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�is paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD).
By using EMD, EEG signals are decomposed into IntrinsicMode Functions (IMFs) automatically.Multidimensional information of
IMF is utilized as features, the �rst di	erence of time series, the �rst di	erence of phase, and the normalized energy.�eperformance
of the proposed method is veri�ed on a publicly available emotional database. �e results show that the three features are e	ective
for emotion recognition.�e role of each IMF is inquired and we �nd that high frequency component IMF1 has signi�cant e	ect on
di	erent emotional states detection.�e informative electrodes based on EMD strategy are analyzed. In addition, the classi�cation
accuracy of the proposed method is compared with several classical techniques, including fractal dimension (FD), sample entropy,
di	erential entropy, and discrete wavelet transform (DWT). Experiment results on DEAP datasets demonstrate that our method
can improve emotion recognition performance.

1. Introduction

Emotion plays an important role in our daily life and work.
Real-time assessment and regulation of emotionwill improve
people’s life andmake it better. For example, in the communi-
cation of human-machine-interaction, emotion recognition
will make the process more easy and natural. Another
example, in the treatment of patients, especially those with
expression problems, the real emotion state of patients will
help doctors to provide more appropriate medical care. In
recent years, emotion recognition from EEG has gainedmass
attention. Also it is a very important factor in brain computer
interface (BCI) systems, which will e	ectively improve the
communication between human and machines [1].

Various features and extraction methods have been pro-
posed for emotion recognition from EEG signals, including
time domain techniques, frequency domain techniques, joint
time-frequency analysis techniques, and other strategies.

Statistics of EEG series, that is, �rst and second di	erence,
mean value, and power are usually used in time domain [2].
Nonlinear features, including fractal dimension (FD) [3, 4],

sample entropy [5], and nonstationary index [6], are utilized
for emotion recognition. Hjorth features [7] had also been
used in EEG studies [8, 9]. Petrantonakis and Hadjileon-
tiadis introduced higher order crossings (HOC) features
to capture the oscillatory pattern of EEG [10]. Wang et
al. extracted frequency domain features for classi�cation
[11]. Time-frequency analysis is based on the spectrum of
EEG signals; then the energy, power, power spectral density
(PSD), and di	erential entropy [12] of certain subband are
usually utilized as features. Short-time Fourier transform
(STFT) [13, 14], Hilbert-Huang transform (HHT) [15, 16],
and discrete wavelet transform (DWT) [17–19] are the most
commonly used techniques for spectrum calculating. It has
been commonly tested and veri�ed that higher frequency
subband such as Beta (16–32Hz) and Gamma (32–64Hz)
bands outperforms lower subband for emotion recognition
[20, 21].

Other features extracted from combination of electrode
are utilized too, such as coherence and asymmetry of elec-
trodes in di	erent brain regions [22–24] and graph-theoretic
features [25]. Jenke et al. had done a research comparing the
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Figure 1: Block diagram of the proposed method.

performance of di	erent features mentioned above and got a
guiding rule for feature extraction and selection [26].

Some other strategies such as utilizing deep network
to improve the classi�cation performance have also been
researched. Zheng and Lu used deep neural network to
investigate critical frequency bands and channels for emotion
recognition [27]. Yang et al. used hierarchical network with
subnetwork nodes for emotion recognition [28].

EMD is proposed by Huang et al. in 1998 [29]. Unlike
DWT, which needs to predetermine transform base function
and decomposition level, EMD can decompose signals into
IMF automatically. �ese IMFs represent di	erent frequency
components of original signals, with band-limited charac-
teristic. By applying Hilbert transform to IMF, we can get
instantaneous phase information of IMF. So EMD is suitable
for analysis of nonlinear and nonstationary sequence, such as
neural signals.

EMD is a good choice for EEG signals and we utilize it
for emotion recognition from EEG data. Which feature is
e	ective for emotion recognition in EMD domain? Which
IMF component is best for classi�cation? Is the performance
based on EMD strategy better compared to time domain
method and time-frequency method or not? All these have
not been researched yet and we investigate them in our
research.

