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A fascinating challenge in the field of human–robot interaction is the possibility to endow

robots with emotional intelligence in order to make the interaction more intuitive, genuine,

and natural. To achieve this, a critical point is the capability of the robot to infer and

interpret human emotions. Emotion recognition has been widely explored in the broader

fields of human–machine interaction and affective computing. Here, we report recent

advances in emotion recognition, with particular regard to the human–robot interaction

context. Our aim is to review the state of the art of currently adopted emotional models,

interaction modalities, and classification strategies and offer our point of view on future

developments and critical issues. We focus on facial expressions, body poses and

kinematics, voice, brain activity, and peripheral physiological responses, also providing a

list of available datasets containing data from these modalities.

Keywords: emotion recognition (ER), human-robot interaction, affective computing, machine learning,

multimodal data

1. INTRODUCTION

Emotions are fundamental aspects of the human being and affect decisions and actions. They play
an important role in communication, and emotional intelligence, i.e., the ability to understand, use,
and manage emotions (Salovey and Mayer, 1990), is crucial for successful interactions. Affective
computing aims to endow machines with emotional intelligence (Picard, 1999) for improving
natural human-machine interaction (HMI). In the context of human-robot interaction (HRI), it is
hoped that robots can be endowed with human-like capabilities of observation, interpretation, and
emotion expression. Emotions have been considered from three main points of view as follows:

• Formalization of the robots own emotional state: the inclusion of emotional traits into agents
and robots can improve their effectiveness and adaptiveness and enhance their believability
(Hudlicka, 2011). Therefore, the design of robots in the last years has focused on modeling
emotions by defining neurocomputational models, formalizing them in existing cognitive
architectures, adapting known cognitive models, or defining specialized affective architectures
(Cañamero, 2005, 2019; Krasne et al., 2011; Navarro-Guerrero et al., 2012; Reisenzein et al., 2013;
Tanevska et al., 2017; Sánchez-López and Cerezo, 2019);
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• Emotional expression of robots: in complex interaction
scenarios, such as assistive, educational, and social robotics
(Fong et al., 2003; Rossi et al., 2020), the ability of robots to
exhibit recognizable emotional expressions strongly impacts
the resulting social interaction (Mavridis, 2015). Several
studies focused on exploring which modalities (e.g., face
expression, body posture, movement, voice) can convey
emotional information from robots to humans and how
people perceive and recognize emotional states (Tsiourti et al.,
2017; Marmpena et al., 2018; Rossi and Ruocco, 2019);

• Ability of robots to infer the human emotional state:

robots able to infer and interpret human emotions would
be more effective in interacting with people. Recent works
aim to design algorithms for classifying emotional states from
different input modalities, such as facial expression, body
language, voice, and physiological signals (McColl et al., 2016;
Cavallo et al., 2018).

In the following, we focus on the third aspect, reporting recent
advances in emotion recognition (ER), in particular in the
HRI context. ER is a challenging task, in particular when
performed in actual HRI, where the scenario could highly
differ from the controlled environment in which most of
recognition experiments are usually performed. Moreover, the
presence itself of the robot represents a bias, since the robot
presence, embodiment, and behavior could affect empathy (Kwak
et al., 2013), elicit emotions (Guo et al., 2019; Saunderson
and Nejat, 2019; Shao et al., 2020), and impact experience
(Cameron et al., 2015). For these reasons, we limit our study
to articles that perform ER in actual HRI with physical robots.
Our aim is to summarize the state of the art and existing
resources for the design of emotion-aware robots, discuss the
characteristics that are desirable in HRI, and offer a perspective
about future developments.

Literature search has been carried out by querying Google
Scholar1, Scopus2, and WebOfScience3 databases with basic
keywords from HRI and ER domains, and limiting the search to
the last years (≥2015). Submitted queries were as follows:

• Google Scholar: allintitle: “human–robot interaction”|
“human robot interaction” |hri emotion|affective, resulting in
80 documents.

• Scopus: TITLE ((“human–robot interaction” OR “human
robot interaction” OR hri) AND (emotion* OR affective))
OR KEY ((“human–robot interaction” OR “human robot
interaction” OR hri) AND (emotion* OR affective)), resulting
in 629 documents.

