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Abstract. Emotion recognition is an important research topic. Physiological 

signals seem to be an appropriate way for emotion recognition and specific sen-

sors are required to collect these data. Therefore, laboratory sensors are com-

monly used while the number of wearable devices including similar physiologi-

cal sensors is growing up. Many studies have been completed to evaluate the 

signal quality obtained by these sensors but without focusing on their emotion 

recognition capabilities. In the current study, Machine Learning models were 

trained to compare the Biopac MP150 (laboratory sensor) and Empatica E4 

(wearable sensor) in terms of emotion recognition accuracy. Results show simi-

lar accuracy between data collected using laboratory and wearable sensors. 

These results support the reliability of emotion recognition outside laboratory. 
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1 Introduction 

Emotion recognition is currently a hot topic in the field of affective computing [1]. 

In prior studies, several modalities have been explored to recognize the emotional 

states such as facial expression [2], speech [3], etc. However, the physiological sig-

nals related to autonomic nervous system appear as an appropriate way to assess ob-

jectively emotions [4]. Two types of sensors may be used for gathering physiological 

signals: laboratory and wearable sensors. Laboratory sensors seem effective [5] but, in 

some cases, they are not deployable outside controlled situations. Also, wearable sen-

sors provide useful and non-obstructive way to obtain physiological signals [6, 7]. 

Moreover, the wearable sensors gathering physiological data become cheaper and 

widely available. The accuracy of these sensors has been explored in several studies 

and shows that the physiological signals gathered by laboratory sensors and wearable 
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sensors seem quite similar. McCarthy and collaborators [6] indicate that the photople-

thysmography (PPG) signals obtained from the Empatica E4 are sufficiently precise 

for the cardiac activity assessment. Other research [e.g., 7] validate wearable sensors 

as reliable and relevant for the physiological signals analysis. However, to the best of 

our knowledge, the emotion recognition accuracy obtained by different types of sen-

sors [8] was compared in only few studies. In the current study, laboratory and weara-

ble sensors were used to gather physiological data with the aim to recognize emotion-

al states using Machine Learning method (Support Vector Machine – SVM). 

2 Method 

2.1 Participants  

We recruited 19 French volunteers via social networks: 12 women and 7 men whose 

average age was 33.89 years ± 8.62 (see Table 1 for details). The minimum age is 

23.49 years and maximum age is 52.46 years. Participants received €15 at the end of 

the experiment for their participation. 

 
Table 1. Descriptive statistics of participants 

 N Mean Age SD Age 

Men 7 31.99 3.76 

Women 12 35.00 10.51 

Total 19 33.89 8.62 

 

In the sample, all subjects were francophone. Participants had normal or corrected to 

normal vision. Moreover, participants had not taken any somatic drug(s), which may 

have an impact on physiological responses (e.g., corticosteroids), on the passing day. 

To gather the physiological data, participants have been instrumented of two sensors: 

the Biopac MP150 (laboratory sensor) and Empatica E4 wristband (wearable sensor). 

Both sensors recorded cardiac and electrodermal (EDA) activities. In order to syn-

chronize the two sensors during the data acquisition, a program was specifically de-

veloped in Python and C. 

2.2 Material 

 For emotion induction, 45 color pictures extracted from the International Affective 

Picture System (IAPS) [9] have been displayed on a computer screen (1920x1080 

pixels). The valence and arousal associated to each picture were balanced. Thereby, 

each picture was categorized under three levels of valence (positive, neutral and nega-

tive) and three levels of arousal (high, medium and low) based on the theoretical val-

ues provided by the IAPS Technical Manual [9]. Finally, nine balanced categories 

were created (e.g., positive valence and low arousal) and five pictures of each catego-



ry were presented to participants (the selected pictures ID are presented in Appen-

dix 1). 