EMD has been widely used for seizure prediction and
detection, but for emotion recognition based on EMD, there
is not so much research. Higher order statistics of IMFs [30],
geometrical properties of the decomposed IMF in complex
plane [31], and the variation and �uctuation of IMF [32]
are used as features for seizure prediction and detection.
For emotion recognition, Mert and Akan extracted entropy,
power, power spectral density, correlation, and asymmetry of
IMF as features and then utilized independent component
analysis (ICA) to reduce dimension of the feature set [33].
�e classi�cation accuracy is computed with all the subjects
mixed together.

In this paper, we present an emotion recognition method
based on EMD. We utilize the �rst di	erence of IMF time
series, the �rst di	erence of the IMF’s phase, and the nor-
malized energy of IMF as features. �e motivation of using
these three features is that they depict the characteristics
of IMF in time, frequency, and energy domain, providing
multidimensional information. �e �rst di	erence of time
series depicts the intensity of signal change in time domain.

�e �rst di	erence of phase measures the change intensity in
phase and normalized energy describes the weight of current
oscillation component.�e three features constitute a feature
vector, which is fed into SVM classi�er for emotional state
detection.

�e proposed method is studied on a publicly available
emotional database DEAP [20]. �e e	ectiveness of the
three features is investigated. IMF reduction and channel
reduction for feature extraction are both discussed, which
aim at improving the classi�cation accuracy with less compu-
tation complexity. �e performance is compared with some
other techniques, including fractal dimension (FD), sample
entropy, di	erential entropy, and time-frequency analysis
DWT.

2. Method

To realize emotional state recognition, the EEG signals are
decomposed into IMFs by EMD. �ree features of IMFs, the
�uctuation of the phase, the �uctuation of the time series, and
the normalized energy, are formed as a feature vector, which
is fed into SVM for classi�cation. �e whole process of the
algorithm is shown in Figure 1.

2.1. Data and Materials. DEAP is a publicly available dataset
for emotion analysis, which recorded EEG and peripheral
physiological signals of 32 participants as they watched 40
music videos. All the music video clips last for 1 minute,
representing di	erent emotion visual stimuli, with grade
from 1 to 9. Among the 40 music videos, 20 are high
valence visual stimuli and 20 are low valence visual stimuli.
�e situation is exactly the same for arousal dimension.
A�er watching the music video, participants performed a
self-assessment of their levels on arousal, valence, liking,
dominance, and familiarity, with ratings from 1 to 9. EEG
was recorded with 32 electrodes, placing according to the
international 10-20 system. Each electrode recorded 63 s EEG
signal, with 3 s baseline signal before the trial.

In this paper, we used the preprocessed EEG data for
study, with sample rate 128Hz and band range 4–45Hz. EOG
artefacts were removed as method in [20]. �e data was seg-
mented into 60-second trials and a 3-second pretrial baseline
removed. �e binary classi�cations of valence and arousal
dimension are considered. We utilized the participants’ self-
assessment as label. If the participant’s rating was <5, the label
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of valence/arousal is low and if the rating was ≥5, the label of
valence/arousal is high.

Each music video lasts for 1 minute, and 5 s EEG signals
are extracted as a sample. So for each subject who watched 40
music videos, we acquire 480 labeled samples.

2.2. Empirical Mode Decomposition. EMD decomposes EEG
signals into a set of IMFs by an automatic shi�ing process.
Each IMF represents di	erent frequency components of
original signals and should satisfy two conditions: (1) during
the whole data set, the number of extreme points and the
number of zero crossings must be either equal or di	er at
most by one; (2) at each point, themean value calculated from
the upper and lower envelope must be zero [29]. For input
signal �(�), the process of EMD is as follows:

(1) Set ℎ(�) = �(�) and ℎold(�) = ℎ(�).
(2) Get local maximum and minimum of ℎold(�).
(3) Interpolate the local maximum and minimum with

cubic spline function and get the upper envelope
�max(�) and lower envelope �min(�).