• WebOfScience: TI=((“human robot interaction” OR “human–
robot interaction” or hri) AND (emotion* or affective))
or AK=((“human robot interaction” or “human–robot
interaction” OR hri) AND (emotion* or affective)), resulting in
201 documents.

1scholar.google.com
2www.scopus.com
3apps.webofknowledge.com

By using a simple script based on the edit distance between
articles titles, we looked for repeated items between search
engines results. Note that 425 papers were only on Scopus, 22
on Google Scholar, 11 on WebOfScience, and 38 documents
were returned by all the search engines. Between the remaining
articles, 150 were both on Scopus and WebOfScience, 16 on
Scopus and Google Scholar, and 1 on WebOfScience and Google
Scholar. We merged the results in a single list of 664 items.
Since we used loose selection queries, resulting articles were
highly heterogeneous and most of them were out of the scope
of our review. Therefore, we subsequently selected published
articles that addressed ER in HRI, reporting significant results
with respect to the recent literature, and that (a) performed
emotion recognition in an actual HRI (i.e., where at least a
physical robot and a subject were included in the testing phase),
reporting results; (b) were focused on modalities that could be
acquired, during HRI, by using both robot’s embedded sensors
or external devices: facial expression, body pose and kinematics,
voice, brain activity, and peripheral physiological responses; and
(c) relied on either discrete or dimensional models of emotions
(see section 2.1). This phase allowed to select 14 articles. During
the process, however, we also looked at the references of the
selected paper in order to find other works that fit our inclusion
criteria. In this way, 3 articles were added to this review. Finally,
we organized the resulting articles by considering modalities and
emotional models.

2. STATE OF THE ART

2.1. Emotional Models
A key concept in ER is the model used to represent emotions,
since it affects the formalization of the problem and the definition
and separation of classes. Several models have been proposed for
describing emotions, as reported inTable 1. Themain distinction
is between categorical models, in which emotions consist of
discrete entities associated with labels, and dimensional models,
in which emotions are defined by continuous values of their
describing features, usually represented on axes.

It is hard to say which model is better for representing
emotions, the debate is still open and it is strictly related
to the nature of emotions, with a lack of consensus (Lench
et al., 2011; Lindquist et al., 2013). Some scholars claim that
emotions are discrete natural kinds associated with categorically
distinct patterns of activation at the level of autonomic nervous
system (Kragel and LaBar, 2016; Saarimäki et al., 2018). Others
point out intra-emotion differences and the overlap of different
emotions with respect to observed behavior end autonomous
activity (Siegel et al., 2018). Since the purpose of this work is
not to support one or the other thesis, we step back from this
discussion and focuses on the usability of the models. From
the point of view of the recognition process, the possibility
to identify distinct emotions is, ideally, the simplest method.
Unfortunately, as the number of emotions considered increases,
it becomes more difficult to distinguish between classes. On
the other hand, despite the usefulness of obtaining information
about features of emotions (e.g., valence and arousal), a small
number of dimensions could lead to an over-simplification and
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TABLE 1 | Emotional models.

Model Type Description

Ekman

(Ekman, 1992)

Categorical Six basic emotions (anger, disgust, fear,

happiness, sadness, and surprise)

characterized by distinctive universal

signals, and physiology

Tomkins

(Tomkins, 2008)

Categorical Seven affects organized in low/high intensity

couples (interest-excitement,

enjoyment-joy, surprise-startle,

distress-anguish, anger-rage, fear-terror,

shame-humiliation), plus disgust, and dismell

Valence/Arousal (VA)

(Russell, 1980)

Dimensional Emotions represented over a two-dimensional

circular space: axes describe the valence and

arousal

Pleasure/Arousal/Dominance (PAD)

(Mehrabian, 1996)

Dimensional Emotions described with three dimensions:

pleasure, arousal, and dominance

3D hypercube

(Trnka et al., 2016)

Dimensional Emotions described with three dimensions:

valence, intensity, controllability, and utility

Plutchik wheel

of emotions

(Plutchik and Kellerman, 2013)

Hybrid Eight primary emotions differentiated by levels

of intensity

For each entry the type of model and a brief description are reported.

