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ABSTRACT Automatic emotion recognition from the analysis of body movement has tremendous potential
to revolutionize virtual reality, robotics, behavior modeling, and biometric identity recognition domains.
A computer system capable of recognizing human emotion from the body can also significantly change the
way we interact with the computers. One of the significant challenges is to identify emotion-specific features
from a vast number of descriptors of human body movements. In this paper, we introduce a novel two-layer
feature selection framework for emotion classification from a comprehensive list of bodymovement features.
We used the feature selection framework to accurately recognize five basic emotions: happiness, sadness,
fear, anger, and neutral. In the first layer, a unique combination of Analysis of Variance (ANOVA) and
Multivariate Analysis of Variance (MANOVA) was utilized to eliminate irrelevant features. In the second
layer, a binary chromosome-based genetic algorithmwas proposed to select a feature subset from the relevant
list of features that maximizes the emotion recognition rate. Score and rank-level fusion were applied to
further improve the accuracy of the system. The proposed system was validated on proprietary and public
datasets, containing 30 subjects. Different action scenarios, such as walking and sitting actions, as well
as an action-independent case, were considered. Based on the experimental results, the proposed emotion
recognition system achieved a very high emotion recognition rate outperforming all of the state-of-the-
art methods. The proposed system achieved recognition accuracy of 90.0% during walking, 96.0% during
sitting, and 86.66% in an action-independent scenario, demonstrating high accuracy and robustness of the
developed method.

INDEX TERMS Emotion recognition, feature selection, gait analysis, genetic algorithm, information fusion,
human motion, kinect sensor, biometrics.

I. INTRODUCTION

Emotion recognition based on human body movement is an
emerging area of research. The interest in emotion recogni-
tion focusing only on body movement, posture, and gesture
has risen dramatically over the last few years. This growing
interest is due to several reasons. Many psychological studies
have found evidence that the human perception can discern
various affective states expressed only through body move-
ments [1]–[3]. Body movement information can be a better
alternative for recognizing emotions from a distance [4].Most
of the recent research on emotion recognition is focusing
on developing a system that can recognize emotions based
on nonverbal cues expressed through body movements [5].
Development of a computer system capable of predicting
emotion through observation of a human body movement
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would significantly change the way humans interact with the
computers [5], [6].

Based on the above discussion, an increasing number
of applications, that use body movement information for
emotion recognition, has emerged. One of the recent works
used a robot as a social mediator to increase the quality
of human-robot interaction [7]. Emotion recognition from
body movement encompass a large number of applica-
tions including biometric security, healthcare, gaming, and
behavior modeling [5]. Examples of applications of emo-
tion recognition in biometric security domain include body
movement and facial expression analysis for video surveil-
lance [8], [9]. Use of emotion recognition in the medi-
cal domain includes identification of the signature behavior
of patients having specific psychological conditions [10].
Despite an abundant demand for an accurate emotion recog-
nition from body movement, this topic became trending only
very recently.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 11761

https://orcid.org/0000-0002-3822-2296
https://orcid.org/0000-0003-1850-4816
https://orcid.org/0000-0002-5338-1834
https://orcid.org/0000-0001-7996-5507


F. Ahmed et al.: Emotion Recognition From Body Movement

Researchers have mostly attempted to recognize emotions
from various modalities, such as the face, head, and hand
[11], [12]. Very few studies have focused on whole-body
expressions for emotion analysis. However, as stated in [13],
a computer model is not only suitable but may even exceed a
human observer ability to recognize emotion, as it can detect
subtle movement changes not readily apparent to the naked
eye. Moreover, body movement information can be obtained
noninvasively from a distance which may be beneficial for
many practical applications.
Previous research focused only on a limited number of

movement features from a vast number of computable fea-
tures [12], [14]. A successful attempt to understand human
emotion from actor’s expressive bodymovements was carried
out in [12]. Authors introduced a model based on Laban
Movement Analysis (LMA), that integrated Body, Effort,
Shape and Space features. However, the list of features was
very broad, unstructured, and some of the features were never
before used for human emotion. In addition, the relevance
factor of the features was never considered. The challenge
is thus to create a comprehensive list of motion features
that encompass all nuanced movement-related information
relevant to the emotional state of an individual [14]. Then,
the best combination of movement features obtained using
an effective feature selection algorithm can be used to train
machine learning algorithms to recognize human emotions
accurately. This paper solves all the above-mentioned chal-
lenges successfully.
In this paper, a comprehensive list of body movement

features is computed and categorized into ten unique groups
based on the type ofmovements.We leveraged the knowledge
acquired from other disciplines such as computer animation
and graphics for computing the body movement features
[14]–[16]. A filter-based feature selection algorithm, Anal-
ysis of Variance (ANOVA) [17] was proposed to select rel-
evant features from each of the movement feature groups.
Several top features from each feature group were used as
inputs to the second layer of the framework. The number
of features considered from each group was derived using
normalized Multivariate Analysis of Variance (MANOVA)
[18] score computed for each group separately. Several pop-
ular feature ranking algorithms were investigated, including
Mutual Information [19], Chi-squared Score [20], ReliefF
[20], and Ensemble of Decision Tree [21]. Based on the two
criteria: monotonicity and reliability, ANOVA was chosen to
be the most suitable feature selection algorithm. The number
of relevant features selected from each group was based on
the normalized MANOVA score computed for each motion
feature group. A binary chromosome based genetic algorithm
was utilized to extract a feature subset maximizing the emo-
tion recognition rate. Finally, a supervised machine learning
algorithm, previously proven to be effective in the biometric
domain, was used to recognize human emotions.
Based on the proposed framework, we achieved the high-

est emotion recognition accuracy of 90.0% during walking
action sequences, 96.0% during sitting action sequences, and

86.66% in action-independent cases. The method outper-
fomed all of the state-of-the-art approaches tested on our pro-
prietary dataset. Information fusion techniques such as score
and rank-level fusion further improved the emotion recogni-
tion accuracy of the proposed system. The proposed system
also achieved 81.25% accuracy on a public dataset [22], out-
performing existing state-of-the-art methods reported on this
dataset. The overall contributions of the presented research
are summarized as follows:

• Proposal of a unique structuring of motion features into
ten groups, each describing a different aspect of a human
body movement.

• Development of a two-layer feature selection architec-
ture that combines the power of a traditional filter-based
approach with a genetic algorithm.

• Identification of the most relevant motion features
for emotion recognition from a comprehensive list of
motion features. The relevance factor was computed for
a univariate case where the features were considered
independently, and a multivariate case, where features
were considered as part of a group.

• Computation of feature relevance during two action sce-
narios, which provides an additional insight on impor-
tance of features during emotion recognition.

• Proposing a unique combination of score and rank-level
fusion with two-layer feature selection algorithm to
maximize the emotion recognition accuracy.

• Introduction of several new temporal features that exhib-
ited improvements over temporal features, used previ-
ously in the literature.

Preliminary work on this subject was carried out and pub-
lished in [23].

II. PREVIOUS WORK

Emotion can be expressed through eye gaze direction, iris
extension, postural features, and movement of the human
body [5]. Pollick et al. [2] showed that arm movements
are significantly correlated with the pleasantness dimension
of the emotion model. Bianchi-Berthouze et al. introduced
an incremental learning model through gestural cues and a
contextual feedback system to self-organize postural features
into discrete emotion categories [24]. However, those works
were limited to only parts of the body. Several researchers
attempted to recognize emotion from dance movement.
Camurri et al. in [25] extracted the quantity of motion and
contraction index from 2D video images depicting dance
movements of the subjects to recognize discrete emotion
categories. Very recently, Durupinar et al. in [26] conducted a
perceptual study to establish a relationship between the LMA
(LabanMovement Analysis) features and the five personality
traits of a human. Senecal et al. in [12] analyzed body motion
expression in theater performance based on LMA features.
Researchers have also focused on recognizing emotion in
arbitrary recording scenarios using deep learning architec-
tures [27]. However, those attempts were limited to specific
dance movements.
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FIGURE 1. An overview of the proposed framework for emotion recognition from body motion.