(4) Calculate the mean value of the upper and lower
envelope as

�(�) = (�min (�) + �max (�))
2 . (1)

(5) Subtract ℎold(�) with�(�):

ℎnew (�) = ℎold (�) − � (�) . (2)

If ℎnew(�) satis�es the two conditions of IMF, then the �rst
IMF component imf1 is gotten; otherwise, set ℎold(�) =
ℎnew(�) and go to step (2), repeating steps (2)–(5) until ℎnew(�)
satis�es the two conditions of IMF. Finally imf1 is gotten as

imf1 = ℎnew (�) . (3)

(6) If imf� is gotten, set ℎold(�) as

ℎold (�) = ℎold (�) − imf�. (4)

Go to step (2) and repeat steps (2)–(5) to get imf�+1.
By the iterative process described above, �(�) can be

�nally expressed as

� (�) =
�
∑
�=1

imf� + �. (5)

It is a linear combination of IMF components and the residual
part �. Figure 2 shows a segment of original EEG signals
corresponding to the �rst �ve decomposed IMFs. EMDworks
like an adaptive high pass �lter. It shi�s out the fastest
changing component �rst and as the level of IMF increases,
the oscillation of IMF becomes smoother. Each component is
band-limited, which can re�ect the characteristic of instanta-
neous frequency.

2.3. Feature Extraction. In this paper, three features of IMF
are utilized for emotion recognition, the �rst di	erence of
time series, the �rst di	erence of phase, and the normalized
energy.�e �rst di	erence of time series depicts the intensity
of signal change in time domain. �e �rst di	erence of
phase reveals the change intensity of phase, representing the
physical meaning of instantaneous frequency. Normalized
energy describes theweight of current oscillation component.
�emotivation of using these three features is that they depict
the characteristics of IMF in time, frequency, and energy
domain, utilizing multidimensional information.

2.3.1. First Di�erence of IMF Time Series. �e �rst di	erence
of times series�� depicts the intensity of signal change in time
domain. Previous research has revealed that the variation of
EEG time series can re�ect di	erent emotion states [2]. For an
IMF component with 
 points, IMF{imf1, imf2, . . . , imf�},
the de�nition of�� is

�� =
1

 − 1

�−1
∑
�=1
|imf (� + 1) − imf (�)| . (6)

2.3.2. First Di�erence of IMF’s Phase. Based on EMD, EEG
is decomposed into multilevel IMFs, each IMF being band-
limited and representing an oscillation component of original
EEG signals. For an
-point IMF, IMF{imf1, imf2, . . . , imf�},
Hilbert transform is applied to it, obtaining an analytic signal
�(�)

� (�) = � (�) + �� (�) . (7)

�e analytic signal can be further expressed as follows:

� (�) = � (�) ���(�), (8)

where �(�) = √�(�)2 + �(�)2 is the amplitude of �(�) and
�(�) = arctan(�(�)/�(�)) is the instantaneous phase.

First di	erence of phase�� is de�ned as

�� =
1

 − 1

�−1
∑
�=1

����� (� + 1) − � (�)���� (9)

which measures the change intensity in phase and represents
the physical meaning of instantaneous frequency.

2.3.3. Normalized Energy of IMF. For an 
-point IMF,
IMF{imf1, imf2, . . . , imf�}, the normalized energy �norm is
de�ned as follows:

�norm =
∑��=1 imf2 (�)
∑��=1 �2 (�)

, (10)

where �(�) is the original EEG signal points. So the numerator
is the energy of IMF and the denominator represents the
energy of original EEG data set. �e normalized energy
describes the weight of current oscillation component.When
fed into the classi�er, log(�norm) is taken as an element of the
feature vector according to [26].
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Figure 2: EEG signals and the corresponding �rst �ve IMFs.