to an “overlap” of different emotions that share similar values
of features (Liberati et al., 2015). For this reason, the choice
of informative and possibly uncorrelated dimensions is critical
(Trnka et al., 2016). Datasets are often annotated by using both
categorical and dimensional models, but it could be observed
that those employing discrete models do not ever use the same
labels, that is annotated emotions differ both in number and
names. Conversely, several dimensional annotated datasets share
a common valence-arousal (VA) (Russell, 1980) representation,
which allows to compare and merge data from different datasets,
in the worst case by ignoring additional axes. When annotating a
dataset, a good practice is to provide at least the VA labels.

Table A1 in Supplementary Material reports a non-
comprehensive list of datasets that can be used to train and
test ER approaches.

2.2. Facial Expressions
A natural way to observe emotions is the analysis of facial
expressions (Ko, 2018). Conventional facial emotion recognition
(FER) systems aim to detect the face region in images and to
compute geometric and appearance features, which are used to
train machine learning (ML) algorithms (Kumar and Gupta,
2015). Geometric features are obtained by identifying facial
landmarks and by computing their reciprocal positions and
action units (AUs) (Ghimire and Lee, 2013; Suk and Prabhakaran,
2014; Álvarez et al., 2018), while appearance-based features are
based on texture information (Turan and Lam, 2018).

In recent years, deep learning (DL) approaches have
emerged. DL aims to develop end-to-end systems to reduce
the dependency from hand-crafted features, pre-processing,
and feature extraction techniques (Ghayoumi, 2017). Notably,

convolutional neural networks (CNNs) have been proven to
be particularly efficient in this task (Mollahosseini et al., 2017;
Zhang, 2017; Refat and Azlan, 2019).

When dealing with video-clips, also the temporal components
of data can be exploited. In traditional FER, this is usually
accomplished by including in the features vector information
about landmarks displacement between frames (Ghimire and
Lee, 2013). In DL approaches, temporal information is handled
by means of specific architectures and layers, such as recurrent
neural network (RNN) and long-short term memory (LSTM)
(Ebrahimi Kahou et al., 2015).

In the context of HRI, FER has been performed through
conventional and DL approaches.

2.2.1. Discrete Models

In Faria et al. (2017), an emotion classification approach,
based on simple geometrical features, was proposed. Given the
position of 68 facial landmarks, their Euclidean distances and the
angles of 91 triangles formed by landmarks were considered. A
probabilistic ensemble of classifiers, namely dynamic Bayesian
mixture model (DBMM), was employed using linear regression
(LR), support vector machine (SVM), and an random forest (RF),
combined in a probabilistic weighting strategy. The proposed
approach was tested both on Karolinska Directed Emotional
Faces (KDEF) (Lundqvist et al., 1998) and during HRI for
recognizing 7 discrete emotions. In particular, for HRI test, the
humanoid robot NAO was programmed either to react to the
recognized emotion. The overall accuracy on the KDEF dataset
was 85%, while in actual HRI it was 80.6%. It is to note that the
test performed on KDEF was limited to images of frontal or±45◦

orientation of the faces.
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In Chen et al. (2017), the authors proposed a method
for real-time dynamic emotion recognition according to facial
expression and emotional intention understanding. In particular,
emotion recognition was performed by using a dynamic model
of AUs (Candide3-based dynamic feature point matching) and
an algorithm implementing fuzzy rules for each of the 7
basic emotions considered. Experiments were conducted on 30
volunteers experiencing the scenario of drinking at bar. One of
the 2 employed mobile robot was used for emotion recognition,
achieving 80.48% of accuracy.

Candide3-based features were also adopted in Chen et al.
(2019). Here, the authors proposed an adaptive feature selection
strategy based on the plus-L minus-R selection (LRS) algorithm
in order to reduce the model dimensionality. Classification was
performed with a set of k-nearest neighbors (kNN) classifiers,
integrated into AdaBoost with direct optimization framework.
The proposed approach was tested both on the JAFFE dataset
(Lyons et al., 1998) and on data acquired by a mobile
robot, equipped with a Kinect. In the latter experiment, the
proposed method achieved an average accuracy of 81.42% in the
classification of 7 discrete emotions.