One of the biggest challenges of emotion recognition is
the high dimensionality representation of the motion features.
Also, the literature provides very little guidance as to what
type ofmotion features are suitable for emotion classification.
Most of the existing research have considered a very limited
number of features. Feature relevance was also not consid-
ered for emotion recognition. Therefore, most of the existing
research is biased towards a particular set of motion features.
For instance, Glowinski et al. in [15] extracted energy, spa-
tial extent, symmetry, and smoothness related features and
then used Principal Component Analysis (PCA) to create
a minimal representation of affective gestures. Saha et al.
in [28] picked nine features related to velocity, acceleration,
and angular features to identify six emotions. This work
successfully addresses the above deficiencies through the
proposed comprehensive framework for emotion recognition,
described in details in the next section.

III. PROPOSED METHODOLOGY

The first challenge is to create a complete description of
a human body movement with emotion-specific identifying
information. This problem was overcome by identifying and
computing a comprehensive list of movement features. These
movement features were then grouped into ten unique cate-
gories in such a way that each category represented a special
aspect of a body movement (i.e. symmetry, space, speed of
motion etc.). The final list of features was computed based on
the relevance factor of these features using a two-layer feature
selection algorithm. The feature selection framework intro-
duced in section III-A overcomes the difficulty of identifying
emotion-specific body movement information.

A. OVERVIEW

The first step of the proposed system involved the extraction
of various geometric and kinematic features. Some of these
features were previously introduced for 3D motion synthesis,
classification, and indexing [16]. Researchers have yet to
establish a consensus on the right combination of various
motion features. Therefore, in the proposed emotion recog-
nition system, a comprehensive list of motion features was
extracted maximizing the available body movement informa-
tion. The motion features were computed either on a single
frame or over a sequence of frames spanned over a short
period. As a result, computed motion features characterize
various aspects of human motion, such as trajectories or
geometric properties of the postures. These features were
grouped into ten unique proprietary groups which will be
discussed in section III-B.

Moreover, a temporal profilewas computed for each of the
features. The temporal profile consists of twelve, time series
functions, as described in section III-C. A temporal profile
computed in this way performs better than a histogram with
fixed number of bins. The number of bins of a histogram
determines the level of discretization of the calculated fea-
tures. A limitation of using histogram is that the number of
bins must be set empirically for the dataset. The values of a
histogram are also sparse and most of the bins remain empty
after the histogram computation.

The main component of the proposed framework involves
a two-layer feature selection process, as shown in Figure 1.
In the first layer, irrelevant features are eliminated using a
combination of ANOVA and MANOVA. ANOVA is used to
sort the features according to their relevance at recognizing
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emotions [17]. ANOVA provides two measures: f -score and
p-score to compute relevance of a feature. The f -score is a
measure of total variation that exists among the arithmetic
means of the target emotions. The p-score is a measure
that determines the probability associated with rejecting the
f -score. The features that failed to pass a significance test
are discarded immediately. After removal of these features,
remaining features are considered as statistically relevant for
further analysis.
MANOVA was used to compute group significance and to

distribute features among various feature groups. The number
of features considered from each group was derived using
normalized MANOVA score computed for each group sep-
arately [18]. The first layer may not be enough to attain
optimum model performance based on the computed rele-
vant features. The reason for this may be attributed to the
performance improvement of specific feature combination
for certain expert models. Thereby, several top features from
each feature group were used as an input to the second layer
of the framework. The objective of the second layer is to
find the best subset of features that maximizes the emotion
recognition rate of the expert models.
Statistically relevant features were ordered based on the

computed f -score. To reduce the number of possible com-
binations for computing feature subset that maximizes the
emotion recognition rate, a predefined number of features
were selected from the top ANOVA features. Typically, this
number is set empirically. According to [29], the number of
features can be selected as a function of the sample size, N ,
and the maximum feature size is N . In the proposed system,
the total number of computed features was set based on the
sample size of N . Since each group of features describes a
different aspect of human body movement, the total num-
ber of features were distributed among the feature groups.
Top ANOVA features were selected from each feature group
based on the total number of features and the normalized
MANOVA score computed for each group. MANOVA was
used to quantify group significance, and the number of fea-
tures computed from each group was based on the computed
MANOVA score of the group. The group significance scores
were normalized so that each score ranges from 0 to 1 and
their sum equals to 1. Then, the computed MANOVA score
was used to distribute the total number of features from each
motion feature group. This way only some of the top features
from each motion feature group remained for the subsequent
steps. If the number of features for a motion group exceeded
the number of features that passed the ANOVA significance
test for that group, then all of the features that passed the test
in that group were selected.
The reason for using a filter-based approach in the first

layer of the framework is to eliminate irrelevant features as
much as possible. Most of the filter-based techniques com-
pute rank of the features based on their ability to distinguish
among the target categories. The features can be ranked
based on their relevant factors, and irrelevant features can
be removed based on an empirical threshold value. In our

experiments, the features were ranked based on the computed
f-score. From the top features based on the computed f-score,
the features that produced a p-score, which was higher than
a predefined threshold, was chosen for the genetic algorithm.
During the experiment, the p-score was chosen as 0.005. This
ensures that there exists a minimal chance that the computed
f -score was produced from a different distribution. In this
way, the first layer used the relevance of the features to
prepare for the second layer of the proposed feature selection
framework. The second layer uses the genetic algorithm that
evaluates the distinctive ability of the features to maximize
emotion recognition accuracy.

In the second layer of the two-layer framework, a binary
chromosome-based genetic algorithmwas used to identify the
optimal feature subset that maximizes the emotion recogni-
tion rate. The genetic algorithm used in the proposed system
achieved a plateau within 800 generations. The mutation
rate was set to 0.03, as described in section IV. A detailed
explanation of the genetic algorithm is presented in sec-
tion IV. Finally, the expert models were fused using score
and rank-level fusion as described in section IV-A. Figure 5
shows how features for a feature group were selected using
the first layer of a two-layer framework.

B. MOTION FEATURE GROUPS

Based on a thorough analysis of the existing literature, a com-
prehensive list of 3D motion features was extracted. These
features were grouped into ten unique categories minimizing
the number of overlapping features describing various body
movement types as much as possible.

• Group of Features 1 This group of features consists of
low-level feature descriptors that measure the speed of
the motion, such as velocity, acceleration, and jerk. If X
defines amotion that is described as n consecutive poses,
where X = x(t1), x(t2), x(t3), ...., x(tn). Then, the veloc-
ity is defined in equation 1 and the magnitude of the
velocity is determined using the equation 2 according to
[14]. In equations 1 and 2, vk (ti) is the velocity of the k th

joint at time ti, vkx (ti) is the x-component of the velocity
of the k th joint at time ti, and δt refers to a small fraction
of time required for transitioning between consecutive
frames. Usually, δt is set to a very small value. During
the experiment, the value was set to 1

30 seconds as Kinect
v2 has a frame rate of 30 fps.

vk (ti) =
X k (ti+1) − X k (ti)

2δt
(1)

‖vk (ti)‖ =

√

vkx (ti)
2
+ vky (ti)

2
+ vkz (ti)

2 (2)

The acceleration and the jerk were computed based on
the second and third order derivatives of the position
vector using similar equations.

• Group of Features 2 This feature group is related to
the trajectory of the movement. It is expected to have
a higher curvature of the hands that follows a contour
of a circle compared to the hands that follow a straight
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line [15]. The curvature was calculated using equation 3.

κk (ti) =
||vk (ti) × ak (ti)||

(
√

vkx (ti)
2
+ vky (ti)

2
+ vkz (ti)

2)3
(3)

In equation 3, κk (ti) corresponds to curvature of k th joint
at time ti, vk (ti) corresponds to the velocity of k th joint at
time ti, and ak (ti) corresponds to the acceleration of k th

joint at time ti.
• Group of Features 3 This feature group represents an
aggregated speed over a set of joints and defined as the
Quantity of Motion (QoM) in the literature [14]. The
QoM is calculated as a weighted sum of velocities of
groups of joints. QoM for K number of joints is defined
using equation 4.

