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1 Is There a Place for Emotions in Robotics?

To many, the title of this chapter might sound like a complete nonsense  after all, 

what do emotions have to do with robots? How could robots possibly tell us anything 

about  them, and more generally  about us?  Science fiction has  typically  portrayed 

robots as prototypes of the unemotional, and this vision largely prevails in science as 

well as for the layperson, in spite of the proliferation of “affective” toys and robots. 

Admittedly, many of these “affective devices” are little more than “bags of tricks” 

aimed at entertaining the young (and not so young) and technically-oriented sectors of 

the population, rather than pieces of scientific research trying to take a step towards a 

broader understanding of what emotional phenomena can be; yet these devices can be 

extremely efficient at achieving their goal, offering us good opportunities to reflect on 

the  human  tendency  to  anthropomorphize  even  with  dealing  with  the  dullest 

technology (Reeves and Nass 1996) and to perceive the world as emotionally colored. 

However, shedding light on human perception of affect is not the only  nor the main 

 contribution that robots can make to the study of emotions.  Artifacts  computers  

or robots  can also be valuable tools to support scientists in their investigation of 

human emotion and, more fundamentally, they permit to model and test hypotheses 

about affective phenomena. The investigation of all these issues is the domain of a 

new research area generally known as “affective computing,” which departs from and 

complements other disciplines traditionally concerned with the study of emotions in 

important ways, as Rosalind Picard points out (1997, page 3):



“This is different from presenting a theory of emotions; the latter 

usually focuses on what human emotions are, how and when they 

are  produced,  and  what  they  accomplish.  Affective  computing 

includes  implementing  emotions,  and  therefore  can  aid  the 

development and testing of new and old emotion theories. However, 

affective computing also includes many other things, such as giving 

a  computer  the  ability  to  recognize  and  express  emotions, 

developing its ability to respond intelligently to human emotion, and 

enabling it to regulate and utilize its emotions.”

In this chapter, we focus on autonomous robots, as opposed to other artifacts such as 

computers, to sketch our views on how they can be meaningful tools and models for 

the study of emotion. Autonomous robots are especially interesting since they are 

physical devices moving around, making decisions, solving problems, and interacting 

in the real world  the same world humans and animals inhabit; therefore, they are 

particularly suited to study two fundamental aspects of emotions:

• Their  role  as  mechanisms  for  adaptation  to  the  environment  and  behavior 

control. 

• Their role in social interaction and communication.

Robotic systems offer the possibility to approach these issues in different ways. On the 

one hand, models of some emotion “components” can be explicitly included in the 

architecture  of  the  robot  to  give  rise  to  behavior  that  appears  to  arise  from  an 

emotional system. On the other hand, autonomous robots allow us to investigate how 

emotions can  be  an  emergent  property  of  a  dynamical  system,  without  having  to 

model an “emotional  system” explicitly.  In this latter case, the lack of an explicit 

emotional system does not imply that emotions are considered as phenomena that only 

exist in the eye of the beholder; on the contrary, we believe that understanding what 

kinds of problems can be solved without the involvement of an emotional system will 

help us delineate the functions of emotions in cognitive processing. We will therefore 

present some of the problems that autonomous robots currently tackle without any 

kind of emotion model, before discussing some cases in which it might make sense to 

bring emotions into play.

2 Some State-of-the-art Problems in Behavior-Based 

Robotics

As we mentioned previously, most of the state-of-the-art work in autonomous robotics 

does not use any emotional mechanism at all. Let us first briefly consider the design 

philosophy  underlying  autonomous  robots,  and  then  provide  some  illustrative 

examples of typical problems they have to solve.



