’s linear

discriminant

F1—scores
62.9—arousal
65.2—valence
64.2—liking

[42]
2016 DEAP SVM Two-level class: arousal,

valence

Minimum
redundancy

Maximum relevance

Accuracy
73.06—arousal
73.14—valence

[42]
2013 DEAP Probabilistic classifier

based on Bayes’ theorem
Two-level class: arousal,

valence
Pearson

correlation coefficient

F1- scores
74.9—high arousal
62.8—low arousal
74.7—high valence
65.9—low valence

Accuracy
70.1—high arousal
70.9—high valence

[43]
2013 DEAP Probabilistic classifier

based on Bayes’ theorem
Three-level class:
arousal, valence

Pearson correlation
coefficient

F1- scores
63.3 - high arousal

43.3—medium arousal
53.9—low arousal
66.1—high valence

40.9—medium valence
51.8—low valence

Accuracy
55.2—high arousal
55.4—high valence

[44]
2013 - SVM Two-level class DT-CWPT

Accuracy
66.20—arousal
64.30—valence

68.90—dominance

[45]
2015 - SVM Two-level class Stepwise Linear

Regression

Accuracy (%)
62.4—valence
69.4—arousal

[45]
2015 - LDA Two-level class Stepwise Linear

Regression

Accuracy (%)
65.6—valence
62.4—arousal

[46]
2013 - SVM Discrete emotion

(presence or not) HOC+6 statistical +FD

Accuracy (%)
Audio database

87.02—2 emotions
76.53—2 emotions

Visual database
61.67%—5 emotions

56.6—5 emotions

[46]
2013 DEAP SVM Discrete emotion

(presence or not) HOC+6 statistical +FD

Accuracy
83.73—2 emotions
53.7—8 emotions

[47]
2005 -

kNN
RT

BNT
SVM

Three-level class Entire feature set

Average accuracy
75.12
83.50
74.03
85.8

[48]
2010 - SVM Two-level class Fast correlation based

filter (FCBF)

Average accuracy
54.2—valence
58.9—arousal

57.9—like/dislike

[49]
2017 MAHNOB-HCI SVM

Gaussian kernel Two-level class Feature fusion
Accuracy

63.63—arousal
68.75—valence

[49]
2017 MAHNOB-HCI SVM

Gaussian kernel Three-level class Feature fusion
Accuracy

59.57—arousal
57.44—valence
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Table 2. Cont.

Reference Open Data Source Classifiers Classification
Feature

Selection/Processing
Measure of Performance (%)

[50]
2017 DEAP End-to-end deep

learning neural networks Two-level class Raw EEG signals

Average accuracy
85.65—arousal
85.45—valence
87.99—liking

[51]
2014 DEAP Deep learning network Three-level class

PCA
PCA
CSA
CSA

Accuracy
50.88—valence
48.64—arousal
53.42—valence
52.03—arousal

[52]
2018 DEAP 3D Convolutional

Neural Networks Two-level class
Spatiotemporal features
are obtained from EEG

signals

F1 score
86—valence
86—arousal

Accuracy
87.44—valence
88.49—arousal

[53]
2014 - RF

Quinary classification:
amusement, anger, grief,

fear, baseline

Correlation Analysis and
t-test

Correct rate
25.6—amusement

36.4—anger
74.8—grief
80.1—fear

88.1—baseline

2.6. Our Paradigm for Emotions Classification

In Mehrabian and Russell’s model provided in [3], the emotion dimensions (valence, arousal and
dominance) are spanned across the interval [–1; 1]. The valence, arousal and dominance ratings from
the DEAP database are continuous values in the interval [1; 9]. In order to obtain a correspondence,
they have been mapped as follows (Figure 2):

 

Figure 2. Correspondence between the ratings from Mehrabian and Russell’s model and the ratings
from the DEAP database.

Table 3 presents the intervals of valence, arousal and dominance assigned to each of the six basic
emotions, inspired from the values of Mehrabian and Russell’s model from Table 1. The ratings of
valence and arousal from the DEAP database have been assigned to a larger interval: low ([1;5)) or high
([5;9]). Dominance was the emotion dimension that fluctuated in a smaller interval. Thus, an emotion
is characterized by low or high valence/arousal and some degree of dominance spanned across a
narrower interval.