QoM (ti) =

∑

k∈K wkvk (ti)
∑

k∈K wk
(4)

In the most recent work on the subject, all body joints
are typically assigned uniform value (equal to 1), since
all the joints contribute equally to the identification of
specific patterns observed during human motion [14],
[30]. Other studies [31]–[36] on a human body motion
in sports performance, physiotherapy rehabilitation, and
emergency response followed the suit and did not iso-
late any specific body joints from others. Therefore,
in our work, the weights (wk ) were assigned uniform
value of 1. The joints of the body were segmented
into five groups: arm region, head region, upper body,
lower body, and finally the whole body encompassing
all major joints. Features were extracted separately from
each of the body segments.

• Group of Features 4 This group of features represents
how the surrounding space is utilized by a person during
movement, as shown in Figure 2. Space utilization of the
human body can be estimated by the bounding volume of
various segments of the body defined over the temporal
domain [37]. A rectangular box, enclosing the region
of the body joints, was computed for various segments
of the body including arm region, head region, upper
body, lower body, andwhole body. The joints included in
various body segments are described in Figure 3. Equa-
tions 5 and 6 were used for computing the bounding
volume. In equation 5, | ∗ | denotes the absolute value.

dx = |max
k∈K

jx − min
k∈K

jx |,

dy = |max
k∈K

jy − min
k∈K

jy|,

dz = |max
k∈K

jz − min
k∈K

jz| (5)

BoundingVolume(BV ) = dx ∗ dy ∗ dz (6)

• Group of Features 5 This feature group represents the
displacement of the major joints of the human body.
Equation 7 is used to calculate the displacement accord-
ing to [14].

D(ti) = ‖X l(ti) − X r (ti)‖ (7)

FIGURE 2. Bounding volume of the arm region of two human 3D
skeletons (a) and (b). Joints included in the arm region are highlighted
using black circles.

In equation 7, r is the reference joint, and l is any other
joint of the body. The base of the spine was chosen as the
reference joint. The joints considered for displacement
computation are Head, Neck, Shoulder, Elbow, Wrist,
Hand, Knee, Ankle, Foot, and Center of Mass (COM).
COM was computed by calculating a weighted sum of
all the joints in 3D Cartesian coordinates.

• Group of Features 6 In this category, we computed
the motion features: verticality (maximum distance
of the y components for all the joints), extension
(maximum distance from the center of mass to all
other joints), elbow flexion (elbow was used as the
reference joint while a joint relative angle is formed by
shoulder, elbow, and hand) [38], arm shape (magnitude
of the vector from hand to base of the spine), hand
relationship (distance between left and right hands)
and feet relationship (distance between left and right
feet). These features are similar to motion features
described in [14].

• Group of Features 7 This feature group quantifies
the effort component of the Laban Movement Analysis.
In the proposed system, the analysis was applied to four
subcategories of effort. These subcategories include
weight, time, space and flow of the effort. The weight
subcategory explains the strength of the movement.
The two extremes of this movement are light and
strong movement. The strength of the movement was
quantified by measuring the maximum kinetic energy
by various segments of the body observed within a
small period. Equations 8 and 9 were used to compute
this feature. In equation 8, E(ti) is kinetic energy of
a particular segment of the body at time ti and αk
represents mass coefficient of various body joints.
A uniform value of 1 was used to keep the calculation
simple. In equation 9, T indicates a time window within
which the maximum kinetic energy, Weight(ti), at time
ti was computed [14]. This feature was computed for
N − T consecutive frames in a walking sequence.

E(ti) =
∑

k∈K

Ek (ti) =
∑

k∈K

αkv
k (ti)

2 (8)

Weight(ti) = max
i∈[1,T ]

E(ti), i = 1, 2, 3, ....,N (9)

The time subcategory of effort explains whether
the movement was sudden (quick) or sustained
(steady). The quantification of this feature was
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FIGURE 3. A taxonomy of the motion features computed for emotion recognition from body motion features.

accomplished by measuring the acceleration of various
body segments over a predefined period. Small
values of this feature characterize steady movements.
In contrast, higher values indicate a sudden change
in body movements. To compute the features of time
subcategory, equation 10 was used [14]. In equation 10,
ak (ti) is the acceleration of the k th joint at time ti.

Timek (ti) =
1

T

T
∑

i=1

ak (ti) (10)

The space effort explains whether motion effort was
focused towards a particular spot (direct) or several
spots (multi-focused and flexible). Equation 11 shows
how space effort was computed [14].

Spacek (ti) =

∑T−1
i=1 ||xk (ti+1) − xk (ti)||

||xk (tT ) − xk (ti)||
(11)

The final subcategory of effort quantifies the fluidity of
the movement. The fluidity can either jerky or smooth
and is computed as follows [14]:

Flowk (ti) =
1

T

T
∑

i=1

jk (ti) (12)

where jk (ti) is the jerk of the k th joint at time ti. In all of
the equations mentioned above, T is the total number of
the frame under consideration. All the subcategories of
effort computed in this section were applied to various
body segments separately. The body joints included in
each of the body segments are shown in Figure 3.

• Group of Features 8 This feature group provides an
estimate of the spatial extent of the bounding triangle
formed by the hands and the head, similar to the feature
descriptor introduced in [15]. This group of features
explains the coverage by hands and head over time.
The spatial extent was computed using equations 13
and 14. In equation 14, X c(ti) indicates the barycenter of

the bounding triangle formed by hands and head. X r (ti)
denotes 3D Cartesian coordinates of the reference joint
r at time ti. Jhead indicates the 3D Cartesian coordinate
of the head. In the experiment, the base of the spine was
used as the reference based on the recommendation of
the research conducted in [39].

C =
1

3
(Jhead+Jhand_left+Jhand_right )

(13)

SpatialExtent(ti) = ||(X c(ti) − X r (ti))|| (14)

• Group of Features 9 This feature group represents the
symmetry of the movement. Some previous works in
the literature seem to indicate that the correlation of
asymmetry with a relaxed attitude and high social status
of a person exists [40]. Therefore, spatial asymmetry
was calculated to measure the expressivity of the body
movement. There are two methods of calculating this
feature [15]. Discarding one method of computation
may result in a loss of important information regarding
the emotion. Therefore, two types of spatial asymmetries
were computed using two of those methods. In the first
method, horizontal and vertical asymmetries were
calculated from the barycenter of the bounding triangle
formed by two hands and head [15]. Then, horizontal,
vertical, and bounding triangle-based asymmetries
were computed using equations 15, 16, and 17 [15].
In equations 15 and 16, j1 and j2 refer to the coordinates
of the left and the right hand.

SIhorizontal(ti) =
((j1x(ti) − jx(ti)) − (j2x(ti) − jx(ti)))

(|j1x(ti) − jx(ti)| + |j2x(ti) − jx(ti)|)
(15)

SI vertical(ti) =
((j1y(ti) − jy(ti)) − (j2y(ti) − jy(ti)))

(|j1y(ti) − jy(ti)| + |j2y(ti) − jy(ti)|)
(16)
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SI (ti) =
SIhorizontal(ti)

SI vertical(ti)
(17)

In the second method, the geometric entropy of each
hand was computed as defined in [41]. This measure
represents the spread of the movement in the available
space. Equation 18 was used to calculate the geometric
entropy of hand [41]:

H =
2 ∗ LP

c
(18)

where LP is the path length of the center of the mass
of the left or right arm region and c is the perimeter of
the convex hull of the selected region. The measure was
taken for both left and right arm region separately. Then,
the overall spread was calculated using the equation 19
based on [41].

SI =
Hlefthand

Hrighthand
(19)

Temporal profile was not computed for the geometric
entropy-based features described in equations 18
and 19, as these features were computed based on the
overall time sequence.

