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Emotion Recognition from an Ensemble of Features
Usman Tariq, Student Member, IEEE, Kai-Hsiang Lin, Zhen Li, Xi Zhou, Zhaowen Wang,

Vuong Le, Student Member, IEEE, Thomas S. Huang, Life Fellow, IEEE, Xutao Lv and Tony X. Han

Abstract—This work details the authors’ efforts to push the
baseline of expression recognition performance on a realistic
database. Both subject-dependent and subject-independent emo-
tion recognition scenarios are addressed in this work. These two
happen frequently in real life settings. The approach towards
solving this problem involves face detection, followed by key
point identification, then feature generation and then finally
classification. An ensemble of features comprising of Hierarchial
Gaussianization (HG), Scale Invariant Feature Transform (SIFT)
and Optic Flow have been incorporated. In the classification stage
we used SVMs. The classification task has been divided into
person specific and person independent emotion recognition. Both
manual labels and automatic algorithms for person verification
have been attempted. They both give similar performance.

I. INTRODUCTION

Automated expression recognition shall very soon have its

sizeable impact in areas ranging from psychology to HCI (hu-

man computer interaction) to HRI (human-robot interaction).

In psychology, for instance, the applications include autism

early intervention techniques, etc. While in HRI and HCI there

is an ever increasing demand to make the computers and robots

behave more human-like. For instance in automated learning,

the computer should ideally be able to identify the cognitive

state of the student. Say, if the student is gloomy, it might tell

a joke, etc.

The multi-modal computer-aided learning system at the

Beckman Institute in University of Illinois at Urbana-

Champaign, USA is one landmark example of computer aided

learning (http://itr.beckman.uiuc.edu). The computer avatar

offers an appropriate tutoring strategy based upon the users

facial expressions, task state, eye-movement and keywords [1].

Psychologists and linguistics have various opinions about

the importance of different cues in human affect judgment

[1]. But there are some studies (e.g. [2]) which indicate that

facial expression in the visual channel is the most affective and

important cue and correlates well with the body and voice. In

this work, we also use features extracted from the facial region.

II. BACKGROUND WORK

Emotion recognition using visual cues has been receiving a

great deal of attention in the past decade. Most of the existing
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approaches do recognition on six universal basic emotions

because of their stability over culture, age and other identity

related factors. The choices of features employed for emotion

recognition are classified by Zeng et al. [1] into two main

categories: geometric features and appearance features. In this

section, we closely follow that taxonomy to review some of

the notable works on the topic.

The geometric features are extracted from the shape or

salient point locations of important facial components such

as mouth and eyes. In the work of Changbo et al. [3], 58

landmark points are used to construct an active shape model

(ASM). These are then tracked and give facial expressions

recognition in a cooperative manner. Pantic and Barllet [4]

introduced a set of more refined features. They utilized facial

characteristic points around the mouth, eyes, eyebrows, nose,

and chin as geometric features for emotion recognition.

The appearance features representing the facial character-

istics such as texture and other facial miniatures are also

employed in many works. Among them, another work of

Bartlett and colleagues [5] highlights Gabor wavelets extracted

after warping the image in 3D into canonical views. Also,

the work by Anderson and McOwan [6] introduces a holistic

spatial ratio face template. In this work, the movement of

identified regions of the face are extracted out from rigid

head movement through tracking and used as feature for SVM

classification. Usage of temporal templates by Valstar et al., in

[7], is another example. They used multilevel motion history

images to study the subtle changes in facial behavior in terms

of action units.

Beside geometric and appearance based, the hybrid features

are also used and have shown impressive recognition results.

In [8], Tian et al. combined shapes and the transient features

to recognize fine-grained changes in facial expression. In an

intuitive way of analyzing facial expressions, several other

works, such as [9] and [10], follow the traditional approach of

using 3D face models to estimate the movements of the facial

feature points. These features are related to the AUs and their

movements control the emotional states of the subject.

In this work we used an ensemble of features extracted from

the facial region. These include both appearance and motion

features. The feature set comprises of SIFT features at the

key points, Hierarchical Gaussianization (HG) features and

motion features. Classification is carried out using SVMs. The

final video emotion is computed based upon majority voting

of detected emotion in the frames from the respective video.

Our approach has proven its significance over the baseline

methodology [12].
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III. DATABASE

The database used in this work is the GEMEP-FERA

database [11] [12]. It consists of the video-recordings of 10

actors. They are displaying a range of expressions, while

uttering the word ‘Aaah’, or a meaningless phrase. There are

7 subjects in the training data (3 males and 4 females). While

the test data-set has 6 subjects. 3 out of those 6 are not present

in the training set. The total number of videos in the training

partition is 155 while that in the testing partition is 134.