2.4. SVM Classi	er. �e extracted features are fed into SVM
for classi�cation. SVM iswidely used for emotion recognition
[34, 35], which has promising property in many �elds. In our
study, LIBSVM is implemented for SVM classi�er with radial
basis kernel function and default parameters setting [36].

3. Performance Verification

In the following subsections, we test our method on DEAP
emotional dataset. Training and classifying tasks were con-
ducted for each subject independently and we utilized leave-
one-trail-out validation to evaluate the classi�cation perfor-
mance. Each subject watched 40 music video clips, and every
video clips lasted 1 minute. In our experiment, we utilized the
participants’ self-assessment as label. Every 5 s EEG signals
are extracted as a sample, so for each subject we acquire 480
labeled samples.

In leave-one-trail-out validation, for each subject, 468
samples extracted from 39 trails were assigned to training
set, and 12 samples extracted from the remaining one trail
were assigned to test set. So there was no correlation between
samples in the training set and the test set. Among the total
40 trails of one subject, each trail will be assigned to the test
set once as the validation data.�e 40 results from the 40 test
trails then can be averaged to produce a general estimation for

each subject. �e �nal mean accuracy is computed among all
the subjects.

3.1. E�ectiveness of the Features for Emotion Recognition. In
order to evaluate the e	ectiveness of the three features for
emotion recognition, we �rst use only one single feature
for classi�cation each time. All the experiments in this
subsection are under the condition that the �rst �ve IMF
components and total 32 electrodes are utilized for feature
extraction. �e training and classifying for each subject
were conducted, respectively, and the mean accuracy was
computed among all the subjects.

�e mean classi�cation accuracies of three features are
given in Figure 3. It shows that all the three features can
distinguish high level from low level on both valence and
arousal dimension, higher than random probability of 50%.
For valence dimension, the classi�cation accuracy yields
68.27%, 64.46%, and 61.07% with features ��, ��, and
�norm, respectively. For arousal dimension, the classi�cation
accuracy yields 69.89%, 67.56%, and 63.76% with features��,
��, and �norm, respectively.

3.2. IMF Reduction for Feature Extraction. In this subsec-
tion, we did two experiments to investigate the role of
di	erent IMF components in emotion recognition. In the
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Table 1: Comparison of performance for di	erent IMFs selected for feature extraction (32 channels) (standard deviation shown in
parentheses).

Component
Valence Arousal

Accuracy (%) �-test (IMF1) Accuracy (%) �-test (IMF1)

IMF1 70.41 (7.05) � = 1 72.10 (7.51) � = 1
IMF2 63.47 (7.10) � = 0.0002 66.58 (9.36) � = 0.0032
IMF3 61.45 (8.57) � = 0 64.56 (10.52) � = 0.0019
IMF4 59.55 (8.56) � = 0 63.99 (10.96) � = 0.0012
IMF5 55.74 (9.20) � = 0 62.38 (12.23) � = 0
IMF1-2 69.02 (7.00) � = 0.4399 70.47 (8.29) � = 0.1940
IMF1–3 68.47 (6.69) � = 0.2705 70.08 (8.10) � = 0.3116
IMF1–4 67.99 (6.58) � = 0.1688 69.60 (8.08) � = 0.2107
IMF1–5 67.59 (6.58) � = 0.1086 69.00 (8.37) � = 0.1293
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Figure 3: Classi�cation accuracies of three single features. For each
subject, one single feature was extracted from the �rst �ve IMF
components. “��,” “��,” and “�norm” in the �gure are corresponding
to the three single features, respectively. �e mean accuracies for
all circumstances were computed among all the subjects. Error
bars show the standard deviation of the mean accuracies across all
subjects.

�rst experiment, each time only one IMF component was
utilized for feature extraction and we analyzed which IMF is
e	ective for emotion recognition. In the second experiment,
we further veri�ed whether the combination of multi-IMFs
would improve the accuracy.