 

 
Figure 1. Experiment setup 

2.3 Physiological and Subjective Data 

Subjective and physiological data have been collected during the experiment. Con-

cerning the subjective data, two scales have been used. First, the Beck Depression 

Inventory II (BDI-II) [10] (21 items) was used before the experiment in order to ex-

clude participants with depression issues. During the experiment, the Self-

Assessment-Manikin (SAM) [11] was used to measure the emotional responses after 

each picture. Participant had to position himself on five different pictograms and four 

intermediate values (scoring from 1 to 9). As prior studies have shown that a 2-

dimensional model of emotions (including valence and arousal) is preferable to a 3-

dimensional model (including valence, arousal and dominance [12, 13]), only the 

evaluation of valence (positive / negative aspects of emotions) and arousal (emotional 

intensity) were considered. 

 

Concerning the physiological data, EDA and cardiac activities have been recorded 

using two different sensors: the Biopac BioNomadix MP150 and Empatica E4 Wrist-

band. Nine specific features have been extracted from these signals (HR, AVNN, 

SDNN, rMSSD, pNN50, LF, HF, RD and AVSCL). These features correspond to the 

most used features according to the literature review of Kreibig [4]. 

2.4 Machine Learning  

Machine Learning algorithms were used to consider the nonlinear between subjective 

and physiological data. Machine learning models were trained in order to compare 

laboratory and wearable sensors in terms of emotion recognition accuracy. Support 

Vector Machine (SVM), supervised learning algorithms [14], were selected to classify 

data. After training, these models can recognize specific patterns related to specific 

outputs [15]. Technically, for the algorithms trainings, two types of data were used: 

physiological data as input and emotional states as output. After training, the models 

should be able to recognize the emotional states related to the physiological data.  



To ensure genericity of the model, two main methods were used. First, the dataset 

was divided into training dataset (80 %) and testing dataset (20 %) (i.e., only the train-

ing dataset is used during the training). Second, cross-validation method was used 

during the training to improve the stability of results.  

2.5 Procedure 

At the beginning of the experiment, participants were informed of the experiment 

theme and signed a consent form. Then, participants completed a short general ques-

tionnaire (gender, date of birth, etc.). After, BDI-II was proposed to measure the clini-

cal depression level (participants with a score ≥ 19 are excluded from the analyses). 

Afterwards, participants were instrumented with both sensors: the Empatica E4 wrist-

band and Biopac MP150. In order to train participants to the subjective scale, a ses-

sion with three pictures was also proposed (these data were excluded from the final 

analyses). Before each picture presentation, a black fixation cross on a white screen 

was displayed during 3 to 5 seconds (i.e., duration is randomly defined in order to 

limit expectation effect). The 45 pictures were presented randomly to participants 

while controlling the images sequence (i.e., two pictures from the same subcategory 

could not be displayed successively). Finally, after each picture presentation, partici-

pants had to evaluate their emotional state within 15 seconds using the Self-

Assessment-Manikin (SAM) [11] through two dimensions: valence (positive / nega-

tive aspects of emotions) and arousal (emotional intensity). 

3 Results 

3.1 Descriptive statistics 

Among the subjective data collected, 2.3% of responses were missing (i.e., 20 missing 

subjective evaluations on the 871 collected). The average valence was 3.86 ± .36 

where the score of 1 represents a very negative valence and 9 a very positive valence. 

The average arousal was 3.11 ± 1.55 where the score of 1 represents a very low 

arousal and 9 a very high arousal. The correlations were estimated between the fea-

tures obtained from the Empatica E4 and Biopac MP150 data (see Table 2 for details). 

The correlations are high for the cardiac activity features (from .50 to .99). However, 

the correlation between AVSCL obtained by both sensors is low (.13)
 2
.  

 

 

 

 

 

 

                                                           
2 The weak correlation on EDA seems to be due to a problem of data recording for one partici-

pant. Deleting these data lead to a correlation of r = .45 between the AVSCL features gath-

ered by both sensors. 