In Liu et al. (2019), FER was performed by combining local
binary pattern (LBP) and 2D Gabor wavelet transform for
feature extraction and by training an extreme learning machine
(ELM) for the classification of basic emotion. Experiments were
conducted both on public datasets [JAFFE (Lyons et al., 1998),
CK+ (Lucey et al., 2010)], and during actual HRI as part of a
multimodal system setup (Liu et al., 2016). In the latter case, the
method was able to recognize between 7 emotions with an overall
accuracy of 81.9%.

Histogram of oriented gradients (HOG) and LBP were used
as features descriptors in Reyes et al. (2020), where a SVM was
trained to classify 7 discrete emotions. The system was initially
fed with images from extended Cohn-Kanade (CK+) dataset,
but was fine-tuned, by adding batches of different sizes of local
images (i.e., facial images of participants acquired during the
test). Classification of data acquired during the interaction with
the robot NAO achieved 87.7% of accuracy.

Reported results suggest that FER systems designed for HRI
can be developed by using several features and decision strategies.
However, differences between HMI and HRI arise. In HMI
scenarios, FER is in general easier: the position of the face with
respect to the camera is more constrained, the user is close
to the camera and the environment conditions do not change
abruptly. Due to these differences, it is preferable to train FER
system on data in-the-wild or during real interaction with robots.
Moreover, it could be useful to endow robots with the capability
of recognizing emotions not just from facial information, but
also from contextual and environmental data (Lee et al., 2019).
Future developments of FER will probably depend also on
emerging technologies: in the last decades, there was a rapid
development of relatively cheap depth cameras (RGB-D sensors),
and thermal cameras. The work by Corneanu et al. (2016) offers a
comprehensive taxonomy of FER approaches based on RGB, 3D,
and thermal sensors. For example, 3D information can improve
face detection, landmarks localization, and AUs computation
(Mao et al., 2015; Szwoch and Pieniażek, 2015; Zhang et al., 2015;
Patil and Bailke, 2016).

2.3. Thermal Facial Images
Changes in the affective state produce the redistribution of
the blood in the vessels, due to vasodilatation/vasoconstriction
and emotional sweating phenomena. Infra-red thermal cameras
can detect these changes, since they cause variations in skin
temperature (Ioannou et al., 2014). Therefore, thermal images
could be used to perform ER (Liu and Wang, 2011; Wang
et al., 2014). Usually, this is done by considering temperature
variations of specific regions of interest (ROIs), e.g., tip of the
nose, forehead, orbicularis oculi, and cheeks.

2.3.1. Discrete Models

In Boccanfuso et al. (2016), 10 subjects played a trivia game
with a MyKeepon robot behaving to induce happiness and anger
and watched emotional video clips selected to elicit the same
emotions. RGB and thermal facial images were acquired, together
with galvanic skin response (GSR) signal. In particular, the
thermal trends of 5 ROIs were analyzed by combining principal
component analysis (PCA) and logistic regression, achieving a
prediction success of 100%.

In Goulart et al. (2019b), a system for the classification of 5
emotions during the interaction between children and a robot
was proposed. A mobile robot (N-MARIA) was equipped RGB
and thermal camera that were used to locate and acquire thermal
information of 11 ROIs, respectively. Statistical features were
computed for each ROI and multiple combinations of feature
reduction techniques and classification algorithms were tested
over a database of 28 developing children (Goulart et al., 2019a).
A PCA+linear discriminant analysis (LDA) system, trained and
tested on the database (accuracy 85%), was used to infer the
emotional responses of children during the interaction with
N-MARIA, with results consistent with self reported emotions.

Performing ER from thermal images in actual HRI is still a
challenge due to the constraints (other than those that affect
simple FER) that are not adaptable to all real-life scenarios, first of
all the necessity to maintain a stable environmental temperature.
However, recent results show that thermal images have the
potential to facilitate HRI (Filippini et al., 2020).