Table 2 gives all the results in detail. Standard deviation
of the mean accuracies across all subjects is shown in
parenthesis. “IMF1,” “IMF2,” “IMF3,” “IMF4,” and “IMF5”
are corresponding to single IMF component. “IMF1–3” in
the table represents the �rst three IMFs, corresponding to
IMF1, IMF2, and IMF3. Similarly, “IMF1–4” and “IMF1–5”
are corresponding to the �rst four IMFs and the �rst �ve
IMFs, respectively.

It shows that IMF1 yields the best performance, 70.41%
for valence and 72.10% for arousal. As the level increases, the
performance decreases sharply. �e performance of IMF5 is
only 55.74% for valence and 62.38% for arousal. We applied
�-test (� < 0.05) to examine the performance between only

Table 2: Performance of 8 channels selected for feature extraction
(Fp1, Fp2, F7, F8, T7, T8, P7, and P8) (standard deviation shown in
parentheses).

Predict

Label

Valence Arousal

High Low High Low

High 6664 2723 7493 2748

Low 2024 3949 1555 3564

�1 score 0.7374 0.7769

Accuracy (%) 69.10 (6.95) 71.99 (7.77)

IMF1 utilized for feature extraction and other circumstances.
�e null hypothesis is “the performance is similar” and if �
value is larger than �, the null hypothesis is accepted. �e
results of �-test in Table 1 show that the performance of IMF1
is more splendid than other single components, IMF2, IMF3,
IM4, and IMF5, with � far less than 0.05. It also shows that
performance of multi-IMF combinations is similar to only
IMF1 utilized for feature extraction, with � larger than 0.05.

IMF1 represents the fastest changing component of EEG
signals, with the highest frequency characteristic. As the level
increases, the oscillation becomes smoother with frequency
becoming lower and lower. So we infer that the valence and
arousal of emotion relate more tightly to high frequency. It is
also coincided with the �nding in [26] that Beta (16–32Hz)
and Gamma (32–64Hz) bands are successfully selected more
o�en than other bands.�ese two bands are higher frequency
subbands of EEG signals.

So combining the results of classi�cation accuracy and �-
test, in practical use, we just need to extract features from
IMF1, which will save vast time and relieve computation
burden because only one level of EMDdecompositionneeded
to be done.

3.3. Channel Reduction for Feature Extraction. Form veri�-
cation in Section 3.2, we know that using component IMF1
will achieve good performance. In this subsection, we will
investigate which electrodes are informative based on EMD
strategy.
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Figure 4: Fisher distance of di	erent channels with subject 1. Features are extracted from component IMF1. For each channel, Fisher distance
is calculated among features extracted from 480 labeled emotion samples of subject 1. (a) Fisher distance under feature��. (b) Fisher distance
under feature��. (c) Fisher distance under feature �norm.

Fisher distance is an e�cient criterion of divisibility
between two classes, which is broadly used in pattern
recognition. It computes the ratio of between-class scatter
degree and within-class scatter degree between two classes.
Larger ratio means larger divisibility of the two classes. In
our experiment, we used �sher distance to mark important
electrodes under condition that IMF1 is used for feature
extraction. For each channel, �sher distance is calculated
among features extracted from one subject’s total 480 labeled
emotion samples.

Figure 4 gives �sher distance on valence dimension with
subject 1. Figure 4(a) shows that, under feature��, electrodes
Fp1, Fp2, FC6, Cp1, O1, andOz have larger values. Figure 4(b)

shows that, under feature ��, Fp1, FC6, Cp1, Cp2, O1, Oz,
P7, and P8 have larger values. Figure 4(c) shows that, under
feature�norm, F7, F8, T7, T8, P7, P8,O1,O2, andOzhave larger
values.