There are five discrete, mutually-exclusive emotion cate-

gories that are staged in the database[12]. These categories are:

Anger, Fear, Joy, Relief, and Sadness. Emotions are labeled

on a per video basis. In the training partition each emotion

appears 30-32 times.

IV. PRE-PROCESSING

A number of pre-processing steps were carried out before

the feature extraction phase. We observed interlacing [13] in

the training videos. Thus de-interlacing [13] was performed

for each video to improve image quality for feature extraction

in the later stage. Specifically, we extracted two horizontal

fields (one is comprised of odd lines and the other is of even

lines) from each frame, and then resized them to one half in

the horizontal direction in order to keep the original aspect

ratio. In this way, we obtained double the temporal resolution

at the cost of losing one half of the spatial resolution.

After de-interlacing, the face area and location of the nose

and two eyes on each frame are located by the Pittpatt face

detection and tracking library [14],[15]. This area is then in-

plane rotated so that the face will have straightened up pose.

On a located and straightened face, 83 facial feature points

(on the face contour, eyes, nose and lips) are detected using

an adaptation of active shape model (ASM). Face detection,

in plane rotation and key point identification is shown for a

frame from one of the test videos in fig. 1. A selected subset

of these points were later used for face alignment and local

SIFT feature extraction steps. The extracted faces were aligned

using five key points in a least square sense. These points

include, two eye-corners, one nose-tip and two mouth corners.

For extraction of motion flow features, all detected key points

were used.

Fig. 1. (a) is an input frame, (b) shows the result for face detection followed
by in-plane rotation, (c) shows key points identification.

V. FEATURES

We extracted an ensemble of features from the faces detect-

ed in the videos. These include SIFT at selected key points,

HG features and motion (Optic Flow) features. Following sub-

sections give a brief description of these features.

A. Scale Invariant Feature Transform(SIFT)

Since its inception, SIFT [16] has proven its significance in a

vast majority of applications in computer vision. We extracted

SIFT descriptors on 7 selected key points. This subset of points

consisted of the following: one point at the center of each

eye, one point on the nose base and 4 points around the lips

(two points at the lip corners and two points at the centers of

upper and lower lips). The SIFT descriptor extracted on these

points was concatenated into one long vector (resulting into a

128×7 = 896 dimensional feature vector). These points were

selected based upon their better performance on the training

data.

B. Hierarchical Gaussianization

The novel Hierarchical Gaussianization (HG) [17] repre-

sentation is a locality sensitive patch-based approach, where

the patch locality information is characterized jointly with

the appearance information. The proposed representation has

the distinct advantage of being insensitive to scale, pose

and appearance. The robust representation is generic, which

supports wide range of imagery processing. It is worthwhile

to mention here that HG features have been a key component

in our research group’s top performance in a number of recent

competitions. These include the following:

1) Large Scale Visual Recognition Challenge (First posi-

tion), 2010

2) PASCAL Visual Object Classes Challenge (First posi-

tion), 2009

3) StarChallenge Multimedia Retrieval Competition

(Bronze Medal), 2008

In the process of extraction of these features, first we adopt a

hierarchical GMM for feature vectors at difference levels: the

whole corpus, each image and individual patches. We learn

the image-specific GMM in a Bayesian framework to allow

information sharing across different images and to bridge

the universal and individual information retrievals. Given an

image-specific GMM, each patch of that image is assigned to

a Gaussian component with respect to a posterior probability.

All these probabilities constitute a set of so-called Gaussian

maps over the entire patch grid. After obtaining a GMM

and Gaussian maps for each image which we term as a

Hierarchical Gaussianization (HG) process, we extract the

appearance information from the GMM parameters, and the

spatial information from global and local summary statistics

over Gaussian maps. Finally, all parameters of the GMM

and statistics of the Gaussian maps are concatenated as a

super-vector, followed by a supervised dimension reduction to

further enhance the discriminating power of the representation.

An illustration of this new representation is shown in figure

2.

The three major components of the representation: 1) Gaus-

sian Mixture Model for appearance modeling; 2) Gaussian

maps for spatial representation; and 3) Discriminant attribute

projection, will be described respectively here.