Table 4 presents the intervals corresponding to Condition 0, no emotion (or the lack of emotion),
and Condition 1, the existence of a certain degree of emotion.

Four input features, sets have been generated after extracting and labelling the data from DEAP:
(1) 32-channel raw EEG values and the peripheral recordings: hEOG, vEOG, zEMG, tEMG, GSR,
Respiration, PPG, and temperature; (2) Petrosian fractal dimensions of the 32 EEG channels and the
peripheral recordings mentioned at (1); (3) Higuchi fractal dimension of the 32 EEG channels and
the peripheral recordings mentioned at (1); (4) Approximate entropy of the 32 EEG channels and the
peripheral recordings mentioned at (1).
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Table 3. Valence, arousal, and dominance intervals for the six basic emotions.

Valence Arousal Dominance

Rating from [3]
Rating Adapted from
the DEAP Database

Rating from [3]
Rating Adapted from
the DEAP Database

Rating from [3]
Rating Adapted from
the DEAP Database

Anger –0.43 Low
[1; 5) 0.67 High

[5; 9] 0.34 [6;7]

Joy 0.76 High
[5;9] 0.48 High

[5;9] 0.35 [6;7]

Surprise 0.4 High
[5;9] 0.67 High

[5;9] –0.13 [4;5]

Disgust –0.6 Low
[1; 5) 0.35 High

[5; 9] 0.11 [5;6]

Fear –0.64 Low
[1; 5) 0.6 High

[5; 9] –0.43 [3;4]

Sadness –0.63 Low
[1; 5) 0.27 Low

[1; 5) –0.33 [3;4]

Table 4. Intervals corresponding to Condition 0 and Condition 1.

Valence Arousal Dominance

Anger

No anger (0) High
[5; 9]

Low
[1; 5) [1;6) or (7;9]

Anger
(1)

Low
[1; 5)

High
[5; 9] [6;7]

Joy

No joy
(0)

Low
[1; 5)

Low
[1; 5) [1;6) or (7;9]

Joy
(1)

High
[5; 9]

High
[5; 9] [6;7]

Surprise

No surprise (0) Low
[1; 5)

Low
[1; 5) [1;4) or (5;9]

Surprise
(1)

High
[5; 9]

High
[5; 9] [4;5]

Disgust

No disgust
(0)

High
[5; 9]

Low
[1; 5) [1;5) or (6;9]

Disgust
(1)

Low
[1; 5)

High
[5; 9] [5;6]

Fear

No fear
(0)

High
[5; 9]

Low
[1; 5) [1;3) or (4;9]

Fear
(1)

Low
[1; 5)

High
[5; 9] [3;4]

Sadness

No sadness (0) High
[5; 9]

High
[5; 9] [1;3) or (4;9]

Sadness (1) Low
[1; 5)

Low
[1; 5) [3;4]

The DEAP database contains 40 valence/arousal/dominance ratings for each of the 32 subjects. For
the emotion of anger, there were 28 ratings in the database for Condition 1—Anger and 239 ratings for
the Condition 0—No anger. In order to have a balanced distribution of responses for classification, we
used 28 ratings for Condition 1 and 28 ratings for Condition 0, so we took the minimum between both.
Every physiological recording had a duration of 60 s. Thus, in order to obtain a larger training database,
we have divided the 60 s long recordings into 12 segments, each being 5 s long. Thus, for anger
we obtained a training dataset of 672 entries that was fed to the classification algorithms. Table 5
presents, for each emotion, the number of entries for Conditions 0 and 1 and the total number of 5-s
long segments that have been fed as input data to the classification algorithms.

For binary classifying the emotion ratings into Condition 1 (emotion) and Condition 0 (lack of
emotion), we applied four machine and deep learning algorithms, with and without feature selection,
similarly to the experiment described in [8], where we classified the emotion of fear. Our input features
were: EEG (raw values/approximate entropy/Petrosian fractal dimension/Higuchi fractal dimension)
and peripheral signals, hEOG, vEOG, zEMG, tEMG, GSR, respiration rate, PPG and temperature.
We constructed models based on four deep neural networks (DNN1-DNN4) with various numbers of
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hidden layers and neurons per layer. The machine learning techniques employed were SVM, RF, LDA
and kNN. As feature selection algorithms, we used Fisher selection, PCA and SFS.