Based on the analysis of all the subjects, we selected the
following 8 electrodes Fp1, Fp2, F7, F8, T7, T8, P7, and P8
for channel reduction veri�cation. Table 2 gives �1 score and
classi�cation accuracy with 8 channels selected for emotion
recognition. We see that �1 score is 0.7374 for valence and
0.7769 for arousal.�e classi�cation accuracywith 8 channels
is 69.10% for valence and 71.99% for arousal, slightly lower
than accuracy with total 32 channels. We also applied �-test
to examine whether the performance of 8 channels is similar



BioMed Research International 7

Valence Arousal

FD

SampEn

DWT + DE (Beta)

DWT + DE (Gamma)

Our method

0

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
 (

%
)

Figure 5: Classi�cation accuracies of di	erent methods. “FD,”
“SampEn,” and “DE” in the �gure are corresponding to fractal
dimension, sample entropy, and di	erential entropy, respectively.
�e mean accuracy was computed among all the subjects. Error
bars show the standard deviation of the mean accuracies across all
subjects.

to total 32 channels. �e null hypothesis is “the performance
is similar” and if� value is larger than �, the null hypothesis is
accepted. �e �-test result shows that the performance under
8 channels and 32 channels is similar, with � = 0.4194 for
valence and � = 0.9521 for arousal.

So in practical use, we just need to extract features from
IMF1 with 8 channels. Our o�ine experiment used every 5 s
EEG signals as a labeled emotion sample. �is infers that our
method may provide a new solution for real-time emotion
recognition in BCI systems.

3.4. Results Comparison with Other Methods. In this subsec-
tion, we compared our proposed method with some classical
methods, including fractal dimension (FD), sample entropy,
di	erential entropy, and time-frequency analysis DWT. We
used box counting for fractal dimension calculating. �e
parameter for sample entropy SampEn(�, �,
)was set as � =
0.2, � = 2, and 
 = 128. We used “db4” decomposition to
realize DWT.�en the di	erential entropy of Beta (16–32Hz)
and Gamma (32–64Hz) bands is extracted as features. Our
methodused IMF1 for feature extraction of��,��, and�norm.
For all the methods, 8 selected channels FP1, FP2, F7, F8, T7,
T8, P7, and P8 are used for feature extraction.

From Figure 5 and Table 3, we see that our method
yields the highest accuracy, 69.10% for valence and 71.99%
for arousal. We applied �-test (� < 0.05) to examine the

performance between classical method and our method. �e
null hypothesis is “the performance is similar” and if � value
is larger than �, the null hypothesis is accepted. �e results
of �-test in Table 3 show that the performance of our method
is more splendid than fractal dimension, sample entropy, and
di	erential entropy of Beta band with � far less than 0.05. It
also shows that the performance of ourmethod is similar and
better than the di	erential entropy of Gamma band.

EMD strategy outperforms time domainmethod, includ-
ing fractal dimension and sample entropy. �is is because
compared to methods in time domain, EMD has the advan-
tage of utilizing more oscillation information. Compared
to time-frequency method DWT, EMD can decompose
EEG signals automatically, getting rid of selecting transform
window �rst. �e classi�cation accuracy is also higher than
DWT. So the experiment results infer that our method based
on EMD strategy is suitable for emotion recognition from
EEG signals.

4. Discussion

Emotion recognition from EEG signals has achieved signi�-
cant progress in recent years. Previous methods are usually
conducted in time domain, frequency domain, and time-
frequency domain. In this paper, we propose a method of
feature extraction for emotion recognition in EMD domain,
a new aspect of view. By utilizing EMD, EEG signals can
be decomposed into di	erent oscillation components named
IMF automatically. �e characteristics of IMF are utilized
as features for emotion recognition, including the �rst dif-
ference of time series, the �rst di	erence of phase, and the
normalized energy.

Compared to methods in time domain, EMD has the
advantage of utilizing more frequency information. �e
experiment results show that the proposed method outper-
forms method in time domain, such as fractal dimension in
[3, 4] and sample entropy in [5]. Compared to time-frequency
methods, such as STFT and DWT, EMD can decompose
EEG signals automatically, getting rid of selecting transform
window �rst. �e classi�cation accuracy is also higher than
DWT in [18].