• Group of Features 10 This feature group describes how
balance of various segments of human body changes
during movement. In this feature group, temporal ceter
of mass displacement (COMD) and balance of the
body were computed during movement. The center
of mass was computed by measuring the arithmetic
mean of the Cartesian 3D coordinates of all the joints.
COMD was computed by calculating the magnitude
difference of center of mass for two consecutive frames.
Equations 20, 21, and 22 were used to compute COMD.
The balance of the body was computed by measuring
the difference between the center of mass of the upper
and the lower body. Equation 23 was used to compute
the balance [14].

COM (ti)=
1

∑

k∈K 1

∑

k∈K

Jk (ti) (20)

C(ti)=
√

COMx(ti)2+COMy(ti)2+COMz(ti)2

(21)

COMD(ti)=C(ti+1) − C(ti) (22)

Balance(ti)= ||COMupperbody(ti)||−||COMlowerbody(ti)||

(23)

C. TEMPORAL PROFILE

Some of the features introduced in the previous section
were defined over the time domain. In order to reduce the
noise without eliminating the high-frequency components,
Savitzky-Golay filter [15] was applied. We introduced twelve
statistical measures to characterize feature over time domain
as shown in Figure 4. These measures capture how motion
features evolve. The time features computation is explained
as follows:

FIGURE 4. Visualization of temporal features computed from a time
series.

Features 1–5: The following features were calculated to
capture the overall behavior over time: min, max, mean, stan-
dard deviation, and min versus max ratio. In equations 24–28,
X depicts the time series data and i depicts a specific point
in time.

Min(X ) =
N

min
i=1

X (i) (24)

Max(X ) =
N

max
i=1

X (i) (25)

Mean(X ) =
1

N

N
∑

i=1

X (i) (26)

StandardDeviation(X ) =

√

√

√

√

N
∑

i=1

(X (i)−Mean(X ))2

N−1
(27)

MinVersusMaxRation(X ) =
Min(X )

Max(X )
(28)

Feature 6: This feature measures the amount of white
noise present in the time series. The spectral flatness was
computed by taking the ratio of the geometric and the arith-
metic mean of the power spectrum of the time series. Spectral
flatness was computed using equation 29.

SpectralFlatness(X ) =

N
√

∏

k fx(k)
1
N

∑

k fx(k)
(29)

In equation 29, fx is the power spectrum of x, k is an index
into the spectrum, and N is the number of non-zero elements
of the signal.

Features 7–8: The mean of the extreme values (local min-
imum and maximum values) were calculated and then added
to the temporal profile. Features 7 and 8 were computed using
equations 30 and 31, respectively.

MeanOfLocalMinimum =
1

M

M−1
∑

i=0

X (Lmin(i)) (30)
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MeanOfLocalMaximum =
1

M

M−1
∑

i=0

X (Lmax(i)) (31)

Features 9–10: To characterize the transition from one
extreme value to the next, the slope of their movement over
timewas computed. ‘‘Onset (τ )’’ and ‘‘offset (9)’’ slopewere
computed based on the direction of the slope between the two
consecutive localminimum and localmaximumvalues. Then,
the mean value was added to the temporal profile. These
features were computed using equations 32 and 33.

τ =
1

M − 1

M−2
∑

i=0

(X (Lmax(i+ 1)) − X (Lmin(i)))

|Lmax(i+ 1) − Lmin(i)|
(32)

9 =
1

M − 1

M−2
∑

i=0

(X (Lmin(i+ 1)) − X (Lmax(i)))

|Lmin(i+ 1) − Lmax(i)|
(33)

In equations 32 and 33, Lmax and Lmin depict local maxima
and local minima of the time series.
Feature 11: Average time between two consecutive

extreme values was computed using equation 34.

� =
1

2M

M−1
∑

i=0

(|Lmin(i+ 1) − Lmin(i)|

+ |Lmax(i+ 1) − Lmax(i)|) (34)

Feature 12: This feature characterizes whether local min-
imum and local maximum values were reached using similar
speed. This feature is defined as the ratio of the onset and the
offset slopes previously calculated. This feature is computed
using 35.

RatioOfSlopes =
τ

9
(35)

D. FIRST LAYER OF THE TWO-LAYER FEATURE

SELECTION FRAMEWORK

In the first layer of the feature selection framework, ANOVA
was used to compute feature significance of each of the
motion features. Suppose, there is N number of observations
from k different emotion groups. An observation is denoted
by xij, where i indicates the emotion category, while j indi-
cates the index of an observation. If the overall mean of all
observations is denoted by x̄ and group mean is denoted by x̄i
then the equation of an observation can be as [17]:

xij= x̄ + (x̄i − x̄) + (xij − x̄i) = x̄ + (x̄i − x̄) + ǫij (36)

The error term, ǫij, used in equation 36 is equal to
(xij − x̄i) and it is assumed to have a Gaussian distribution
with zero mean and unit variance [17]. ANOVA attempts
to compute quantitative measure in support of this hypoth-
esis. For this reason, two quantitative measures: the sum of
squares between groups (SSB) and the sum of squares within
groups (SSW) were computed using equations 37 and 38,

respectively. In equation 37, nj refers to the number of ele-
ments of group j.

SSB =

k
∑

j=1

nj(x̄j − x̄) (37)

SSW =

k
∑

j=1

N
∑

i=1

(xij − x̄j) (38)

It is difficult to compare two measures when they are
not normalized properly. In statistics, degrees of freedom
is defined as the number of values in a calculation that
can vary [17]. SSB and SSW have different degrees of
freedom. Therefore, comparison can only be made once
these two measures are normalized. The degrees of free-
dom of SSB is k − 1, and of SSW is N − k . There-
fore, mean SSB (MSSB) and mean SSW (MSSW) can be
obtained as [17]:

MSSB =
1

k − 1
∗ SSB (39)

MSSW =
1

N − k
∗ SSW (40)

Further, MSSB and MSSW can be combined to calculate
one uniform scalar value. This value is called f-score in the
literature [17]. F-score can be computed using equation 41.
If the f-score value is close to 1, it means that significant
difference among the means of different emotion classes was
observed. A high f-score value indicates a high relevance of
the feature.

f _score =
MSSB

MSSW
(41)

In ANOVA, another measure called the p-score is com-
puted alongside the f-score. The p-score denotes the risk
of rejecting the f-score, which indicates how the means are
different from each other. The p-score value is computed
by observing the standard normal distribution. Having a
small p-score value indicates a high probability of accept-
ing the calculated f-score value. In other words, p-score
value determines whether any statistical significance exists
in the observed samples. A threshold value of 0.005 is usu-
ally set for the p-score. The p-score value of 0.005 can be
interpreted as there is a 0.5% probability that no statisti-
cal significance exists. Based on the p-score, statistically
insignificant features were removed from each feature group.
MANOVA is the multivariate extension of ANOVA. The
discrimination ability to distinguish various emotions by the
feature groups was computed using MANOVA [18]. There-
fore, unlike ANOVA, in which each observation is repre-
sented using a single scalar value xij, in MANOVA each
observation is represented by a vector Xijp in which j denotes
the emotion category, i denotes the index of an observation,
and p denotes the index of a particular feature within a
motion feature group. The values of i and j are constrained
by 0 ≤ i ≤ k and 0 ≤ j ≤ n. In MANOVA, the total
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FIGURE 5. Selection of features in a motion feature group using the first layer of a two-layer feature selection
framework.

sum of squares and cross product (TSSCP) is represented
by equation 42.