2.4. Body Pose and Kinematics
As facial expressions, body posture, movements, and gestures
are natural and intuitive ways to infer the affective state of a
person. Emotional body gesture recognition (EBGR) has been
widely explored (Noroozi et al., 2018). In order to take advantage
of information conveyed by static or dynamic cues, an EBGR
system has to model the body position from input signals, usually
RGB data, depth maps, or their combination. The first step of
the canonical recognition pipeline is the detection of human
bodies: literature offers several approaches for addressing the
problem (Ioffe and Forsyth, 2001; Viola and Jones, 2001; Viola
et al., 2005; Wang and Lien, 2007; Nguyen et al., 2016). Then,
the pose of the body has to be estimated, by fitting an a priori
defined model, typically a skeleton, over the body region. This
task could be performed either by solving an inverse kinematic
problem (Barron and Kakadiaris, 2000) or by using DL, if a large
amount of skeletonized data are available (Toshev and Szegedy,
2014). Features could include absolute or reciprocal positions and
orientations of limbs, as well as movement information such as
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speed or acceleration (Glowinski et al., 2011; Saha et al., 2014).
Classification can be performed either by traditional ML or deep
learning (Savva et al., 2012; Saha et al., 2014).

2.4.1. Discrete Models

An interesting approach was proposed in Elfaramawy et al.
(2017), where neural network architecture was designed for
classifying 6 emotions from body motion patterns. In particular,
the classification was performed by grow when required (GWR)
networks, self-organizing architectures able to grow nodes
whenever the network does not sufficiently match the input.
Two GWR network learned samples of pose and motion and,
subsequently, a recurrent variant of GWR, namely gamma-
GWR, to take in account temporal context. The dataset, that
included 19 subjects, was collected by extending a NAO robot
with a depth camera (Asus Xtion) and using a second NAO
located on the side to allow acquisition from two points of
view. Subjects performed body motions related to the emotions,
elicited by the description of inspiring scenarios. Pose features
(positions of joints) and motion features (the difference in
pose features between consecutive frames) were considered. The
system achieved an overall accuracy of 88.8%.

2.4.2. Dimensional Models

In Sun et al. (2019), the authors proposed the local joint
transformations for describing body poses, and a two-layered
LSTM for estimating the emotional intensity of discrete
emotions. The authors tested the system over the Emotional
Body Motion Database (Volkova et al., 2014) by considering the
intensity as the percentage of correctly perceived segments for
each scenario. Pearson Correlation Coefficient (PCC) between
the ground truth and the estimated intensity was 0.81. In real HRI
experiments with a Pepper robot, the system enabled the robot to
sense subjects’ emotional intensities effectively.

Summarizing these results, we can say that body poses and
movements are excellent to convey emotional cues and that
EBGR systems can be successfully employed in HRI scenarios.
Moreover, the fact that FER and EBGR rely on the same
sensors (RGB, depth cameras) would allow to take advantages of
both modalities.

2.5. Brain Activity
Inferring the emotional state brain activity represents a
challenging and fascinating possibility, since having access to
the cerebral activity would allow to avoid any filter, voluntary
or not, that could interfere with the ER (Kappas, 2010). Several
measurement systems could be used for acquiring brain activity.
Among them, electroencephalography (EEG) is characterized
by high temporal resolution, is portable, easy to use, and not
expensive. Moreover, it has proven to be suitable for brain
monitoring also in HMI applications (Lahane et al., 2019).
Consumer-grade devices, although not accurate enough for
neuroscience research and critical control tasks, have been
reported to be a feasible choice for applications such as
affective computing (Duvinage et al., 2013; Nijboer et al., 2015;
Maskeliunas et al., 2016).

ER by EEG has been widely explored in the literature (Alarcao
and Fonseca, 2017; Spezialetti et al., 2018). Most commonly
used features can be roughly classified by the domain from
which they are extracted (time, frequency, time–frequency). Time
domain features include statistical values, Hjorth parameters,
fractal dimension (FD), and high order crossing (HOC) (Jenke
et al., 2014). Frequency analyses in EEG are very common,
also because it is known the association between frequency
bands of EEG signal and specific mental tasks. The most
intuitive and used frequency feature is band power, but other
measures, such as high order spectra (HOS) have been also
employed (Hosseini et al., 2010). Time–frequency analysis aims
to observe the frequency content of the signal, without losing
the information about its the temporal evolution. Among others,
wavelet transform (WT) has demonstrated to be particularly
suited for analyzing non-stationary signals such as EEG (Akin,
2002). Previously listed features are generally computed in a
channel wise manner, but also the topography of EEG signals
can be taken into account. Since frontal EEG asymmetry has
been proved to be involved in emotional activity (Palmiero and
Piccardi, 2017), asymmetry indices have been often employed in
emotion recognition.