2.1The behavior-based paradigm in robotics

Robot  architectures  are  based  on  the  idea  that  real  time  reaction  capabilities  are 

crucial for good robot/environment interaction, in particular when the environment is 

dynamic or a priori unknown.  To take into account the effect of the interactions with 

the  environment,  most  robotic  architectures  use  some  kind  of  behavior-based 

approach (Brooks 1991, Arkin 1998).  In this paradigm, which draws on ideas from 

biology, ethology and neuroscience, the control architecture is divided into different 

loops of processes running in parallel  and corresponding to the different  kinds of 

behaviors1 and time scales the robot has to manage.  For instance, it is important to 

introduce a fast reaction mechanism allowing robots to avoid obstacles while they are 

moving.  At the same time (i.e., in parallel with this activity) other processes are being 

executed “independently,” for example information from images can be analyzed to 

control much more complex activities like homing, object grasping or planning.  All 

these  processes  can  issue  different  motor  commands,  some  of  which  might  be 

incompatible and “compete” for the same actuator for their execution.  Merging this 

asynchronous  flow  of  parallel  information  can  be  performed  via  a  prioritization 

mechanism.

As an example, in the subsumption architecture (Brooks 1986), one of the earliest 

types of behavior-based architectures, behaviors are organized in layers running in 

parallel, each of them with its own perception and action capabilities, and “loosely 

coupled,” i.e., with minimal interaction limited to the inhibition of the (perceptual) 

input or the suppression of the (motor) output of one layer by another. Using these 

inhibition and suppression mechanisms, layers are arranged in a hierarchy with fixed 

priorities that reflect the importance that each layer (behavior) carries for the survival 

of the robot in that particular environment, and therefore determine which behavior(s) 

to execute given the presence of relevant stimuli in the environment. This allows for 

instance to decide that going to a planned position is less important for the survival of 

the robot than avoiding an important danger. In this case, the “warning” of a danger 

will  suppress  the  output  of  the  planning  system.  Therefore,  the  decision  making 

process  is  completely  decentralized  and  much  more  robust  than  the  sequential 

“perception-reasoning-action”  process  used  in  classical  artificial  intelligence  and 

robotics, since any low-level process can take over the control of the robot's behavior 

if necessary. The behavior of the robot can also be highly opportunistic.

Many other behavior-based architectures and “decision making” (or action selection) 

strategies can be used (see Arkin 1998, Pfeifer and Schreier 1999 for an overview), 

some of them including some sort of “internal goals” or “motivations” to drive the 

behavior of the robot, as we will see later. All of them share the basic philosophy of 

using  parallel,  loosely  coupled  perception-action  loops,  decentralized  decision 

making, action-oriented perception, and lack of (or use of very minimal, coarse and 

distributed) representations. This way of designing control architectures attempts to 

avoid  the  symbol  grounding  problem (Harnad 1990)  and other  difficulties  of  the 

traditional approach (see Pfeifer and Schreier 1999).

1 The term “behavior(s)” is used in a technical sense in behavior-based robotics to denote different 

competencies or activities that the robot is able to perform in its environment.



2.2Sensory-motor and reinforcement learning

Let us suppose that an autonomous robot has to learn how to return to a particular 

location. If  the robot is equipped with a visual mechanism to recognize particular 

objects  in the visual  scene,  it  can use this  mechanism to localize where  different 

objects are in a room. Hence, we can design a group of neurons to learn that a given 

location  is  characterized  by  a  particular  conjunction  of  landmarks  and  azimuths. 

When  the  robot  is  near  the  learned  location,  the  mismatch  between  the  learned 

configuration and the current situation will be very low. On the contrary, when the 

robot is far away from the learned location the mismatch will be high (Gaussier and 

Zrehen 1995, Gaussier et al. 1999). This place recognition mechanism can be used to 

build a homing behavior. The robot has to learn at least three locations/actions in the 

neighborhood of its home in order to reach it (see Figure 1).

Figure 1. Left: Place cell-like segregation of space in a robotic experiment. Four panoramic images are 

learned (circles), others are associated with one of these learned panorama (boxes). As we can see, if 

the robot learns to reach the cross from each learned panorama it can reach the cross from any other 

panorama associated with the learned one (generalization). The set of arrows represents an example of 

robot trajectory (see Gaussier et al. 1999 for details). Right: Photo of the Koala robot used in the visual 

navigation experiments.