We investigate the role of each IMF in emotion classi�ca-
tion. Features extracted from IMF1 yield the highest accuracy.
IMF1 is corresponding to the fastest changing component
of EEG signals, so our study con�rms the deduction that
emotion is more relative to high frequency component.
�is consists with �ndings in [26] that Beta (16–32Hz) and
Gamma (32–64Hz) bands are successfully selected more
o�en than other bands.

Finally, we selected 8 informative channels based onEMD
strategy, namely, FP1, FP2, F7, F8, T7, T8, P7, and P8. Our
proposed method just needs to extract features from IMF1
with 8 channels, whichwill save time and relieve computation
burden. Also in our experiment, every 5 s EEG signals are
extracted as a sample, so it may provide a new solution for
real-time emotion recognition in BCI systems.

Our limitation is that nowwe just test it onDEAP dataset,
so in the future we want to experiment it on more emotional
datasets to verify the method comprehensively. Also we will
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Table 3: �e mean accuracy of di	erent kinds of methods (Fp1, Fp2, F7, F8, T7, T8, P7, and P8) (standard deviation shown in parentheses;
statistical analysis shown in column �-test).

Methods
Valence Arousal

Accuracy (%) �-test (our method) Accuracy (%) �-test (our method)

Fractal dimension 53.08 (19.14) � = 0 59.61 (20.28) � = 0.0034
Sample entropy 57.44 (11.66) � = 0 62.96 (13.82) � = 0.0024
DWT + di	erential entropy (Beta) 60.87 (11.74) � = 0.0013 64.66 (11.59) � = 0.0048
DWT + di	erential entropy (Gamma) 67.36 (6.61) � = 0.3185 68.55 (9.28) � = 0.1189
Our method 69.10 (6.95) � = 1 71.99 (7.77) � = 1

utilize more strategies such as feature smoothing and deep
network to improve the classi�cation accuracy.

5. Conclusion

In this paper, an emotion recognitionmethod based on EMD
using three statistics is proposed. An extensive analysis has
been carried out to investigate the e	ectiveness of the features
for emotion classi�cation. �e results show that the three
features are suitable for emotion recognition. �en the e	ect
of each IMF component is inquired. �e results reveal that,
among the multilevel IMFs, the �rst component IMF1 plays
the most important role in emotion recognition. Also the
informative channels based on EMD strategy are investigated
and 8 channels, namely, FP1, FP2, F7, F8, T7, T8, P7, and
P8, are selected for feature extraction. Finally, the proposed
method is compared with some classical methods and our
method yields the highest accuracy.

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

�is work was supported by the grant from the National
Natural Science Foundation of China (Grant no. 61701089).

References

[1] C.-H. Han, J.-H. Lim, J.-H. Lee, K. Kim, and C.-H. Im, “Data-
driven user feedback: an improved neurofeedback strategy
considering the interindividual variability of EEG features,”
BioMed Research International, vol. 2016, Article ID 3939815, 7
pages, 2016.

[2] K. Takahashi, “Remarks on emotion recognition from multi-
modal bio-potential signals,” in Proceedings of the 2004 IEEE
International Conference on Industrial Technology, pp. 1138–
1143, Hammamet, Tunisia, December 2004.

[3] O. Sourina and Y. Liu, “A fractal-based algorithm of emotion
recognition from EEG using arousal-valence model,” in Pro-
ceedings of the International Conference on Bio-Inspired Systems
and Signal Processing, BIOSIGNALS 2011, pp. 209–214, Rome,
Italy, January 2011.

[4] Y. Liu and O. Sourina, “Real-time subject-dependent EEG-
based emotion recognition algorithm,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Arti	cial
Intelligence and Lecture Notes in Bioinformatics), vol. 8490, pp.
199–223, 2014.

[5] X. Jie, R. Cao, and L. Li, “Emotion recognition based on the
sample entropy of EEG,”Bio-MedicalMarerials andEngineering,
vol. 24, no. 1, pp. 1185–1192, 2014.