Table 5. Number of entries for each emotion.

Number of entries
Condition 1

Number of entries
Condition 0

Total number of entries
(5 s long)

Anger
Anger

28
No anger

239 672

Joy
Joy
117

No joy
249 2808

Surprise
Surprise

201
No surprise

233 4824

Disgust
Disgust

61
No disgust

186 1464

Fear
Fear
81

No fear
160 1944

Sadness
Sadness

89
No sadness

337 2136

Higuchi fractal dimension (HFD) is a non-linear method highly used in the analysis of biological
signals. It originates from chaos theory and has been used for 30 years as a modality of measuring
signals dynamics and complexity. It has been used for detecting hidden information contained in
biophysical time series with the help of fractals, which, despite scaling, preserve the structure and
shape of complex signals. There are many methods for calculating fractal dimensions, such as Katz’s,
Petrosian’s or Higuchi’s [54–56]. Approximate Entropy (ApEn) is a measure of regularity in the time
domain which determines the predictability of a signal by comparing the number of matching sequences
of a given length with the number of matching sequences one increment longer [57]. In regular data
series, knowing the previous values enables the prediction of the subsequent ones. A high value
of ApEn is associated with random and unpredictable variation, while a low value correlates with
regularity and predictability in a time series [58].

DNN1 has one input layer, three hidden layers with 300 neurons per layer, and one output layer.
The input layer contains 40 neurons, corresponding to the 32 EEG data (raw values/Petrosian fractal
dimensions/Higuchi fractal dimensions/approximate entropy) and 8 peripheral data (hEOG, vEOG,
zEMG, tEMG, GSR, respiration rate, PPG and temperature). Petrosian fractal dimensions, Higuchi
fractal dimensions and approximate entropy have been computed using the functions from the PyEEG
library [59]. The output layer generates two possible results: 0 or 1. In the output layer, we used the
binary crossentropy loss function and sigmoid activation function. Also, the model uses the Adam
gradient descent optimization algorithm and the rectified linear unit (RELU) activation function on
each layer. The network is organized as a multi-layer perceptron network. The input data has been
standardized to zero mean and unit variance. The Keras classifier [60] had 1000 epochs for training and
a batch size of 20. Cross-validation has been performed by using the k-fold method with k = 10 splits
and the leave-one-out method, which takes each sample as test set and keeps the remaining samples
in the training set. However, the leave-one-out method is more computationally demanding than
k-fold. The model has been trained and cross-validated for 10 times and we calculated the average
accuracy and F1 score across these 10 iterations. Each time, the input data has been shuffled before
being divided into the training and test datasets.

DNN2 has 3 hidden layers and 150 neurons/layer, DNN3 has 6 hidden layers with 300 neurons/layer,
and DNN4 has 6 hidden layers with 150 neurons/layer. Their configuration and method of training
and cross-validating is similar to DNN1. Feature selection was not necessary for the DNNs, as the
dropout regularization technique prevents overfitting.

For the SVM method, we used the radial basis function kernel (rbf). For Random Forest,
the number of trees in the forest has been set to 10 (default value for the n_estimators parameter in the
RandomForestClassifier method from the scikit learn library [61]). The function that measures the
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quality of the split has been “entropy”, that divides based on information gain. For kNN, the number
of neighbors has been set to 7. For SVM, LDA, RF, and KNN, the input data has been divided into
70% training and 30% test using the train_test_split method from the scikit learn library. This function
makes sure that each time, the data is shuffled before dividing into the training and test datasets.
The input data has been also standardized in order to reduce it to zero mean and unit variance.

These classification methods have been trained and cross-validated 10 times, without feature
selection and with the Fisher, PCA, and SFS feature selection methods. In a similar way to the
DNNs, we calculated the average accuracy and F1 score across these 10 iterations. The Fisher score
has been calculated on the training dataset and then the first, most relevant 20 features have been
selected. Consequently, a machine learning model (SVM/RF/LDA/kNN) has been constructed and
cross-validated based on these relevant features. The PCA algorithm retains 99% of the data variance
(the n_components parameter of the PCA method from scikit learn has been set to 0.99). The SFS
classifier selects the best feature combination containing between 3 and 20 features.