Such an architecture consists in a fairly direct coupling of perception and action, as 

shown in Figure 2.  When the robot is facing its home base, it can learn to recognize 

the  landmark-azimuth  configuration and associate  it  to  the  direction of  motion in 

order to reach its home (using a simple conditioning rule). 

Figure 1.  Left: Schematic representation of the PerAc block. From the perceived situation, the reflex 

system extracts information to control directly the actions. Concurrently, the recognition system learns 



sensory input patterns and how to link them to actions by associative or reinforcement learning. The 

system adapts itself dynamically to the environment.  Right: An example of maze learning where a 

delayed  reward signal  was  used  to  learn  to  associate  particular  signs  in  the  maze  with  an  action 

allowing to reach a “goal” location where the reward was received.

If  the robot is far from its home base—and supposing it cannot see it—it tries to 

recognize  its  current  location.  Due  to  the  generalization  capabilities  of  the  place 

recognition system, the “winner-takes-all” mechanism used for the place recognition 

group will activate the neuron associated to the learned place that is nearest to the 

place where the robot is current located.  This neuron will then trigger the learned 

motor action and the robot will move in a direction that decreases its distance to its 

home base. After several movements, the robot will enter in an area where another 

place cell wins, triggering another movement that will allow it to move in a more 

appropriate direction to  reach its  home. Hence,  Perception-Action learning can be 

seen as a way to create an attraction basin: our robot is no more than a ball falling in 

the learned attraction basin.

Now, if we want our robot to move between places, for example going from one place 

where it can drink to another place where it can eat, using a simple Hebbian learning 

algorithm  we  can  associate  the  place  cells  around  each  goal  to  a  particular 

“motivation” or internal variable; the motivation and the place cell are supposed to be 

simultaneously active during the learning phase to allow an easy association. This 

motivation signal acts as a bias in the competition for place recognition  it changes 

the shape of the attraction basin and instead of going to the nearest learned goal, our 

robot becomes capable of going to another goal (location) due to the modification in 

the shape of the attraction basin (see Figure 3).

Figure 2: Bias introduced by motivations in goal selection.

In the case of an open environment, simple Hebbian learning is sufficient to build 

interesting  behaviors.  Obviously,  if  we  want  our  robot  to  avoid  a  particular  area 

because it is associated to a negative reward, it must be able to avoid the ongoing 

action. This learning needs to use the negative reinforcement signal as a modulator 



factor of the Hebbian learning  in this case, to learn an inhibitory link between a 

place cell and the ongoing action. Other kinds of reinforcement learning rules (Barto 

et al. 1983, Watkins and Dayan 1992, Weaver et al. 1993, Gaussier et al. 1997) can be 

used to associate the recognition of any perceived information to an arbitrary action 

according to a reward signal that can be delayed in the most complex cases  for 

instance the robot is only rewarded if it succeeds in performing a particular sequence 

of actions (see Fig 2).

2.3 Action selection, planning and internal values

In more complex cases, for instance when the robot has learned several actions in a 

given place  and has  to  choose  one  of  them according to  a  particular  goal,  more 

complex mechanisms must be used. One solution consists in learning a cognitive map 

of the environment (Tolman 1948, Revel et al. 1998). This learning can be performed 

without any reinforcement signal (latent learning) since it relies on the learning of 

some kind of environment causality:  “from here,  I  can go there.”  The almost co-

activation of a departure node and an arrival node allows to reinforce the strength of 

the connections between these two nodes.  After a while, the robot builds a graph or a 

map coding for the topological relationship between the different places it knows in its 

environment (see Figure 4).

Figure 3: Global architecture of the planning system. When a motivation “A” activates a goal, a back-

propagation of the information is performed in direction to all the nodes of the graph (all the weights 

are equal to 0.9). The recognition level allows to identify the situations when the robot arrives in the 

vicinity of a learned place. Those situations are directly linked to the goal level, which allows to plan a 

route from one attractor to the next.