TSSCP

=

k
∑

j=1

n
∑

i=1

(Xij − X̄T )(Xij − X̄T )
T

=

k
∑

j=1

n
∑

i=1

[(Xij − X̄j) + (X̄j − X̄T )][(Xij−X̄j) + (X̄j−X̄T )]
T

=

k
∑

j=1

nj(X̄j − X̄T )(X̄j − X̄T )
T +

k
∑

j=1

n
∑

i=1

(Xij−X̄j)(Xij−X̄j)
T

= H + E (42)

In equation 42, H is the hypothesis matrix, and E is the
error matrix. The degrees of freedom for the TSSCP,H , and
E are n − 1, k − 1, and n − k , respectively. F-score for the
MANOVA is computed using Pillai’s trace value from H and
E matrices as shown in equation 43. In equation 43, λi is the
ith eigenvalue and q is the number of eigenvalues extracted.

f _score = trace(
H

H + E
) =

q
∑

i=1

λi

1 + λi
(43)

F-score was computed for each motion feature group sep-
arately. Then these values were normalized and mapped to a
range between 0 and 1. The sum of the f -scores resulted in a
score of 1. Individual normalized f-scores were further multi-
plied with the total number of features to compute the overall
feature for each motion feature group. If this value exceeded
the total number of features computed for a particular group,
all the features corresponding to the group were computed.
Figure 5 illustrates this process.

IV. SECOND LAYER OF A TWO-LAYER FEATURE

SELECTION FRAMEWORK

Features selected in the first layer of the two-layer framework
contained statistically significant information regarding var-
ious emotion categories. However, it is not guaranteed that
all features considered would be equally effective at rec-
ognizing emotions. Moreover, the f-score value computed
using ANOVA only ensures variations between a single
pair of emotion categories. A binary chromosome-based
genetic algorithm was proposed to address this problem.
This algorithm automatically selects a subset of features
that, as a group, is more powerful compared to all features
selected together at once. The main purpose of using the
genetic algorithm is to explore whether a subset of features
exists that maximizes the emotion recognition rate of all
expert models.

The main components of a genetic algorithm with binary
coding scheme include a population of chromosomes, a fit-
ness function for optimization, a selection process for the
reproduction of chromosomes, a crossover operator that pro-
duces the next generation of chromosomes, and a mutation
operator to introduce variability [42]. The population of chro-
mosomes can be considered as a sequence of ones and zeros
that indicates whether a feature is selected. The indices of the
ones’ correspond to the indices of the selected features. The
population size of a genetic algorithm affects the ability of
exploration of the feature space. If the value is set too low,
the genetic algorithm may not produce enough variability
among the chromosomes. For this reason, the population size
of the chromosomes was set empirically to 30.

The fitness function determines the ability of a chromo-
some to survive a generation of reproduction. The main goal
of using the genetic algorithm is to find a subset of fea-
tures that maximizes the emotion recognition rate. Therefore,
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the emotion recognition rate was an obvious choice for the
fitness function. Each chromosome in the population was
evaluated using the fitness function. The list of chromosomes
was sorted based on the result of the fitness function. Half of
the population chromosomes were automatically scheduled
to survive when the next generation of chromosomes were
reproduced. The remaining half of the population was cho-
sen based on a crossover operator performing recombination
among the top half of the chromosomes.
The crossover operation used in the proposed system is

shown using equation IV. Equations IV shows how crossover
operator reproduces chromosomes at a crossover point x from
two chromosomes C1 and C2 in a m-dimensional feature
space. The crossover operator chooses a crossover point with
a uniform probability distribution for each pair of consecutive
chromosomes survived for the next generation [42]. Thus,
the crossover point was chosen randomly for each pair of
chromosomes for reproduction.
The mutation operator introduces randomness so that the

crossover operation can avoid repeated reproduction of the
same chromosomes. Mutation rate is a hyperparameter to
balance exploitation and exploration ability of a genetic
algorithm. If this value is set too high, genetic algorithm
may not converge to a plateau during which the maximum
recognition rate is not changed. If this value is set too low,
genetic algorithmmay get stuck in a local maxima. Typically,
the mutation rate is set to a small value of 2–5% [43]. In our
experiments, mutation rate of 0.03 was chosen. The mutation
rate indicates that there is a 3% probability of reversing a
single bit value randomly in a chromosome. The number of
features N was more than 150. The brute-force algorithm
would require exploring of 2150 combinations of chromo-
somes. If the number of features increases, the number of
combinations of chromosomes will also increase exponen-
tially. The binary chromosome-based genetic algorithm used
in the proposed system produced a plateau within 800 gen-
erations. In this context, plateau represents the number of
generations during which the maximum emotion recognition
rate remains unchanged. The choices of hyperparameters
have an impact on the performance of genetic algorithm.
However, during our experiment, we found that the impact
was quite low. Therefore, only the final accuracy after the
fine-tuning the hyperparameters was reported in Section V of
this paper.

C1= [C1,1,C1,2,C1,3, ......,C1,m]

C2= [C2,1,C2,2,C2,3, ......,C2,m]

C1(x)= [C1,1,C1,2,C1,3, . . . ,C1,x ,C2,x+1,C2,x+2, ....,C2,m]

C2(x)= [C2,1,C2,2,C2,3, . . . ,C2,x ,C1,x+1,C1,x+2, ....,C1,m]
(44)

A. INFORMATION FUSION

One of the methods to boost the overall recognition rate
of the expert models is to fuse decisions obtained from the
expert models. Information fusion is a powerful technique

that combines the decisions from multiple expert systems
to improve the overall recognition rate. Fusion of decisions
can be achieved in several ways depending on how the deci-
sions are combined. Score and rank-level fusion are popular
fusion techniques, that have been successfully adopted in
similar applications [44]. In the proposed system, five expert
models including Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), Decision Tree (DT), Gaussian
Naive Bayes (GNB), and K-Nearest Neighbor (KNN) were
fused and performance of score-level and rank-level fusion
were compared. A real-coded genetic algorithm was used
to estimate the weight parameters. Genetic algorithm allows
convergence to the solution much quickly than a brute-force
approach. Replacing a fixed number of discrete values with
real values increases the domain of possible weights. Another
advantage of using real values is that they can exploit the
graduality of the fitness function [45]. In a real-coded genetic
algorithm, a transformation is required to convert a chro-
mosome consisting of zeros and ones to real values. The
transformation function is defined using equation 45 [45].

T (c) =
1

2m−1 − 1

m
∑

j=1

cj2
j−1

×where, ∀c = (c1, c2, ...., cm) ∈ [0, 1]m (45)

In equation 45, m denotes the level of discretization used for
the weights. T denotes the function to transform decision
genes to real values. In the proposed system, the value for
m was set to 8 or 28 discrete levels of real-valued weights.
Since five expert models were used, the size of the chromo-
some was set to 40, where each expert model is associated
with a chromosome of size 8. The remaining steps for the
genetic algorithm were similar to the method described in
section IV. The population size and mutation rate was set
to 30 and 0.03, respectively. The terminating condition for
the algorithm was established using the same approach as
described in section IV. In the experiment, the plateau was
reached within 300 generations of reproductions.

V. EXPERIMENTAL ANALYSIS

A. PROPRIETARY DATASET

The first experiment was conducted on 30 subjects of a
proprietary dataset. Each subject performed five different
emotionally expressive walking sequences including a sep-
arate neutral walking sequence. Laban Movement Analy-
sis (LMA) framework was used as a guideline to synthesize
human motion styles similar to paper [12]. We focused on
subjects’ structural and physical properties of body shape,
dynamic quality of movement, and surrounding space utiliza-
tion during movement. None of the subjects had any prior
acting experience. Each emotional walking sequence was
recorded for 20 seconds using Microsoft Kinect v2. A total
of 3000 seconds of recorded video data containing approx-
imately 90,000 frames were recorded. Subjects walked in
front of Kinect in a circular fashion showing both sides of the
body. Figure 6 shows snapshots of the human skeleton joint
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FIGURE 6. Two emotionally expressive action sequences. (a) Five representative frames from an angry walking
sequence. (b) Five representative frames from a sad sequence while the subjects were in a sitting position.

FIGURE 7. (a) The name of the body joints considered for emotion recognition through movement analysis.
Snapshot of frames containing 3D body coordinates computed from a sad walking sequence are shown in
(b), (c), (d), (e), (f), and (g).

coordinates computed during a sad and an angry emotional
walking sequences.