3. Results

The cross-validation results obtained after training and testing on the data using the machine
and deep learning methods, with k-fold cross validation, for each basic emotion, are presented in
Tables 6–11. The numbers written in bold correspond to the maximum F1 scores and accuracies.
Table 12 presents the most important features for each of the six basic emotions, based on the Fisher
score and SFS algorithm. The accuracies obtained using the leave-one-out method for cross-validation
are with 5%–10% lower, but the hierarchy of results is preserved, not affecting the classification ranking.

Figure 3 presents the decision tree obtained for classifying anger using RF with raw EEG data and
peripheral features, without feature selection.

 

 

Figure 3. Decision tree for Anger using RF with raw EEG data and peripheral features, without
feature selection.
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Table 6. Classification F1 scores and accuracies for anger. (The numbers written in bold correspond to
the maximum F1 scores and accuracies.)

Type of
Feature Selection

Classifier

Anger

Raw Petrosian
Higuchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 91.22 91.22 90.03 90.03 90.03 90.03 74.46 74.55

DNN2 87.80 87.76 87.05 87.04 81.24 81.25 73.06 73.07

DNN3 93.30 93.30 87.50 87.50 89.73 89.73 75.15 75.15

DNN4 88.39 88.39 84.97 84.96 80.08 80.21 71.20 71.28

SVM 92.57 92.58 98.02 98.02 98.02 98.02 68.28 68.32

RF 96.04 96.04 95.05 95.04 97.52 97.52 92.55 92.57

LDA 85.64 85.63 92.08 92.08 96.04 96.04 68.81 68.81

kNN 93.56 93.53 95.05 95.04 97.03 97.03 85.15 85.15

Fisher

SVM 86.14 86.04 95.05 95.05 94.05 94.06 69.70 69.80

RF 95.54 95.54 92.57 92.56 88.15 88.12 92.08 92.08

LDA 80.69 80.64 93.07 93.07 87.12 87.13 61.74 62.38

kNN 97.52 97.52 93.56 93.55 93.56 93.56 88.09 88.12

PCA

SVM 93.42 93.42 97.67 97.67 98.32 98.32 81.93 82.08

RF 92.43 92.42 92.28 92.26 93.62 93.61 86.42 86.44

LDA 81.24 81.15 91.73 91.73 94.75 94.75 65.93 66.09

kNN 93.96 93.95 95.05 95.05 95.59 95.59 87.37 87.38

SFS

SVM 91 91 91 91 84 84 71 71

RF 86 86 86 86 83 83 78 78

LDA 91 91 91 91 85 85 66 66

kNN 91 91 91 91 83 83 79 79

Table 7. Classification F1 scores and accuracies for Joy. (The numbers written in bold correspond to the
maximum F1 scores and accuracies.)

Type of Feature
Selection

Classifier

Joy

Raw Petrosian
Higuchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 82.29 82.30 80.62 80.63 79.46 79.49 69.96 70.16

DNN2 80.30 80.34 78.10 78.10 76.14 76.18 67.24 67.38

DNN3 83.62 83.65 80.91 80.91 80.51 80.52 72.14 72.15

DNN4 81.58 81.59 79.02 79.02 76.80 76.85 67.17 67.45

SVM 83.60 83.63 86.47 86.48 84.45 84.46 65.15 65.95

RF 90.25 90.27 86.31 86.36 87.57 87.66 86.40 86.48

LDA 71.63 71.65 70.94 70.94 72.12 72.12 65.02 65.12

kNN 91.22 91.22 87.90 87.90 87.60 87.60 83.35 83.39

Fisher

SVM 78.48 78.65 83.98 83.99 79.58 79.60 68.65 69.16

RF 89.55 89.56 80.64 80.78 81.09 81.14 80.37 80.43

LDA 64.03 64.29 68.82 68.92 67.03 67.02 64.44 64.53

kNN 89.92 89.92 85.76 85.77 83.75 83.75 74.01 74.02

PCA

SVM 83.17 83.21 86.39 86.39 84.95 84.96 72.01 72.41

RF 88.48 88.51 81.83 81.91 84.91 84.95 82.20 82.20

LDA 70.62 70.77 71.71 71.71 72.32 72.33 63.54 63.74

kNN 89.83 89.83 88.08 88.08 87.55 87.56 82.25 82.27

SFS

SVM 98 98 67 67 67 67 66 66

RF 96 96 70 70 70 70 70 70

LDA 100 100 65 65 65 65 61 61

kNN 98 98 66 66 66 66 66 66
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Table 8. Classification F1 scores and accuracies for surprise. (The numbers written in bold correspond
to the maximum F1 scores and accuracies.)