When an interesting place is found, the robot can learn to associate the satisfaction of 

this goal to the node corresponding to that place on its cognitive map. Later, when the 

robot  is  at  another  place,  if  the  previous  goal  is  activated,  it  triggers  a  diffusion 

mechanism from node to node all along the cognitive map. Then, with the appropriate 

mechanism, it is easy to choose from the current robot location the action that will 

allow  to  go  to  the  place  corresponding  to  the  most  activated  node  in  the  direct 

neighborhood of the current node on the cognitive map.  Gradually, the robot will rise 

in the gradient direction and reach the goal. If several goals are activated at the same 

time, the robot will choose the nearest goal location in terms of the minimum number 

of intermediate nodes on the map (cognitive distance).



This  means  that,  in  a  first  approximation,  the  robot  should  not  be  able  to  solve 

difficult choices such as going to a more distant place to satisfy two goals at the same 

time  therefore minimizing the global cost of the complete journey  instead of 

going to a nearer place where it can only satisfy one. However, the coupling of the 

dynamics between the robot’s motivations (such as going regularly to eat and to drink) 

allows to reinforce particular links in the cognitive map. As a result, when the robot 

discovers randomly an “interesting” route (e.g., a route leading to a place where it can 

satisfy both goals simultaneously), it can reinforce this new route because it uses it 

more and more often, and because the timing in the motivations is modified, allowing 

to synchronize the activation of the motivations to the new pathway (Gaussier  et al. 

2000, Quoy et al. 1999). Figure 5 shows how the path that the robot follows to satisfy 

both  goals  changes  when  it  tries  by  chance  the  new  pathway  and  changes  the 

activation timing of both motivations.

    

Figure 4: Histograms representing the evolution of the robot's behavior in a T-maze. At the beginning 

(left) the robot tries the right arm, finds the water and moves between the water and the nest (it does 

not succeed to explore the left arm).  By chance, it begins to explore the right arm and finds water and 

food (center). Then very quickly it only explores that arm. At last (right), it almost never returns in the 

right arm except during the exploration phases. The histogram shows the cumulate number of crossing 

in a given area since the beginning of the exploration. The levels are normalized.

More complex action selection mechanisms have been used to manage and sequence 

complex  behaviors  (see  e.g.,  Maes  1991,  Tyrrell  1993,  Donnart  and  Meyer  1996, 

Cañamero  1997)  or  to  sum  the  effects  of  various  motivations  (e.g.,  Spier  and 

McFarland  1997,  Avila-García  et  al.  2003),  but  the  principles  underlying  these 

mechanisms remain the same.

In all these cases, the use of a behavior-based approach that grants dynamical and 

continuous control of the robot also allow to simplify the work of the robot designer 

(Kelso 1995, Schöner  et  al.  1995).  However,  these architectures are not devoid of 

problems. For example, due to the use of local information, it may happen that the 

robot remains stuck in local minima and deadlock situations, such as switching rapidly 

and unproductively between alternative actions (dithering). As we will see in Section 

3, this is a typical problem that an emotion-based mechanism could help to solve in a 

more satisfactory way.



3 Emotions in Autonomy, Adaptation, and Survival in the 

Solitary Robot

The  previous  section  has  illustrated  some  of  the  typical  problems  addressed  in 

behavior-based robotics without resorting to any explicit “affective” mechanism in the 

architecture of the robot.  However, for certain types of situations, it might make sense 

to use “emotion-based” mechanisms and strategies akin to those found in animals and 

humans when dealing with similar kinds of situations, in particular when problems of 

autonomy, adaptation and survival are at stake. Emotions are interesting to roboticists 

in various fundamental ways, by virtue of the main functions they play as regulatory 

systems at different levels, such as:

Mechanisms for  (bodily)  adaptation. By producing  (rapid)  bodily  and cognitive 

changes,  emotions constitute mechanisms that  allow to deal  better  (faster or  more 

appropriately) with events, both internal and external,  which are important for the 

survival of the agent (and the species) in a particular environment, such as dangers, 

unexpected events, and opportunities.