1) GMMs for appearance representation: Let z denotes a

p-dimensional feature vector from the I-th image. We model
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Fig. 2. (a) is an input image. (b) shows the patch features in the feature
space. Each ”+” denotes a feature vector, whose distribution is approximated
by a GMM. (c) shows a set of Gaussian maps, each of which corresponds to
one Gaussian component in (b). A supervised dimension reduction algorithm,
DAP, is performed in (d) to form the final image representation, hierarchical
Gaussianization vector.

z by a GMM, namely,

p(z|Θ) =
K

∑
k=1

wI
kN (z; µ I

k ,Σ
I
k), (1)

where K denotes the total number of Gaussian components,

and (wI
k,µ

I
k ,Σ

I
k) are the image-specific weight, mean and

covariance matrix of the kth Gaussian component, respectively.

For computational efficiency, we restrict the covariance matri-

ces ΣI
k to be a diagonal matrix Σk shared by all images.

We estimate the prior mean vector µk, prior weights wk and

covariance matrix Σk by fitting a global GMM based on the

whole corpus, and the remaining parameters by solving the

following Maximum A Posteriori (MAP) loss,

max
Θ

[

ln p(z|Θ)+ ln p(Θ)
]

.

The MAP estimates can be obtained via an EM algorithm: in

the E-step, we compute

Pr(k|zi) =
wI

kN (zi; µ I
k ,Σk)

∑K
j=1 wI

jN (zi; µ I
j ,Σ j)

, (2)

nk =
N

∑
i=1

Pr(k|zi), (3)

and in the M-step, we update

ŵI
k = γknk/N +(1− γk)wk, (4)

µ̂ I
k = αkmk +(1−αk)µk, (5)

where

mk =
1

nk

N

∑
i=1

Pr(k|zi)zi,

αk = nk/(nk + r), γk = N/(N +T ).

If a Gaussian component has a high probabilistic count, nk,

then αk approaches 1 and the adapted parameters emphasize

the new sufficient statistics mk; otherwise, the adapted param-

eters are determined by the global model µk.

After Gaussinization, we can calculate the similarity be-

tween a pair of images via the similarity between two GMMs.

In our experiments, we follow the suggestion in [21] and

choose the appearance vector for an image, xI , to be

m(xI) = [
√

wI
1Σ

− 1
2

1 µ I
1; · · · ;

√

wI
KΣ

− 1
2

K µ I
K ]. (6)

2) Gaussian maps for spatial representation: According to

equation (2), the feature vector at each patch is again modeled

by a mixture of Gaussians with a mixture probability Pr(k|zi).
For a fixed k, all such probabilities Pr(k|zi) form a map over

the patch locations, which is referred as a Gaussian map. For

a GMM with K components, we have K Gaussian maps, and

we can learn the spatial information of an image by analyzing

each of these Gaussian maps.

We follow the suggestion in [17], hierarchically split a

Gaussian map and extract summary statistics over local re-

gions. Specifically, each of the K Gaussian maps is divided

into subregions based on a sequence of increasingly coarser

grids; assume there are M subregions in total, then we calculate

some summary statistic ν over each of the M regions. As a

parallel form to (6), we define v(xI), a vector expressing spatial

information of image xI as follows,

v(xI) = [ν I
11; · · · ;ν I

M1;ν I
12; · · · ;ν I

M2; · · · ;ν I
MK ] (7)

3) Discriminant attribute projection: We concatenate the

appearance vector m(xI) and the spatial vector ν(xI) as a

super-vector

φ(xI) = [m(xI);v(xa)],

To enhance the discriminating power of our representation,

we project φ(xI) to a subspace that depresses the directions

with high inter-category variabilities. Let V denote the pro-

jection matrix toward the subspace with high inter-category

variabilities, that is, (I−V )φ(xI) is the discriminant projection

we are looking for. We solve V via the following objective

function

V = arg max
V T V=I

∑
i ̸= j

||V T φ(xi)−V T φ(x j)||2Wi j, (8)

where Wi j=1 when xi and x j belong to the same category,

otherwise Wi j = 0. Let Φ = [φ(x1),φ(x2), · · · ,φ(xN)], a matrix

with N columns where N is the total number of training

images. It can be shown that the optimal solution for V consists

of the top eigenvectors corresponding to the largest eigenvalues

of matrix Φ(D−W )ΦT , where D is a diagonal matrix with

Dii = ∑N
j=1 Wi j,∀i.