Type of
Feature Selection

Classifier

Surprise

Raw Petrosian
Higuchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 70.89 70.94 78.04 78.05 76.41 76.43 71.50 71.54

DNN2 69.74 69.88 74.94 74.94 74.19 74.23 69.55 69.57

DNN3 71.41 71.41 77.67 77.67 78.05 78.11 70.47 71.02

DNN4 68.92 68.93 76.12 76.12 74.42 74.42 69.61 69.94

SVM 71.52 71.75 80.92 80.94 81.84 81.84 63.25 65.06

RF 83.91 83.98 82.12 82.25 80.51 80.80 81.22 81.49

LDA 59.79 59.88 63.73 63.74 67.73 67.75 59.74 59.74

kNN 85.01 85.01 84.74 84.74 83.64 83.63 81.30 81.30

Fisher

SVM 70.37 70.86 75.76 75.76 72.50 72.51 62.21 63.54

RF 81.85 81.91 76.97 77.07 80.69 80.80 82.59 82.73

LDA 62.52 62.71 58.48 58.49 60.43 60.43 59.58 59.60

kNN 80.94 80.94 80.59 80.59 79.14 79.14 79.42 79.42

PCA

SVM 73.57 73.71 80.74 80.74 80.20 80.20 70.46 70.50

RF 81.34 81.40 79.21 79.29 81.47 81.52 78.36 78.42

LDA 60.65 60.71 65.60 65.62 66.81 66.84 60.02 60.12

kNN 83.60 83.60 84.81 84.81 82.94 82.94 79.71 79.72

SFS

SVM 96 96 61 61 61 61 61 61

RF 90 90 66 66 64 64 65 65

LDA 93 93 58 58 58 58 61 61

kNN 92 92 62 62 62 62 63 63

Table 9. Classification F1 scores and accuracies for Disgust. (The numbers written in bold correspond
to the maximum F1 scores and accuracies.).

Type of
Feature Selection

Classifier

Disgust

Raw Petrosian
Higouchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 84.65 84.70 85.04 85.04 87.08 87.09 68.90 68.99

DNN2 80.80 80.81 84.02 84.02 82.79 82.79 65.38 65.71

DNN3 87.07 87.09 85.92 85.93 87.70 87.70 67.84 68.44

DNN4 82.57 82.65 83.54 83.54 81.56 81.56 65.96 66.80

SVM 86.82 86.82 91.13 91.14 91.59 91.59 64.27 65

RF 93.63 93.64 91.36 91.36 90.19 90.23 83.14 83.18

LDA 74.72 74.77 84.32 84.32 85.91 85.91 58.72 59.09

kNN 92.03 92.05 95 95 91.36 91.36 82.25 82.27

Fisher

SVM 83.20 83.18 90 90 90.22 90.23 64.77 65.45

RF 89.32 89.32 84.52 84.55 90.23 90.23 75.26 75.23

LDA 72.27 72.27 80.45 80.45 83.39 83.41 61.97 62.73

kNN 89.74 89.77 88.64 88.64 89.31 89.32 66.60 66.59

PCA

SVM 86.40 86.41 92.93 92.93 93.55 93.55 74.77 74.95

RF 87.42 87.43 87.64 87.66 90.11 90.11 78.74 78.80

LDA 72.37 72.43 85.28 85.30 87.52 87.52 61.61 62

kNN 90.84 90.84 93.89 93.89 92.43 92.43 82.05 82.05

SFS

SVM 72 72 73 73 75 75 64 64

RF 65 65 65 65 66 66 62 62

LDA 76 76 77 77 74 74 62 62

kNN 74 74 73 73 67 67 57 57
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Table 10. Classification F1 scores and accuracies for fear. (The numbers written in bold correspond to
the maximum F1 scores and accuracies.).