[6] E. Kroupi, A. Yazdani, and T. Ebrahimi, “EEG correlates
of di	erent emotional states elicited during watching music
videos,” in in Procceding of the 2011 Interntionnal Conference on
A�ective Conputing, pp. 457–466, Memphis, TN, USA, 2011.

[7] B. Hjorth, “EEG analysis based on time domain properties,”
Electroencephalography and Clinical Neurophysiology, vol. 29,
no. 3, pp. 306–310, 1970.

[8] K. Ansari-Asl, G. Chanel, and T. Pun, “A channel selection
method for EEG classi�cation in emotion assessment based on
synchronization likelihood,” in Proceedings of the 15th European
Signal Processing Conference, EUSIPCO 2007, pp. 1241–1245,
Pozna, Poland, September 2007.

[9] R. Horlings, D. Datcu, and L. J.M. Rothkrantz, “Emotion recog-
nition using brain activity,” in Proceedings of the International
Conference on Computer Systems and Technology, vol. 25, pp. 1–
6, New York, NY, USA, 2008.

[10] P. C. Petrantonakis and L. J. Hadjileontiadis, “Emotion recogni-
tion fromEEG using higher order crossings,” IEEE Transactions
on Information Technology in Biomedicine, vol. 14, no. 2, pp. 186–
197, 2010.

[11] X. W. Wang, D. Nie, and B. L. Lu, “EEG-based emotion recog-
nition using frequency domain features and support vector
machines,” in in Procceding of the International Conference on
Neural Information Processing, pp. 734–743, Guangzhou, China,
2011.

[12] R.-N.Duan, J.-Y. Zhu, andB.-L. Lu, “Di	erential entropy feature
for EEG-based emotion classi�cation,” inProceedings of the 2013
6th International IEEE EMBSConference onNeural Engineering,
NER 2013, pp. 81–84, New Jersey, NJ, USA, November 2013.

[13] G. Chanel, K. Ansari-Asl, and T. Pun, “Valence-arousal evalua-
tion using physiological signals in an emotion recall paradigm,”
in Proceedings of the 2007 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2007, pp. 2662–2667,
Halifax, NS, Canada, October 2007.

[14] Y.-P. Lin, C.-H. Wang, T.-P. Jung et al., “EEG-based emotion
recognition in music listening,” IEEE Transactions on Biomedi-
cal Engineering, vol. 57, no. 7, pp. 1798–1806, 2010.

[15] S. K. Hadjidimitriou and L. J. Hadjileontiadis, “Toward an
EEG-based recognition of music liking using time-frequency
analysis,” IEEE Transactions on Biomedical Engineering, vol. 59,
no. 12, pp. 3498–3510, 2012.



BioMed Research International 9

[16] S. S. Uzun, S. Yildirim, and E. Yildirim, “Emotion primitives
estimation from EEG signals using Hilbert Huang Transform,”
in Proceedings of the IEEE-EMBS International Conference on
Biomedical and Health Informatics, pp. 224–227, Hong Kong,
China, January 2012.

[17] M. Murugappan, M. Rizon, R. Nagarajan, and S. Yaacob, “EEG
feature extraction for classifying emotions using FCM and
FKM,” in Proceedings of the International Conference on Applied
Computer and Applied Computational Science, vol. 1, pp. 21–25,
Venice, Italy, 2007.

[18] Z. Mohammadi, J. Frounchi, and M. Amiri, “Wavelet-based
emotion recognition system using EEG signal,”Neural Comput-
ing and Applications, pp. 1–6, 2016.

[19] M. Murugappan, “Human emotion classi�cation using wavelet
transform and KNN,” in Proceedings of the 2011 International
Conference on Pattern Analysis and Intelligent Robotics, (ICPAIR
’11), vol. 1, pp. 148–153, Putrajaya, Malaysia, June 2011.
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