Suppose we use the dot product as a similarity measure

between super-vectors. After applying discriminant attribute
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projection (DAP), the similarity between two images, xa and

xb, is equal to

D(xa,xb) = φ(xa)T (I−VV T )φ(xb). (9)

That is, the projection toward V , which is irrelevant to the

classification, is discarded in the similarity calculation. Thus,

the HG feature vector, used for classification in later stages,

is essentially φ(x) with its those dimension suppressed which

are irrelevant for classification.

C. Motion feature

From our experiments on the training videos, we found

motion features useful in increasing the classification accuracy.

We used local statistics of the optical flow of the regions

of interest as the motion feature in each frame. Here optical

flow estimation is used to compute an approximation to the

motion field from the intensity difference of two consecutive

frames. The main concern of using optical flow feature is

that it usually requires heavy computational loading. For this

reason we use the algorithm implemented on GPU [18] which

decreases computation time by orders of magnitude.

Following steps are taken for extraction of motion feature:

1) compute motion vector of each pixel using optical flow

computation algorithm,

2) rotate the optical flow field to aligned the optical flow

with the key points,

3) crop out the seven regions of interest including two

eyebrows, two eyes, nose, mouth and the residual part of

the face by taking the convex hull of the respective key

points (or in other words, by connecting the key points

around each region),

4) compute means and variances of horizontal and vertical

components of the optical flow of each region of interest

and then concatenating them as a feature vector.

The final motion feature for a frame has 28 dimensions.

VI. CLASSIFICATION

The feature vectors for the frames from the training set,

obtained by the concatenation of the features outlined in the

precious section, were fed into SVM classifiers for training.

The frames in which no face was detected or where the motion

feature was not available were left out in both the training

and testing stages (for instance, there cannot be motion flow

feature for the first frame in each video, for obvious reasons).

An image specific approach was primarily adopted. The final

decision was done on the basis of majority voting.

A hierarchial approach was followed for expression classifi-

cation. Thus person specific and person independent classifiers

were trained. To better conceptualize our system, please refer

to the flowchart given in fig. 3. Given a test video, in the first

step, features were extracted, and in parallel it was determined

whether the subject appearing in the video, appeared in the

training set or not. If it did, then it was found which one

it was. Based upon the decision, person specific or person

independent classifier was used. Both the manual and automat-

ed person ID and verification were experimented with (since

manual person ID was allowed). It turns out that both give

similar performance for expression recognition.

The parameters for SVMs for expression recognition

were all tuned on the training videos, by following a

leave-one-video-out for videos of each subject for subject-

dependant classification and leave-one-subject-out for subject-

independent classification.

A. Person ID and Verification

Since a hierarchial approach is adopted, so classifiers were

needed for automated person identification and verification.

SVMs ([19] and [20]) with holistic features were used for this

task. More specifically, resized images to 32×32, were used

as features in this stage.

To find out whether the subject in a video was in the training

set or not; we trained probability models using leave-one-

video-out (classifier ‘A’) and leave-one-subject-out (classifier

‘B’) on the original training set using linear SVMs [19] for

person identification. The frames from the video, which was

left during training, were fed into the two classifiers (classifiers

‘A’ and ‘B’) for testing. The probability outputs from both

of these classifiers were sorted. Since there were 7 classes

(subjects) for classifier ‘A’, the sorted probability outputs

from this classifier were truncated to six largest probability

values. The sorted probability outputs from classifier ‘B’ (6

outputs as there were 6 classes) served to represent the case

when the subject was not in training. Also the remaining

sorted probability values from ‘A’ gave examples of probability

values when the subject was indeed present in training. This

was repeated for all the videos in training set.

The hypothesis for such an approach was that if the subject

does appear in the training set then the probability values for

the actual class (actual subject) would be very high and the

rest will be quite small. On the contrary, the probability values

would not be too high for one particular class if the subject

does not appear in training.

After obtaining the probability values for each frame (where

face was detected) in each video in the training set, as outlined

above, an SVM classifier was trained on probability outputs.

This was a binary classifier (classifier ‘C’), that would decide if

a subject appeared in the training set or not. Since the decision

was to be made at the video level, a majority voting decision

criterion was adopted.
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Fig. 3. Flowchart of our system

Once if it was established if a person in a video did appear

in the training set; another classifier was used to establish its

person ID (classifier ‘D’). All the frames from the training set

were used for training SVMs [20]. The parameters were tuned

by adopting a leave-one-video out approach on the training set.