Type of Feature
Selection

Classifier

Fear

Raw Petrosian
Higuchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 82.86 82.87 78.54 78.55 81.22 81.22 66.96 67.03

DNN2 79.45 79.53 75.31 75.31 79.83 79.84 63.69 63.84

DNN3 84.88 84.93 78.61 78.65 80.97 81.02 67.25 67.34

DNN4 82.33 82.46 75.87 75.87 78.65 78.65 63.26 63.32

SVM 80.21 80.48 86.82 86.82 87.15 87.16 66.02 66.95

RF 89.52 89.55 88.20 88.18 84.41 84.42 79.26 79.28

LDA 68.64 68.66 70.93 71.23 77.86 77.91 57.15 57.36

kNN 90.75 90.75 89.72 89.73 89.04 89.04 80.66 80.65

Fisher

SVM 74.37 74.49 78.50 78.60 82.36 82.36 67.72 68.84

RF 88.85 88.87 78.18 78.25 80.39 80.48 79.27 79.28

LDA 65.24 65.24 69.39 69.52 72.43 72.43 59.32 59.76

kNN 86.98 86.99 80.82 80.82 83.39 83.39 79.42 79.45

PCA

SVM 80.53 80.77 87.25 87.26 89.77 89.78 72.73 73.39

RF 86.98 87.02 82.71 82.77 86.74 86.76 76.75 76.78

LDA 62.09 62.14 73.18 73.20 77.19 77.19 57.62 57.69

kNN 89.21 89.23 89.95 89.95 89.38 89.38 82.25 82.26

SFS

SVM 65 65 66 66 65 65 60 60

RF 61 61 61 61 62 62 61 61

LDA 69 69 69 69 73 73 59 59

kNN 61 61 61 61 65 65 59 59

Table 11. Classification F1 scores and accuracies for sadness. (The numbers written in bold correspond
to the maximum F1 scores and accuracies.).

Type of
Feature Selection

Classifier

Sadness

Raw Petrosian
Higuchi Fractal

Dimension
Approximate Entropy

F1 Score
(%)

Accuracy
(%

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

No feature
selection

DNN1 80.17 80.20 81.79 81.79 83.70 83.71 68.11 68.12

DNN2 78.52 78.56 79.07 79.07 82.49 82.49 67.39 67.46

DNN3 81.72 81.74 81.95 81.98 83.31 83.33 69.71 69.76

DNN4 79.56 79.59 79.19 79.21 83.13 83.15 65.90 66.10

SVM 76.26 76.91 86.90 86.90 90.80 90.80 65.21 65.68

RF 87.49 87.52 84.18 84.24 84.52 84.56 81.86 81.90

LDA 69.37 69.42 75.82 75.82 82.37 82.37 47.12 51.17

kNN 86.81 86.90 90.17 90.17 89.06 89.08 80.50 80.50

Fisher

SVM 73.96 74.26 80.97 80.97 86.43 86.43 59 60.22

RF 84.24 84.24 81.37 81.44 84.83 84.87 64.43 64.43

LDA 66.07 66.61 69.61 69.58 78.78 78.78 50.08 50.08

kNN 85.76 85.80 83.29 83.31 84.71 84.71 76.45 76.44

PCA

SVM 79.63 79.92 87.21 87.21 89.31 89.31 74.56 74.85

RF 85.55 85.62 82.38 82.45 86.49 86.52 80.11 80.14

LDA 58.91 58.99 74.47 74.46 80.31 80.31 52.36 53.29

kNN 88.14 88.17 88.53 88.53 88.12 88.13 82.56 82.56

SFS

SVM 63 63 68 68 69 69 63 63

RF 65 65 66 66 66 66 58 58

LDA 65 65 67 67 71 71 64 64

kNN 61 61 63 63 61 61 58 58
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Table 12. Important features for each emotion.