Motivating and guiding action. As Frijda puts it (1995, page 506), “What emotions 

are about is action (or motivation for action) and action control.” At the simplest level, 

the categorization of events as pleasant/unpleasant, beneficial/noxious, turns neutral 

stimuli into something to be pursued or avoided. Due to their generality of object, 

time, intensity, and density, emotions amplify the effects of motivations, which are 

stimulus-specific and need an urgent satisfaction (Tomkins 1984). As a consequence, 

they can change goal or motivation priorities (overriding “decisions” arising from the 

motivational state) to deal with situations that need an urgent response.  

Expressive and communicative function. Emotions and their expression are also of 

paramount importance in communication and in the regulation of social interactions, 

as we will see in Section 5. 

All these different functions could contribute to enhance the adaptation capabilities 

and autonomy of robots in one or another way (see Cañamero 2001c, Cañamero 2002a 

for a discussion of these issues). The next section provides some concrete examples 

regarding the roles of emotions in adaptation and motivation and guidance of action, 

and  later  Section  5  will  touch  upon  applications  of  their  expressive  and 

communicative role in the context of human-robot interaction.

3.1Where could emotions help?

Let us now consider some of the major problems faced by autonomous robots for 

which emotions could help provide better solutions.

Management of goals. Robots endowed with some sort of “motivational system” that 

sets  and prioritizes  “internal”  goals  to  drive  their  decision  making  process  enjoy 

greater autonomy than purely reactive robots that only respond to the presence of 



external stimuli. However, in some cases, in particular in rapidly changing dynamic 

environments  that  presents  threats  to  the  survival  of  the  robot,  it  can  be 

disadvantageous to follow strictly the dictate of the motivational system, since goal 

priorities might need to be changed to address a new and urgent problem (e.g., to 

escape from a danger) before having satisfied the current need. As we saw at the 

beginning of this section, emotions can produce changes in goal priorities, and several 

models of emotions considered as “interrupts” (Simon 1967) have been implemented 

in robots.

Repetitive and inefficient behavior. Due to various features such as the use of local 

information and poor or noisy sensors and actuators, autonomous robots can engage in 

repetitive activities (“loops” or “deadlocks”) that do not conduct to the achievement of 

the  pursued  goal  and  at  the  same  time  imply  a  cost  (e.g.,  in  terms  of  energy 

consumption) for the robot  for instance, repeatedly trying to get hold of an object―  

that  they  cannot  reach.  A  “second  order”  control  mechanism  that  could  monitor 

performance and goal  achievement  to detect inefficient  behavior due to deadlocks 

would provide a solution to this problem. Rather than a burdensome “meta-reasoning” 

system, a  more appropriate solution for  these robots would be the use of internal 

states such as “boredom,” “frustration” or “anger” arising from inefficient behavior 

and failure to achieve the current goal, and leading to goal or behavioral change that 

puts an end to the deadlock situation.

Autonomous  learning.  As  we have seen  in  Section  2.2,  learning  in  autonomous 

robots typically follows association or reinforcement models, and makes use of some 

kind of external signals (arising from the environment or supplied by a “critic”) that 

provide positive or negative reward. Other models include learning by imitation (see 

below, Sections 4.1 and 4.2) the actions of another agent (human or robot) usually 

called the “demonstrator.” One of the main problems underlying all these models is 

how to make those signals truly meaningful to the robot so that the learning process is 

more autonomous and grounded in the architecture of the robot. In other words, how 

can a robot make sense of the perceived signals by itself, as opposed to using reward 

information provided by some sort of “external teacher”? How can it decide what to 

learn and what not to learn? A mechanism rooted in an internal “value system” would 

be needed to provide internal signals regarding the “positive” or “negative” qualities 

of actions and stimuli, giving them a meaning with respect to the values, needs and 

goals of the robot beyond a metaphoric use of the terms “pain” and “pleasure” to refer 

to negative and positive reward, and allowing to learn appropriate valenced reactions 

to them. See (Andry et al. 2001), (Cos-Aguilera et al. 2003), and Section 4.2 of this 

chapter for initial solutions in this direction. 