B. PUBLIC DATASET

The dataset collected movements from 30 nonprofessional
actors [22]. According to the researchers, the reasons for
choosing nonprofessionals were to avoid systematic exagger-
ation of movements and to increase variability of movement
expression. Each actor performedmovements expressing four
different emotions including neutral, happiness, sadness, and
anger. Only verbal instructions were provided to the sub-
jects. Emotions were observed duringwalking scenarios. Two
recordings were collected from each subject for each emo-
tional walk. Therefore, a total of 240 samples of various emo-
tional walking sequences were considered for the experiment.
Each subject wore a suit with retroreflective markers. These
markers were able to reflect light spots to a two-dimensional
space. Overall, 35 markers were placed at various places of

the human body, but only 15 joint coordinates were converted
to 3D space. This dataset can be considered very challenging,
since a reduced number of body joints were considered for the
experiment. Figure 7 shows snapshots of the human skeleton
joint coordinates computed during a sad emotional walk.

C. SELECTION OF THE FILTER-BASED TECHNIQUE

In order to eliminate irrelevant features before applying
any expert model, two general categories of feature selec-
tion algorithms were used: filter-based and wrapper-based
approaches [46]. There are many filter-based techniques
developed over the years. We considered five different
techniques for this research. Typical filter-based techniques
include ReliefF based approaches [20], information theo-
retic approaches [19], statistical approaches [20] and ensem-
ble of decision tree-based approaches. Feature subset from
the relevant list of features was selected using recently
proposed genetic algorithm based framework [47]. Out of
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the five techniques analyzed, one technique was chosen based
on two criteria.

1) CONSISTENCY

This criterion examines whether the feature ranking algo-
rithms provide consistent rank over various subsets of the
dataset. The dataset was split randomly into two folds
100 times. Each time, the filter-based algorithm computed
the rank for each fold. The expected outcome is to have
minimum disagreements between the computed ranks. The
scores computed were normalized using min-max normaliza-
tion. Suppose, an algorithm generatedR1 andR2 feature ranks
for two subsets of the same dataset as shown in equations 46
and 47. Consistency score was computed using equation 48
where N denotes the number of features and Rscore denotes
the consistency score for a single iteration.

R1 = (R11,R12,R13, ....,R1N ) (46)

R2 = (R21,R22,R23, ....,R2N ) (47)

Rscore =

√

√

√

√

N
∑

i=1

(R1,i − R2,i)2 (48)

The results shown in Table 1 prove that ANOVA provided
the most consistent ranking among all the algorithms consid-
ered. The closest second algorithmwas ReliefFwith neighbor
size 30. From the observed consistency scores, it can be
inferred that the algorithms considered provided more con-
sistent ranks based on emotion expressed during the sitting
action compared to the walking action.

TABLE 1. The table shows measured consistency scores for various
filter-based feature selection algorithm.

2) MONOTONICITY

We examined the level of monotonicity by various feature
ranking algorithms. The monotonicity indicates the gradual
performance decline along the ranked order of features gener-
ated by the algorithm. We utilized LDA and SVM to measure
the monotonicity within an interval of 30 consecutive frames.
Then, Pearson correlation (to measure the linear relationship)
and Spearman rank-order correlation (to measure the non-
parametric measure) were computed for each of the filter-
based algorithms. ANOVA exhibited the highest level of
average monotonicity among the feature ranking algorithms
as shown in Table 2.

Based on the experimental result for showing the consis-
tency and monotonicity properties of filter-based methods
(shown in Table 1 and Table 2), it is evident that ANOVA
is the most appropriate method for the filter-based layer of
the proposed framework.

TABLE 2. The table shows measured monotonicity scores for
various filter-based feature selection algorithm for expert
models: LDA and SVM.

D. FEATURE ANALYSIS

From the analysis presented in the previous section, ANOVA
was used to select relevant features. A high score of ANOVA
value signifies a high relevance of a feature. ANOVAalso pro-
vides p-score that describes the statistical significance of the
result. The p-value was set to 0.005. Based on the measured
p-value, any feature failing to pass the significance test was
automatically discarded from consideration. The remaining
features were sorted based on their feature relevance. Then,
the top features from each of the motion feature groups were
chosen based on normalized MANOVA score and passed
onto the second layer of the framework. The total number
of computed motion features was 1131. More features passed
the significance test for the sitting action sequences compared
to the walking sequences. In case of emotion expressed dur-
ing walking sequences, 436 features passed the significance
test compared to 633 during the sitting sequences as shown
in Table 3.

One of the key motivations behind feature analysis is to
gain a deeper understanding of human emotion and related
body movement information. Therefore, the top two features
from each motion feature group were separately computed
for further analysis. Figure 8 shows the top two features
computed from each group during walking and sitting actions
separately. Some conclusions can be drawn by observing
the f-scores of the motion features. During walking action,
themovements observed in the arm and the upper body region
were key factors to perceive emotion. The highest importance
was assigned to the jerkiness of the wrist. ANOVA assigned
high importance to QoM observed in the upper body and
the arm region. The time subcategory of the effort compo-
nent was given high importance to perceive emotion during
walking sequences. It can be inferred from the results that
whether the perceivedmovements are sudden or sustained can
be an important factor in recognizing human emotion during
walking.

During sitting action, movements related to hands and uti-
lization of surrounding space were assigned more importance
compared to the suddenness or quickness of the movement.
The important feature for recognizing emotion during sitting
action was the minimum elbow flexion observed during a
sequence. Other prominent features include maximum dis-
placement of the hand and the wrist, bounding volume of
the arm region and the upper body, and the maximum spatial
extent of the whole body. The most prominent subcategory
in the effort component is space, which indicates whether
the movement is focused on a particular spot or flexible.
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FIGURE 8. Top two motion features from each group computed using ANOVA for emotion expressed during (a) sitting and
(b) walking action.

TABLE 3. The table shows the number of features that passed the ANOVA significance test.

Another observation is that the overall f-scores were higher
for the sitting action compared to the walking action. Higher
f-scores during sitting action sequences indicate that motion
information containedmore cues to recognize emotion during
sitting action in contrast with the walking action.

As was discussed before, a combination of motion fea-
tures having high ANOVA score may not perform the same
when considered as a group. Therefore, the MANOVA score
was computed for each motion group to analyze group
significance and to reduce the number of motion features
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TABLE 4. MANOVA f -score and p-score computed for various motion feature groups.

considered for the second layer of the framework. MANOVA
f -scores were computed using Pillai’s trace as discussed in
section III-D. Since 150 samples were available for both the
sitting and the walking sequences, top 150 features were
distributed among the feature groups based on the normalized
MANOVA f -scores. Individual MANOVA f -scores and the
distribution of features are shown in Table 4. From Table 4,
it is observed that G8 and G9 exhibited the highest f -scores
obtained during sitting action and therefore, more features
were distributed in these two categories. The feature groups:
G1, G3, and G7 contained the maximum number of motion
features for emotion expressed during walking action.
Further insight regarding the feature significance of emo-

tions can be gained using a post hoc analysis of the significant
features. Figure 9 shows how means of different emotions
vary based on the computed feature. The distribution of the
features for happy and angry emotions during walking action
was very similar. The distribution of features for sadness, fear,
and neutral emotions was also very similar during walking
action. Based on the distribution of features for different
emotions, it is difficult to discriminate emotions using only a
single significant feature. However, combining these features
allows distinguishing among various emotional expressions
better. Overall, recognizing neutral emotion during sitting
action was easier compared to other emotions. Although
elbow flexion was the most significant feature, it can only
distinguish neutral and angry emotions from other emotional
expressions. However, maximumhand displacement was able
to distinguish more emotion groups since the distribution
of this feature is quite different for various emotion groups.
From the analysis, we observed that features computed from
the upper section of the body is quite important in overall
emotion recognition.