Some interesting works in traditional literature (Ansari-
Asl et al., 2007; Petrantonakis and Hadjileontiadis, 2009;
Valenzi et al., 2014) were devoted to test which classification
approaches, features, and channel configurations are more
suited for EEG-based ER. Results from these studies suggest
two significant points. First, the emotional state of subjects
can be inferred with quite good accuracy by EEG. Second,
using a reduced set of channels and commercial-grade devices
still allows to preserve an adequate level of accuracy. The
latter point is critical, since in most of the HRI scenarios,
the EEG equipment should be worn continuously for long
periods and while moving. Light, easy-to-mount devices would
be preferable to research-grade hardware. Until 2017 (Al-
Nafjan et al., 2017), the most adopted classification approach
was SVM, often in conjunction with power spectral density
(PSD)-based features. However, deep learning approaches are
standing out also in this domain, showing the potential to
outperform traditional ML techniques (Zheng and Lu, 2015;
Li et al., 2016; Wang et al., 2019). However, to the best of
our knowledge, few works have addressed EEG ER in real
HRI scenarios.

2.5.1. Dimensional Models

In Shao et al. (2019), the authors employed the Softbank Pepper
robot as an autonomous exercise facilitator to encourage the
user during the physical activity that can autonomously adapt
its emotional behaviors on the basis of user affect. In particular,
valence detection was performed by analyzing EEG from a
commercial-grade device. Selected features were PSD and frontal
asymmetry. Among 6 classifiers, a neural network (NN) achieved
the highest accuracy over a dataset from 10 subjects obtained by
inducing emotions with pictures and videos. When employed in
a real HRI scenario, the robot was able to correctly recognize the
valence (5 levels) for 14 of the 15 subjects.
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In Shao et al. (2020), the authors proposed a novel
paradigm for eliciting emotions by directly employing non-
verbal communication of the robot (Pepper), in order to train
a detection model with data from actual HRI. The elicitation
methodology was based both on music and body movements of
the robot and aimed to elicit two types of affects: positive valence
and high arousal, and negative valence and low arousal. EEG
was acquired by a 4-channel headset in order to extract PSD and
frontal asymmetry features and feed an NN and an SVM. The
affect detection approach was tested on 14 subjects for valence
and 12 for arousal, obtaining an overall accuracy of 71.9 and
70.1% (valence), and 70.6 and 69.5% (arousal) using NN and
SVM, respectively.

2.6. Voice
Everyday experiences tell us that the voice, as well as facial
expressions, is an informative channel about our interlocutor
emotions. We have a natural ability to infer the emotional state
underlying the semantic content of what the speaker is saying.
Changes in emotional states correspond to variations of organs’
features, such as larynx position and vocal fold tension, thus
in variations of the voice (Johnstone, 2001). In HRI, automatic
acoustic emotion recognition (AER) has to be performed in order
to allow robots to perceive human vocal affect. Usually, AER does
not examine speech and words in the semantic sense, instead it
analyzes variation with respect to the neutral speak of prosody
(e.g., pitch, energy, and formants information), voice quality
(e.g., voice level and temporal structures), and spectral (e.g.,
cepstral-based coefficients) features. Features can be extracted
either locally, segmenting the signal in frames, or globally,
considering the whole utterance. In traditional ML approaches,
feature extraction is followed by classification, performed mostly
by hidden Markov model (HMM), Gaussian mixture model
(GMM), and SVM (El Ayadi et al., 2011; Gangamohan et al.,
2016). Also in the AER field, deep learning approaches have
rapidly emerged, providing end-to-end mechanisms in contrast
with those based on hand-crafted features and demonstrating
that they can perform well-compared with traditional techniques
(Khalil et al., 2019). Employed models include deep Boltzmann
machine (DBM) (Poon-Feng et al., 2014), RNN (Lee and Tashev,
2015), deep belief network (DBN) (Wen et al., 2017), and CNN
(Zheng et al., 2015).