Raw Petrosian Higuchi Approximate Entropy

Anger

tEMG F3 FC1 tEMG

Respiration AF3 AF3 Respiration

O2 tEMG F3 GSR

P3 Respiration CP5 PPG

C3 FC1 tEMG vEOG

Joy

GSR GSR Cz GSR

FC1 Oz GSR Respiration

PO3 zEMG P8 zEMG

C3 O1 P3 hEOG

Cz PO3 T7 vEOG

Surprise

GSR GSR GSR GSR

Cz FC1 FC1 PPG

C3 FC2 Cz vEOG

Oz Cz P3 Respiration

C4 CP2 Pz zEMG

Disgust

vEOG FC2 vEOG vEOG

FC5 vEOG T7 hEOG

C3 Oz AF3 GSR

P7 PO3 hEOG CP5

Respiration FP1 CP5 Oz

Fear

tEMG FC1 FC1 vEOG

hEOG F4 F4 zEMG

vEOG T8 FC2 Respiration

zEMG Cz AF4 hEOG

Cz FC2 Pz GSR

Sadness

CP1 FC1 FC1 PPG

F8 FP1 P3 Temperature

P7 AF3 O1 tEMG

Cz FC2 FP1 Oz

Respiration Oz AF3 zEMG

4. Discussion

Table 13 presents the best classification F1 scores for each emotion, with and without feature
selection. Without feature selection, kNN has been selected in 13 cases, followed by Random Forest
(seven times) and SVM (four times). For anger, the highest classification accuracy has been obtained
for Petrosian and Higuchi fractal dimension, using SVM (98.02%). For joy, the highest classification
accuracy has been achieved by kNN using Petrosian values (87.9%). For surprise, kNN with raw EEG
values (85.01%), disgust—kNN with Petrosian values (95%), fear—kNN with raw EEG values (90.75%),
sadness—SVM with Higuchi fractal dimensions (90.8%).

With feature selection, kNN has been selected in 12 cases, random forest seven times, SVM five
times and LDA one time. SFS has been selected two times and Fisher score 14 times. For anger, the
highest classification accuracy has been obtained for raw data using kNN and Fisher (97.52%). For Joy,
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the highest classification accuracy has been achieved by LDA and SFS using raw values (100%). For
surprise, SVM and SFS with raw EEG values (96%), disgust, random forest and Fisher with Higuchi
fractal dimensions (90.23%), fear, kNN and Fisher with Higuchi fractal dimensions (83.39%), and
sadness, SVM and Fisher with Higuchi fractal dimensions (86.43%).

Table 13. Best classification F1 scores for each emotion.

Raw Petrosian Higuchi Fractal Dimension Approximate Entropy

No Feature
Selection

With
Feature

Selection

No Feature
Selection

With
Feature

Selection

No Feature
Selection

With
Feature

Selection

No Feature
Selection

With
Feature

Selection

Anger
Random

Forest
96.04%

kNN Fisher
97.52% SVM 98.02% SVM Fisher

95.05% SVM 98.02% SVM Fisher
94.05%

Random
Forest
92.55%

Random
Forest
Fisher
92.08%

Joy kNN 91.22% LDA SFS
100% kNN 87.9% kNN Fisher

85.76% kNN 87.60% kNN Fisher
83.75%

Random
Forest
86.40%

Random
Forest
Fisher
80.37%

Surprise kNN 85.01% SVM SFS
96% kNN 84.75% kNN Fisher

80.59% kNN 83.64%

Random
Forest
Fisher
80.69%

kNN 81.30% kNN Fisher
82.59%

Disgust
Random

Forest
93.63%

kNN Fisher
89.74% kNN 95% SVM Fisher

90% SVM 91.59%

Random
Forest
Fisher
90.23%

Random
Forest
83.14%

Random
Forest
Fisher
75.26%

Fear kNN 90.75%

Random
Forest
Fisher
80.85%

kNN 89.72% kNN Fisher
80.82% kNN 89.04% kNN Fisher

83.39% kNN 80.66% kNN Fisher
79.45%

Sadness
Random

Forest
87.49%

kNN Fisher
85.76% kNN 90.17% kNN Fisher

83.29% SVM 90.8% SVM Fisher
86.43%

Random
Forest
81.86%

kNN Fisher
76.45%

For anger, disgust, fear and sadness, the classification accuracies have been higher without feature
selection. The SFS feature selection algorithm lead to higher accuracies for joy and surprise.

According to Table 12, the most important features for anger were tEMG and respiration. This result
is consistent with reality, because in conditions of anger, anxiety and stress, besides intensifying the
breathing, there is also an accumulation of tension in the muscles located between the forehead and
the shoulders (tension triangles). Thus, corrugator muscles are responsible for forehead frowning, the
masseter and the temporalis muscles are responsible for jaw clenches, while the trapezius muscles are
responsible for the neck tightening and the shoulders rising.

The most important features for joy were GSR and zEMG. Dynamic facial expressions of joy
determine an intense activity of the zygomatic muscle, which pulls up and laterally the corners of the
lips to sketch a smile. High skin conductance entropy indicates body arousal.