E. FEATURE SUBSET SELECTION

From the previous section, it was concluded that the filter-
based feature selection algorithm alone could not reliably
distinguish among various emotion categories. Therefore,
a genetic algorithm discussed in section IV was utilized.
In order to test the performance of a feature subset, machine
learning models such as Support Vector Machine (SVM),

TABLE 5. Performance improvement of the individual expert models
after using the proposed feature selection framework (PFSF) during
walking, sitting, and action-independent scenario.

Linear Discriminant Analysis (LDA), Naive Bayes classi-
fier, K-Nearest Neighbor, and Decision Tree were used. The
parameters for the SVM classifier, such as C (margin maxi-
mization of the decision function), γ (influence of the training
samples), decision type (one-versus-all or one-versus-rest),
and kernel type (radial basis or linear function) were chosen
based on an exhaustive grid search. We used the singular
value decomposition as the solver for the LDA. The number
of neighbors for the KNN classifier was chosen as eleven
based on the recommendation from [47]. We used five-fold
cross-validation during the experiment. We avoided biased
learning by not taking samples from the same subject during
both the testing and the training sets.

A binary encoded genetic algorithm was used for each
expert model. The size of the chromosome populations was
kept at 30, and the mutation rate was set to 0.03 as discussed
in Section IV. Reproduction of populations using crossover
operators was performed 1000 times to achieve the maximum
recognition rate for the classifiers as shown in Figure 10.
It can be observed from Table 5 that the proposed feature
selection method with LDA classifier achieved the highest
emotion recognition rate of 94.66% during sitting action
and 84.66% during walking action. Based on Table 6, all
the expert models achieved maximum accuracy using only
52–84 features. This is a substantial reduction of the number
of features from the original 1131 feature set.

While conducting experiments, we discovered that the top
4.9% (55 features) of all the features computed were enough
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FIGURE 9. Post hoc analysis of the most significant features for each motion group.
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FIGURE 10. Improvement of emotion recognition rate of different classifiers over various generations (number of chromosomes =

30): (a) average emotion recognition accuracy during sitting action, (b) maximum emotion recognition accuracy during sitting action,
(c) average emotion recognition accuracy during walking action, (d) maximum emotion recognition accuracy during walking action.

to produce the best result for walking scenario. Moreover, top
5.8% (66 features) and 5% (57 features) of all the features
were sufficient to achieve the best results for sitting and
action-independent scenarios, respectively. TABLE 6 shows
the exact number of top features that produced the best emo-
tion recognition accuracy.
Furthermore, the proposed method with SVM classifier is

considered as the second best classifier achieving 92.66% and
80.00% emotion recognition rates during sitting and walk-
ing action sequences, respectively. A separate analysis was
conducted to evaluate the proposed system’s performance
in an action-independent scenario. The SVM outperformed

other expert models during an action-independent scenario
achieving 83.33% emotion recognition rate. The proposed
LDA and KNN based methods also achieved a good recog-
nition rate of 80.33% and 79.00% respectively. However,
the recognition accuracy of the naive Bayes and the deci-
sion tree slightly degraded because of action-independence
consideration.

F. PERFORMANCE ENHANCEMENT USING SCORE-LEVEL

AND RANK-LEVEL FUSION

Recognition accuracy was enhanced by applying informa-
tion fusion of the prediction scores obtained using multiple
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FIGURE 11. The confusion matrix computed for five emotions (H: happiness, S: sadness, A: anger, F: fear, and N: neutral) during (a) sitting, (b) walking,
and (c) action-independent scenarios.

TABLE 6. Number of selected features of the individual expert models
after using the proposed feature selection framework (PFSF) during
walking, sitting, and action-independent scenario.

expert models. In the proposed system, the recognition abil-
ity of five expert models was combined using score and
rank-level fusion. These expert models are Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Linear Dis-
criminant Analysis (LDA), Gaussian Naive Bayes (GNB),
and Decision Tree (DT). The score in this context was rep-
resented by a binary value to express the presence or absence
of a particular emotion category. The number of generations
of reproductions, mutation rate, and the population were
set to 300, 0.03, and 30, respectively (as discussed in Sec-
tion IV). The emotion recognition rate was improved in all
action scenarios after applying fusion methods. The proposed
system achieved 5.34% improvement for the walking action
scenarios, 1.34% for the sitting action scenarios, and 3.33%
in action-independent scenarios using score-level fusion (see
Table 7). The proposed system achieved 4.67% improvement
for the walking action scenarios, 1.34% for the sitting action
scenarios, and 3.00% in action-independent scenarios using
rank-level fusion, as shown in Table 7. The final emotion
recognition rate for walking, sitting, and action-independent
scenarios are 90.0%, 96%, and 86.66%, respectively.
The confusion matrix of the proposed system is defined

as an N × N square matrix where each row corresponds
to the target emotion category, and each column represents
the predicted emotion. The confusion matrix was computed
for each action scenario separately to detect the emotion
categories that were difficult to recognize. It can be observed
from Figure 11 that the proposed system was able to recog-
nize 144 samples out of 150 samples of various emotional
body expressions during the sitting action. During walking
action, 135 out of 150 samples were correctly recognized.
In an action-independent scenario, the problem becomes

TABLE 7. The table shows the improvement of the emotion recognition
rate after using score-level and rank-level fusion with weights obtained
using a real-coded genetic algorithm.

significantly more complicated and therefore, the perfor-
mance of the system slightly degraded. Out of 300 sam-
ples, 260 samples were correctly recognized by the proposed
system in an action-independent scenario. From Figure 11,
it is noticeable that the samples obtained during the neutral
emotion were most frequently confused with other emotion
categories during an action-independent scenario.

VI. COMPARISON WITH OTHER STATE-OF-THE-ART

METHODS

To compare the proposed emotion recognition system with
state-of-the-art research in this domain, features defined
in two recent papers: method [12] and method [28], were
implemented and tested on our proprietary dataset. For both
methods, experiments were conducted using original fea-
tures introduced in those works with both LDA and SVM
classifiers. Standard normalization was used to normalize
the extracted features in both methods. In method [28],
researchers manually selected nine features related to accel-
erations, distances, angles of different joints in upper body
and arm regions. In method [12], researchers extracted a
total of eighty-seven features based on LMA components.
Comparisons of the proposed system against the work pre-
sented in method [12] and [28] are shown in Table 8.
The proposed system was tested for sitting, walking, and
action-independent scenarios.
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TABLE 8. The table shows a comparison of the proposed emotion
recognition system with other state-of-the-art systems.

In Table 8, emotion recognition accuracy for method [12]
and [28] was in the range of 56.66% to 70% during walk-
ing and sitting action, respectively. In action-independent
cases, the performance of both methods dropped to a range
of 48.67% to 66%.WhenANOVA feature selection algorithm
was applied to the computed features for method [12], which
was our original modification to improve the performance of
that method, the recognition rate improved significantly. The
recognition rate improved by 2.0% to 8.67% during sitting,
2.0% to 6.67% during walking, and 2.66% to 3.0% during
action-independent cases. The recognition rate of method
[28] also improved after using our proposed ANOVAmethod
during walking and sitting actions. Highest improvement
of 10.0%was observed when selected features using ANOVA
were used with SVM during sitting. The emotion recognition
rate during walking was also improved from 0.66% to 6.0%.
In summary, we can observe a significant performance

improvement when the two-layer feature selection framework
was applied in the proposed emotion recognition system.
The discriminative ability of the motion features and original
two-layer feature selection framework, jointly contributed to
achieving emotion recognition accuracy of 90.0%, 96.0%,
and 86.67% during walking, sitting, and action-independent
cases, respectively. The proposed system achieved 26.0%,
23.0%, and 22.0% improvement over the state-of-the-art
methods during sitting, walking, and action-independent sce-
narios on the proprietary dataset.