2.6.1. Discrete Models

In Chen et al. (2020), two-layer fuzzy multiple random forest
(TLFMRF) was proposed for speech emotion recognition.
Statistic values of 32 features (16 basic features and their
derivative) were extracted from speech samples. Then, clustering
by fuzzy C-means (FCM) was adopted to divide the feature data
into different subclasses to address differences in identification
information such as gender and age. In TLFMRF, a cascade of RF
was employed for improving the classification between emotions
that are difficult to distinguish. The approach was tested in the
classification of six basic emotions from short utterances, spoken
by 5 participants in front of a mobile robot. Average accuracy
was 80.73%.

2.7. Pheripheral Physiological Responses
and Multimodal Approaches
Emotions affect body physiology, producing significant
modifications to hearth rate, blood volume pressure (BVP),
respiration, skin conductivity, and temperature (Kreibig,
2010), which can contribute to predict the emotional state of
a person. A large effort has been made for developing datasets
and techniques for ER, often by considering multiple signal
sources together (Koelstra et al., 2011; Soleymani et al., 2011;
Chen et al., 2015; Correa et al., 2018). Beside the accuracy
obtained with just peripheral signals, these works show that the
fusion of multiple modalities can outperform single modality
approaches, therefore they can be useful sources of information
for improving multimodal system performance. Moreover, the
rapid development and mass production of consumer grade
devices, such as smartband and smartwatch (Poongodi et al.,
2020), will facilitate the integration of these signals in most of
HRI systems. For example, in Lazzeri et al. (2014) a multimodal
acquisition platform, including a humanoid robot capable of
expressing emotions, was tested in a social robot-based therapy
scenario for children with autism. The system included audio
and video sources, together with electrocardiogram (ECG),
GSR, respiration, and accelerometer, that are integrated in a
sensorized t-shirt, but the platform was designed to be flexible
and reconfigurable in order to connect with various hardware
devices. Another multimodal platform was described in Liu et al.
(2016). It was a complex multimodal emotional communication
based human–robot interaction (MEC-HRI) system. The whole
platform was composed of 3 NAO robots, two mobile robots,
a workstation, and several devices such as a Kinect and an
EEG headset, and it was designed to allow robots to recognize
humans’ emotions and respond in accordance to them, basing
on facial expression, speech, posture, and EEG. The article does
not report numerical results of multimodal classification in
tested HRI scenarios, but modules achieved promising results
when tested on benchmark datasets (Liu et al., 2018a,b) or in
single-modality HRI experiments (Liu et al., 2019).

At present, several studies have employed single peripheral
measures for ER in HRI (McColl et al., 2016), but the majority
focused on narrow aspects of ER (e.g., level of stress or fatigue),
instead of referring to a broader emotional model.

2.7.1. Discrete Models

One of the highest accuracy results, we found in the literature,
was Perez-Gaspar et al. (2016). Here, the authors developed
a multimodal emotion recognition system that integrated
expressions and voice patterns, based on the evolutionary
optimization of NN and HMM. Genetic algorithms (GAs) were
used to estimate the most suitable structures for ANNs and
HMMs for modeling of speech and visual emotional features.
Speech and visual information were managed separately by two
distinct modules and a decision level fusion was performed by
averaging the output probabilities from different modalities of
each class. The system was trained on a dataset of Mexican
people, containing pictures from 9 subjects and speech samples
from 8 subjects. Four basic emotions were considered (anger,
sadness, happiness, and neutral). Live tests were performed with
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10 unseen subjects that interacted with a graphical interface and
97% of accuracy was reported. Finally, in all HRI experiments
(dialogue with a Bioloid robot), the robot speech was consistent
with the emotion shown by the users.

In Filntisis et al. (2019), the authors proposed a system that
hierarchically fuses body and facial features from images based
on the simultaneous use of residual network (ResNet) and a
deep neural network (DNN) to analyze face and body data,
respectively. The system was not incorporated into a robot, but
tested on a database containing images of children interacting
with two different robots (Zeno and Furhat) in a game in which
they had to express 6 basic emotions. Classification accuracy
was 72%.