The above two stage classification procedure verifies the

origin of the subjects and finds correctly the person ID of 129

out of 134 videos in test data-set. The five error cases all stem

from the classifier ‘C’. Four of the videos containing subjects

who did not appear in the training set were labeled otherwise.

While one video which contained a subject who appeared in

the training was labeled otherwise.

Since manual person ID labeling was permitted, for the

manual ID case, the videos were labeled manually to find out

which videos contain subjects which appear in the training and

what is their person ID.

B. Person Specific Results

This section details the results of the person specific clas-

sification. This approach was adopted for the videos of the

subjects who were present in the training set. The ‘present-or-

absent’ decision was done using manual or automated process.

Then a classifier trained on the videos of a particular subject

in the training data-set was selected, based upon the person

ID. There were seven subject-wise multi-class SVM classifiers

(corresponding to seven subjects in the training set). Also there

were 54 such videos in the test set, where the subjects appeared

in the training set as well.

The confusion matrix for the results with manual person ID

is given in table I; while for the results with automated person

ID and verification is given in table II. A comparison with the

F1 scores in the baseline results is given in table III.

C. Person Independent Results

If the subject in a test video is not found to be present in the

training stage (by manual or automated person ID), then we

resort to the person independent results. There were 80 such

videos in the test set, where the subjects did not appear in the

training set. The classifier here is again a multi-class SVM. It

is trained on all the feature vectors extracted from the training

data-set. The parameters are tuned using a leave-one-subject

out training procedure on the training data-set.



6

TABLE I
CLASS CONFUSION MATRIX FOR PERSON SPECIFIC EXPRESSION

RECOGNITION CLASSIFICATION (WITH MANUAL PERSON ID)

Person Specific
classifiers with
Manual ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 13 0 0 0 0

Fear 0 10 0 0 0

Joy 0 0 11 0 0

Relief 0 0 0 10 0

Sadness 0 0 0 0 10

TABLE II
CLASS CONFUSION MATRIX FOR PERSON SPECIFIC EXPRESSION

RECOGNITION CLASSIFICATION (WITH AUTOMATED PERSON ID AND

VERIFICATION)

Person Specific
classifiers with
Auto. ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 13 0 0 0 0

Fear 0 10 0 0 0

Joy 0 0 11 0 0

Relief 0 0 0 10 0

Sadness 0 0 0 0 10

The confusion matrix for the results with manual person

ID is given in table IV; while for the results with automated

person ID and verification is given in table V. A comparison

with the F1 scores in the baseline results is given in table VI.

D. Overall Results

This section lists the combination of the results obtained

from the person specific and person independent classification.

The class confusion matrix for the results with manual person

ID is given in table VII while for the results with automated

person ID is given in table VIII. A comparison with the F1

score of the baseline results is also given in table IX.

The overall, person specific and person independent classi-

fication rate is given in table X for manual person ID, while

in table XI for automated person ID and verification.

VII. DISCUSSION

The thing which stands out from the comparison outlined

in tables III, VI and IX, is the substantial improvement over

the baseline performance. For instance, the average F1 score is

1.00 for person specific classification as in table III compared

to the average baseline score of 0.73 for person specific

TABLE III
COMPARISON IN TERMS OF F1 SCORES WITH THE BASELINE RESULTS FOR

PERSON SPECIFIC RESULTS

Emotion Baseline Manual P.ID Automated P.ID

Anger 0.92 1.0 1.0

Fear 0.4 1.0 1.0

Joy 0.73 1.0 1.0

Relief 0.7 1.0 1.0

Sadness 0.9 1.0 1.0

Average 0.73 1.0 1.0

TABLE IV
CLASS CONFUSION MATRIX FOR PERSON INDEPENDENT EXPRESSION

RECOGNITION CLASSIFICATION (WITH MANUAL PERSON ID)

Person Indep.
classifier with
Manual ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 9 2 0 0 4

Fear 0 4 0 1 0

Joy 3 7 19 1 0

Relief 0 1 1 12 1

Sadness 2 1 0 2 10

performance. It highlights one important aspect that emotion

recognition becomes much easier, if one has the training

examples of the same person. May be because, every person

exhibits facial expressions in a slightly different fashion.

The person independent results are also much better than

the baseline. For instance the average baseline F1 score for

person independent results is 0.44 (table VI). Whereas, our

performance is 0.64 (table VI). The same trend translates to

the overall results. Our average F1 score for the overall results

is 0.80, while the baseline average F1 score overall is 0.56.