Table 2. Correlations between the physiological features gathered by the Empatica E4 and 

Biopac MP150 

 Biopac MP150 

Empatica E4   HR AVNN SDNN rMSSD pNN50 LF HF RF AVSCL 

HR .99         

AVNN  .99        

SDNN   .75       

rMSSD    .69      

pNN50     .61     

LF      .57    

HF       .58   

RF        .50  

AVSCL         .13 

 

For illustration, the Heart Rate features extracted from both sensors are presented 

in Figure 2. 

 

 
 

Figure 2. HR signal gathered using the Empatica E4 (red line) and Biopac MP150 (green 

line). X-axis corresponding to the full dataset. Y-axis corresponding to the Heart Rate. 

3.2 Emotion Recognition System 

Machine Learning algorithms (SVM) were used in order to consider the nonlinear 

relationships between these two types of data. The Machine Learning models were 

trained to recognize emotional states as binary variables. A training by sensor (i.e., 

Biopac M150 and Empatica E4) was carried out. For each sensor, two models were 

trained: one for valence and one for arousal. The Table 3 presents the main results. In 

summary, for both sensors, an accuracy of 66% for valence level and 70% for arousal 

level were found based on person-independent models. 

 

 



Table 3. Results for emotion recognition3 

   Valence Arousal 

Empatica E4 Training .657 (SD = .05) .700 (SD = .02) 

 Testing .659 .704 

Biopac MP150 Training .655 (SD = .03) .698 (SD = .05) 

 Testing .656 .697 

 

According to these results, the accuracy of emotion recognition appears similar be-

tween the wearable sensor Empatica E4 and laboratory sensor Biopac MP150 in this 

experimental context. 

4 Discussion and Conclusion 

The aim of the current study was to compare the Empatica E4 and Biopac MP150 

sensors in terms of emotion recognition capabilities. Thus, nine features were extract-

ed from the physiological signals gathered by these sensors. The Machine Learning 

models were trained to recognize emotional states from these features. According to 

the results, the accuracy of emotion recognition appears similar with respectively an 

accuracy around 70% for arousal and 66% for valence.  

 

In the current study, emotion recognition was based on extracted features. Conse-

quently a strongly influence of these features on accuracy can be supposed. Nine fea-

tures were used, a relatively weak number compared to some prior research [16]. 

Thus, extracting more features may lead to discover significant differences between 

sensors. 

 

Overall, a stronger emotion induction may improve the accuracy of emotion recog-

nition. Indeed, only few phasic responses have been detected (beyond the natural 

physiological responses) even though this feature reveals emotional activation. A 

stronger induction should influence physiological signals and may lead to difference 

between sensors. Thus, it could be interesting to conduct new studies to ensure of the 

similar recognition capabilities between sensors. 

 

In future works, it could be relevant to compare emotion recognition from these 

sensors in a less controlled environment with the potential presence of motions. 

 

In conclusion, in this study, wearable sensors appear as accurate as laboratory sen-

sors for emotion recognition. The E4 device seems to be relevant for emotion recogni-

tion in daily life as a non-intrusive, easy to use and accurate wearable sensor. 

 

                                                           
3 In the “training” lines, two pieces of information are provided: the mean recognition rate 

through training sessions (cross-validation method) and number in brackets corresponding to 

standard deviation through training. The “testing” lines correspond to the recognition rate on 

the testing dataset. 
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Appendix 

Appendix 1 

Table 4. Picture ID by category of valence and arousal 

Arousal Positive valence Neutral valence Negative valence 

High arousal 8492 ; 4659 ; 4695 ; 

5629 ; 8501 
 

1120 ; 5950 ; 8475 ; 

1932 ; 8341 

6300 ; 3301 ; 6263 ; 

6520 ; 3500 

Medium arousal 2075 ; 2160 ; 7330 ; 

7470 ; 7580. 

8065 ; 7497 ; 2220 ; 

1945 ; 5535. 

3550.1 ; 2345.1 ; 

2800 ; 9140 ; 2751 

Low arousal 5764 ; 5811 ; 1910 ; 

5870 ; 2370. 

2101 ; 7038 ; 7185 ; 

7490 ; 7491 

9395 ; 2490 ; 9001 ; 

2722 ; 2039. 

 