An interesting approach was proposed in Yu and Tapus (2019)
for multimodal emotion recognition from thermal facial images
and gait analysis. Here, interactive robot learning (IRL) was
proposed to take advantage of human feedback obtained by the
robot during HRI. First, two RF models for thermal images and
gait were trained separately on a dataset of 15 subjects labeled
with 4 emotions. Computed features included PSD of 4 joints
angles and angular velocity for gait and mean and variance of 3
ROIs for thermal images. A decision level fusion was performed
based on weights computed from the confusion matrices of the
two RF classifiers. In the proposed IRL, during the interaction
with the robot, if the predicted emotion does not correspond
to the human feedback, the gait and the thermal facial features
were used to update the emotion recognition models. The online
test included emotion elicitation by movie, followed by gait and
thermal images acquisition, and involve a Pepper robot. Results
showed the IRL can improve the classification accuracy from 65.6
to 78.1%.

2.7.2. Dimensional Models

Barros et al. (2015) presented a neural architecture, named Cross-
Channel CNN for multimodal data extraction. Such network is
able to extract emotions’ features based on face expression and
body motion. Among different experiments, the approach was
tested on a real HRI scenario. An iCub robot was used to interact
with a subject and presented one emotional state (positive,
negative, or neutral). The robot recognized the emotional state
and gave feedback by changing its mouth and eyebrow LEDs,
with an average accuracy of 74%.

In Val-Calvo et al. (2020), an interesting analysis of the
possibilities of ER in HRI was performed by using facial images,
EEG, GSR, and blood pressure. In a realistic HRI scenario, a
Pepper robot dynamically drives subjects’ emotional responses
by story-telling and multimedia stimuli. Acquired data (from
16 participants) was labeled with the emotional score that each
subject self reported using 3 levels of valence and arousal.
Classification experiments were conducted, together with a
population-based statistical analysis. Facial expression estimation
is achieved by a CNN strategy. The model was trained on
FER2013 (Goodfellow et al., 2013) database in order to map facial
images in 7 emotions, grouped into 3 levels of valence. Three
independent classifications were used for estimating valence
from EEG and arousal from BVP and GSR. The classification
process was carried using a set of 8 standard classifiers and
considering statistical features of the signals. Achieved accuracy

results obtained on both emotional dimensions were higher than
80% on average.

3. DISCUSSION

As it is possible to observe by our brief summary about the
state of the art, ER is feasible by collecting different kinds of
data. Some modalities have been widely explored, both in a
broader HMI context and specifically for HRI (FER, EBGR),
others should be deeper investigated because, at present, ER
has not been tested enough in HRI applications (EEG) or
because existing HRI field tests are focused on narrow aspects
of emotions (peripheral responses). In our opinion, all the
considered modalities represent promising information sources
for future developments: innovative and accessible technologies,
such as depth cameras, consumer-grade EEG, and smart devices,
together with advances in ML will lead to rapid developments
of emotions-aware robots. Nevertheless, emotion recognition is
currently still a challenge for robots due to the necessity of
reliability of results, to provide a trustworthy interaction, and the
time constraints required to account for the recognized emotion
into the adaptation of the robot behavior. Moreover, many of the
used dataset came from general HMI research and so are not
suited for emotion recognition in real settings. There is still the
need of dataset from real HRI. Indeed, the visual field of view of
the robot may not be aligned to the images stored in the dataset
(i.e., form face-to-face interaction), the perceived sound may
be affected by noise of the ego-motion of the robot, and robot
movements may even occlude its field of view. In this perspective,
multimodal systems will have a key role by improving the
performances of ER with respect to single-modalities approaches,
and ML methods and DL architectures have to be developed
to deal with heterogeneous data. Particular attention has to be
paid on data used to train and test ER: HRI presents some
critical and challenging aspects that could make data collected in
controlled environments or from different contexts, unsuitable
for real HRI applications. However, recently published datasets
have the advantage of containing data collected from a large
number of sensors. This is a valuable feature, since it will allow
to develop features-level fusion approaches for multimodal ER.
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