The most important features for surprise are GSR and FC1. Although surprise is an emotion with
neutral valence, it is frequently associated with increased GSR.

According to existing studies, disgust suppresses attention, in order to minimize the visual contact
with the threatening agent. This explains the movement of the eyeballs horizontally and vertically
(vEOG and hEOG), which are the most important features for disgust (Table 12).

Fear is characterized by opening the eyes and rotating the eyeballs horizontally and vertically,
for danger identification (vEOG, hEOG), stretching the mouth (zEMG), and opening the nostrils for
better tissue oxygenation. Activation of the frontal cortex (FC1, F4) aims to stimulate motor areas and
prepare the body for escape or fight.

Sadness involves an increasing activity, mostly in the left prefrontal cortex and in the structures of
the limbic system, as we can see from our most selected traits: FC1 and FP1 (Table 12).

The maximum accuracies obtained for classifying the six basic emotions into two classes
(1—emotion and 0—no emotion) were higher than those obtained for classifying into low/high
valence/arousal—62%/56% [4], 73% [42], 70% [43], 85% using the long-short term memory algorithm
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(all using the data from the DEAP database), 66%/64% [44], 62%/69% [45], 55%/58% [62], and 68%/54%
using the data from the MAHNOB database [49].

Liu [46] achieved a classification accuracy of 53% for recognizing eight emotions using Fractal
Dimension Features with SVM, while we obtained accuracies of over 83% using Higuchi Fractal
Dimensions and kNN. Our results are comparable to those obtained by Liu [47] who reached accuracies
of 85% with SVM and 83% using a regression tree for classifying anxiety, boredom, engagement,
frustration, and anger into three categories, namely low, medium, and high.

5. Conclusions

This paper presented a comparative analysis between various machine learning and deep learning
techniques for classifying the six basic emotions from Ekman’s model [2], namely anger, disgust, fear, joy,
sadness, and surprise, using physiological recordings and the valence/arousal/dominance ratings from
the DEAP database. DEAP is the most well-known and exhaustive multimodal dataset for analyzing
human affective states, containing data from 32 subjects who watched 40 one-minute long excerpts of
music videos. Using the three-dimensional VAD model of Mehrabian and Russell [3], each of the six
basic emotions has been defined as a combination of valence/arousal/dominance intervals [63]. Then,
we classified them into two classes: 0—lack of emotion and 1—emotion by training and cross-validating
using various machine learning and deep learning techniques, with and without feature selection.
For anger, the highest classification accuracy has been obtained with Petrosian and Higuchi fractal
dimensions, using SVM and no feature selection (98.02%). For joy, the highest classification accuracy
has been achieved by LDA and SFS using raw EEG values (100%). For surprise—SVM and SFS with
raw EEG values (96%), disgust—kNN with Petrosian values and no feature selection (95%), fear—kNN
with raw EEG values and no feature selection (90.75%), and sadness—SVM with Higuchi fractal
dimensions and no feature selection (90.8%). In the case of four emotions (anger, disgust, fear and
sadness), the classification accuracies were higher without feature selection.

Our approach to emotion classification has applicability in the field of affective computing [64].
The domain includes all the techniques and methods used for the automatic recognition of emotions
and their applications in healthcare, education, marketing, website personalization, recommendation
systems, video games, and social media. Basically, human feelings are translated to the computers,
which can understand and express them. The identification of the six basic emotions can be used for
developing assistive robots, as the ones which detect and processes the affective states of children
suffering from autism spectrum disorder [65], intelligent tutoring systems that use automatic emotion
recognition to improve learning efficiency and adapt learning contents and interfaces in order to engage
students [66], virtual reality games or immersive virtual environments that act as real therapists in
anxiety disorder treatment [9,10], recommender systems which know the users’ mood and adapt the
recommended items accordingly [67,68], public sentiments analysis about different events, economic,
or political decisions [69], and assistive technology [70–72].

Emotions play a central role in explainable artificial intelligence (AI), where there is so much need
for human–AI interaction and human–AI interfaces [73]. As future research directions, we intend to
classify the six basic emotions into three classes, namely negative, neutral, and positive and to develop
emotion-based applications starting from the results presented in this paper, in the emerging field of
explainable AI.
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