VII. PERFORMANCE OF THE PROPOSED SYSTEM

ON A PUBLIC DATASET

Experimental results presented thus far have primarily
focused on the proprietary dataset. In addition, our pro-
posed system was also tested on a publicly available dataset
[22]. Our proposed emotion recognition system significantly
improved the overall recognition rate. The expert models:
LDA, SVM, DT, NB, and KNN achieved 75.53%, 76.37%,
67.93%, 62.87%, and 67.93% recognition accuracy after
computation of a comprehensive list of motion features and
applying the proposed two-layer feature selection framework
(see Table 9). The recognition accuracy was further boosted
when score and rank-level fusion were applied to combine the
expert models. Score-level fusion improved emotion recog-
nition accuracy by 4.88% and rank-level fusion improved it
by 4.46% over single expert model. After applying score and

TABLE 9. The emotion recognition rate of the proposed emotion
recognition system.

TABLE 10. Comparison of methodologies applied to the dataset.

rank-level fusion, the final recognition accuracy achievedwas
81.25% and 80.83%.

Table 10 compares the proposed system with the state-
of-the-art methods on the publicly available dataset [22].
In [48], researchers used a combination of principal com-
ponent analysis (PCA) and Fourier transformation (FT) for
feature reduction. Then, they applied Naive Bayes (NB) to
achieve a maximum recognition rate of 65.0% with a sin-
gle eigenwalk and 72.0% with all the best eigenwalks. The
emotion recognition rate was 52%when kernel PCA replaced
the two-fold PCA and NB was replaced with SVM. The
researchers in [49] used SVM with a polynomial kernel to
achieve 56.0% accuracy in person-independent scenarios and
77.0% in person-dependent scenarios. In person-dependent
scenarios, personal idiosyncrasies were removed from each
motion descriptor. For this reason, their system would only
be applicable for recognizing emotion for known subjects,
whose personal bias information is available. However, esti-
mating personal bias for unknown subjects raises a severe
problem, significantly limiting the applicability of their sys-
tem. Our system is developed for person-independent cases
and therefore, much more robust in addition to being much
more accurate.

VIII. OPEN PROBLEMS

Presented research naturally leads to a number of interesting
open problems, answering which will pave the way for the
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future research. In this section, we decided to focus on three
main application domains, where identifying emotion from
body movements might have the most impact:
A Humanoid Robots.
B Emergency Response.
C Medical Rehabilitation.
A Within the field of humanoid robots, as well as the

general area of human-computer interaction, the need
to understand and to imitate the behavior of a human
is paramount [7], [30], [51], [52]. Some of the practi-
cal applications are enterprise greeting robots (at hotel
receptions, university research centers, shopping cen-
ters), special needs robots, senior assistant robots, inter-
action with hearing impaired population, etc. [53]–[57].
Open questions in this domain are:
– Is there a subset of specific movements of the

human that is responsible for specific emotion that
will be most beneficial for a humanoid robot?

– Are there automated tools that can be developed
that will enhance quality of human to human or
human to robot communication through recogniz-
ing human emotion from motion?

– When is it more beneficial to use multi-modal
gait/face emotion recognition system instead of face
only/gait only emotion recognition?

B Emergency response is another domain where accurate
recognition of a human emotional state can be crucial
for a success of a rescue operation or for mitigation of
an immediate public risk [31], [58]. The areas for future
investigations in this important domain are multiple:
– Are there any other biometric modalities (such as

EEG, heart rate etc.) that can be remotely observed
with the intent of emotional state assessment?

– Which motion features correspond to distress or
anxiety emotional state?

– Can emotion-based features achieve high accuracy
while recognized in real-time?

C Athlete performance andmedical rehabilitation are areas
where mental state plays almost as important role
as physical fitness [32]–[34]. From that perspective,
observing specific traits on body posture, joint move-
ments and corresponding emotional expressions are
paramount for successful outcome of an athlete’s train-
ing program or a physical rehabilitation process [35],
[36], [58]. Open problems arising from our research in
relationship to those areas are:
– Is there a correlation that can be detected by observ-

ing athlete training routine and their emotion state
and can it be utilized for the development of a better
training program?

– Are there specific poses and/or joint movements
that facilitate a more successful physio rehabilita-
tion program with better patient outcomes?

– What are the major challenges in capturing emo-
tional state of athletes and are those differ-
ent/similar to general population?

We believe that answers to the above open problems will
allow not only to discover new insights on how human emo-
tions are expressed through body movements, but to enhance
quality of live and provide meaningful public service in the
smart society of the future.
Another research area that has the potential for further

exploration is the use of multimodal approaches such as the
face, voice, and whole-body expression. Combining multiple
modalities has a number of benefits: it can improve overall
system accuracy, mitigate missing data and prevent unwanted
interference from adversaries [44], [59]. However, the down-
side of such an approach is additional sensors to sample data,
a more complex architecture, and a higher computational
complexity. Combining the developed system with face emo-
tion module, for instance, will be a natural future extension
of this research.
On the other hand, deployment of a specific application

using introduced method will require addressing legal and
regulatory challenges. As with any new technology, there
is a potential for its misuse. To mitigate this risk, in the
area of biometrics, extensive research has been devoted to
the revocability of user information and additional means
of biometric data protection [60], [61]. When such system
is implemented, there is a possibility to store only limited
amount of information which can be revoked if compromised
[62]. In addition, the rules for sharing biometric data can be
restricted according to research presented in [63]. In addi-
tion, skeleton sequences can be encrypted using biometric
encryption technologies for ensuring data privacy and secu-
rity [64], [65]. Thus, complying with the regulatory chal-
lenges while deploying biometric systems is a very important
open research question that needs to be addressed.

IX. CONCLUSION AND FUTURE WORK

Emotion recognition using body movement is an emerging
area of research. Significant benefits can be achieved for
biometric security, patient behavior monitoring, gaming, and
robotics with the creation of a movement-based emotion-
aware computer system. Body movement information can
provide valuable cues related to the emotional state of a per-
son. Despite showing great potential to be an essential indica-
tor of perceived emotions, bodymovement information is one
of the least explored modalities for emotion recognition. This
paper has addressed the problem of creation of a complete
system that can accurately recognize five basic emotions:
happiness, sadness, anger, fear, and neutral based on body
movement features. The experimental results showed that it
is possible to build a computer system capable of recognizing
human emotion only based on body movement informa-
tion. Univariate and multivariate analysis of the motion fea-
tures provided important cues regarding perceived emotion.
Experiment results provided critical information regarding
the perceived emotion in walking and sitting action scenarios.
During walking action, the quantity of movement in the arm
and the upper body region were essential indicators. On the
other hand, body space utilization, elbow angle, and spatial
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extension were essential cues to recognize emotion during
the sitting action. During action-independent cases, motion
features important during all action scenarios need to be
considered to maximize the emotion recognition rate.
The human movement style is often affected by gen-

der, culture, and other idiosyncrasies. For this reason, many
researchers considered movement bias resulting from indi-
vidual movement style during the computation of the motion
features. Although this technique yielded improvement of the
emotion recognition rate, the approach mentioned severely
limits the robustness of the system. The proposed emotion
recognition system achieved a very high recognition rate
while not considering person-specific bias during bodymove-
ment. Therefore, our proposed system can be considered
more practical and robust. The proposed emotion recogni-
tion system outperformed the state-of-the-art methods on
both public and proprietary datasets. Our proposed emotion
recognition system achieved significant improvement over
state-of-the-art methods tested on both proprietary and public
datasets during all action scenarios.
In our experiments, we noticed a slight decrease in perfor-

mance in action-independent cases. For this reason, in real
world applications, the expert model might need to be trained
based on the actions required for specific applications. It is
worth noting that the scope of the current research is con-
fined to emotions that are expressed through nonverbal body
movements in a controlled setting. Contextual information
may be considered for emotion recognition in the future. The
multi-modal system can be designed by fusing emotion from
body motion recognition with other biometric modalities,
such as emotions from facial expression or voice. While
this will likely lead to enhanced system performance, special
consideration must be given to privacy and confidentiality of
user data. As always, benefits of the novel technologies must
be carefully balanced with public security and privacy in real-
world applications.
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