Another thing worth mentioning is that the automated per-

son identification and verification does not distort the results

by a significant amount, mainly because the person ID is fairly

accurate. It reduces the average overall classification rate from

0.798 for manual person ID to 0.775 for automated person

ID and verification (tables X and XI). Since the emphasis

of this work is on emotion recognition and not on person

verification, more novel approaches shall be adopted in the

future to improve the automated person verification algorithm.

Also, please note that the automated person identification and

verification does not affect the person specific recognition

performance (tables X and XI).

By looking at the class confusion matrices in tables IV,

V, VII and VIII, one can notice that the worst performer is



7

TABLE V
CLASS CONFUSION MATRIX FOR PERSON INDEPENDENT EXPRESSION

RECOGNITION CLASSIFICATION (WITH AUTOMATED PERSON ID AND

VERIFICATION)

Person Indep.
classifier with
Auto. ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 9 4 1 0 4

Fear 0 2 0 1 0

Joy 3 7 18 1 0

Relief 0 1 1 12 1

Sadness 2 1 0 2 10

TABLE VI
COMPARISON IN TERMS OF F1 SCORES WITH THE BASELINE RESULTS FOR

PERSON INDEPENDANT RESULTS

Emotion Baseline Manual P.ID Automated P.ID

Anger 0.86 0.62 0.56

Fear 0.07 0.4 0.22

Joy 0.7 0.76 0.73

Relief 0.31 0.77 0.77

Sadness 0.27 0.67 0.67

Average 0.44 0.64 0.59

the fear emotion. It is confused more with joy emotion than

anger. On the other hand, in terms of classification rate, the

best performer is the joy emotion, as can be noted in tables X

and XI. However, in terms of F1 scores, the best performer is

the relief emotion. This can be noted in table IX. The reason

for joy and relief performing better than others, may stem from

the hypothesis that there is lesser variance in expressing joy

and relief.

TABLE VII
CLASS CONFUSION MATRIX FOR OVER-ALL CLASSIFICATION (WITH

MANUAL PERSON ID)

Overall
classification
with Manual ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 22 2 0 0 4

Fear 0 14 0 1 0

Joy 3 7 30 1 0

Relief 0 1 1 22 1

Sadness 2 1 0 2 20

TABLE VIII
CLASS CONFUSION MATRIX FOR OVER-ALL CLASSIFICATION (WITH

AUTOMATED PERSON ID AND VERIFICATION)

Overall
classification
with Auto. ID

Ground Truth

Anger Fear Joy Relief Sadness

Predicted

Anger 22 4 1 0 4

Fear 0 12 0 1 0

Joy 3 7 29 1 0

Relief 0 1 1 22 1

Sadness 2 1 0 2 20

TABLE IX
COMPARISON IN TERMS OF F1 SCORES WITH THE BASELINE RESULTS FOR

OVER-ALL RESULTS

Emotion Baseline Manual P.ID Automated P.ID

Anger 0.89 0.80 0.76

Fear 0.20 0.70 0.63

Joy 0.71 0.83 0.82

Relief 0.46 0.86 0.86

Sadness 0.52 0.80 0.80

Average 0.56 0.80 0.77

TABLE X
CLASSIFICATION RATE FOR EMOTION DETECTION WITH MANUAL PERSON

ID

Emotion Person independent Person specific Overall

Anger 0.643 1.000 0.815

Fear 0.267 1.000 0.560

Joy 0.950 1.000 0.968

Relief 0.750 1.000 0.846

Sadness 0.667 1.000 0.800

Average 0.655 1.000 0.798

TABLE XI
CLASSIFICATION RATE FOR EMOTION DETECTION WITH AUTOMATED

PERSON ID AND VERIFICATION

Emotion Person independent Person specific Overall

Anger 0.643 1.000 0.815

Fear 0.133 1.000 0.480

Joy 0.900 1.000 0.935

Relief 0.750 1.000 0.846

Sadness 0.667 1.000 0.800

Average 0.619 1.000 0.775
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VIII. CONCLUDING REMARKS

In essence, this paper highlights the strength of our features

and classification methodology over the baseline method. The

dense-patch based feature, HG; the key-point based feature,

SIFT; and motion feature, optical flow; are complementary

to each other. The three sets of features, when evaluated on

the training data separately, yielded worse performance. Their

combination did indeed improve the results on the training

data. Also, as expected, the person dependent emotion recog-

nition shows better performance than person independent.

By adopting our person ID based strategy, our system can

automatically switch between person dependent and person in-

dependent classifiers, and therefore their combination achieves

better performance.
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