Cognitive  overload.  Management  of  memory  is  another  major  problem  in 

autonomous robots. If the robot lacks appropriate criteria to filter out information, its 

memory is  then too global, causing problems of cognitive overload and very long 

recall times. Mechanisms for selective memory inspired from emotional memory in 

humans  (e.g.,  phenomena  like  mood-congruent  recall  of  past  memories)  and  the 

related notion of autobiographic memory, would help to solve some of these problems 

and also provide generally coherent responses to a wide range of situations.



It can be argued that it should be possible to conceive of different mechanisms to 

“fix” the above problems independently in a more or less ad hoc way without having 

to resort to any emotion-like system and without using the term “emotion” for those 

mechanisms. However, the interest of using an emotional system (or for that matter, 

implementing that metaphor) lies in the fact that the same system is intertwined with 

and can affect various other subsystems simultaneously. Although we will not attempt 

to  define  the  term  “emotion,”  we  consider  that  in  this  context  emotions  can  be 

appropriately  characterized as  processes  of  dynamic nature that  integrate  causally 

related  processes  of  several  subsystems  (Mandler  1985):  the  physiological,  the 

cognitive-evaluative, and the communicative-expressive2. Emotions then can be seen 

as  “constructs  which  allow causally  related complex  dynamic  states  of  the  (four) 

subsystems to be characterized and identified simultaneously” (Pfeifer 1991).

Let us illustrate some of these ideas using the particular case of action selection.

3.2Emotions for action selection in autonomous robots

What do robot emotions look like?  Robotic emotional systems are no magic trick ― 

like everything in robots, they consist of some form of “algorithm” or program. What 

is important in this “program” is how it affects the behavior and cognitive processing 

of  the  robot.  Different  types  of  models  and  approaches  can  be  used  to  model 

emotions,  as discussed in (Cañamero 2001c) (see also Cañamero 1998, Cañamero 

2001b, for a representative collection of papers), but here we adopt the perspective of 

behavior-based robotics. Within this approach, if emotions are to be meaningful to the 

robot, they must be an integral part of its architecture and must be grounded in an 

internal value system that is adaptive for the robot's physical and social niche. It is this 

internal value system that is at the heart of the creature's autonomy and produces the 

valenced reactions that characterize emotions. As Wehrle puts it  (2001, page 576), 

“grounding somehow implies that we allow the robot to establish its own emotional 

categorization which refers to its own physical properties, the task, properties of the 

environment, and the ongoing interaction with its environment.”

As  an  example,  the  architecture  proposed  in  (Cañamero  1997)  and  analyzed  in 

(Cañamero  2002a)  relies  on  both  motivations  and  emotions  to  perform  behavior 

selection. Initially implemented in simulated robots,  this architecture is now being 

adapted  to  real  robots  as  part  of  the  PhD thesis  of  Orlando  Avila-García  at  the 

University of Hertfordshire. The robots inhabit a typical action selection environment 

containing  various  types  of  resources,  obstacles  that  hamper  their  activities,  and 

predators, and they must choose among and perform different activities in order to 

maintain their well-being (the stability of their internal milieu) and survive (remain 

viable  in  their  environment,  following (Ashby 1952)  as  long as  possible   their―  

ultimate goal).  The architecture of the robots is behavior-based, and consists of:  a 

synthetic  physiology of  survival-related  variables  controlled  homeostatically  (e.g., 

blood sugar, vascular volume, energy, etc) and “hormones” that can alter the levels of 

the  controlled  variables;  a  set  of  motivations (aggression,  cold,  curiosity,  fatigue, 

hunger, self-protection, thirst, and warm) activated by “errors” (deficit or excess) in 

2 When  considering  emotions  in  humans,  the  subjective  experience  subsystem  is  also  included. 

However we prefer not to talk about subjective experience in the case of robots.  



the  levels  of  the  controlled  variables  when  these  depart  from  their  ideal  values, 

therefore setting the internal needs of the robot; a repertoire of  behaviors that can 

satisfy  those  internal  needs  or  motivations  (and  also  create  new  ones),  as  their 

execution  carries  a  modification  (increase  or  decrease)  in  the  levels  of  specific 

variables; and a set of “basic” emotions (anger, boredom, fear, happiness, interest, and 

sadness) that can be activated as a results of the interactions of the robot with the 

world  the presence of external objects or the occurrence of internal events caused―  

by these interactions  and release “hormones” when active.―

Under “normal” circumstances, behavior selection is driven by the motivational state 

of the robot  at each point in time, normally the motivation with the highest need to―  

be satisfied will be in charge of selecting the behavior that can best correct its related 

physiological error. Emotions constitute a “second order” control mechanism running 

in parallel with the motivational control system to continuously “monitor” the external 

and internal environment for significant events. They can alter motivational priorities 

and behavior execution through the effect of released hormones on the physiology, 

arousal, attention, and (internal and external) perception of the robot. This emotional 

system was specifically designed to overcome some of the major problems of reactive 

and motivated behavior selection architectures, such as lack of flexibility in overall 

behavior due to a rigid link between stimulus and response, repetitive and inefficient 

behavior, inefficient treatment of emergency situations, etc.  Therefore the different 

emotions  were  designed  to  act  as  mechanisms  for  fast  adaptation  to  particularly 

significant circumstances from the point of view of the survival of the robot in a 

highly dynamic environment, namely:

• Anger: A mechanism to block the influences from the environment by abruptly 

stopping  the  current  situation.  Its  triggering  event  is  the  fact  that  the 

accomplishment of a goal (a motivation) is menaced or undone. 

• Boredom:  A mechanism to stop inefficient behavior that does not contribute to 

satisfy any of the robot's needs. Its triggering event is prolonged repetitive activity. 

• Fear:  A defense mechanism against external threats. Its triggering event is  the 

presence of predators. 

• Happiness: A form of re-equilibration triggered by the achievement of a goal. 

• Interest: A mechanism for the robot to engage in interaction with the world. Its 

triggering event is the presence of a novel object.

• Sadness: A mechanism to stop an active relation with the environment when the 

robot is not in a condition to get a need satisfied; it acts by slowing down the 

metabolism and motor system of the robot.

This architecture was designed to show how the use of emotions can improve action 

selection in autonomous robots by solving some of  the problems present in more 

traditional  architectures.  It  could  also  be  useful  to  study  how  emotions  can  be 

maladaptive  by  simulating  (via  modification  of  relevant  parameters)  various 

emotional disorders. However, since it was designed (hand-coded) to meet particular 

requirements, it cannot tell us why emotions are adaptive, or how they evolved to be 

so. Using evolutionary techniques to generate different emotional systems therefore 

seems a very interesting direction to explore, as it would also allow us to evaluate the 



performance and adaptive value of emotions for different action selection tasks and 

environments. Different aspects of emotion-based learning need also be investigated 

in this context. Using a simplified version of this architecture, ongoing work as part of 

the PhD thesis of Ignasi Cos-Aguilera includes learning affordances in the context of 

behavior selection based on internal homeostatic and hormonal (valenced) feedback 

resulting from interaction episodes with objects in the environment (Cos-Aguilera et 

al. 2003). 

4 Issues in Human-Robot Interaction

The models and architectures seen in previous sections lack any mechanisms to allow 

social interactions with other entities  humans or robots. To interact socially, many―  

other aspects and cognitive capabilities have to be incorporated in the robot. In some 

cases, interaction can result as a side-effect of clever sensory-motor couplings, as we 

will see in the next section. In other cases, we might want to endow our robots with 

explicit expressive capabilities that make humans attribute them emotional states and 

react to them.

4.1 Side effects of sensory-motor systems

Robot learning has been studied for  a  long time in the case of  an isolated robot. 

Algorithms have become more and more efficient but after a while it became obvious 

that an isolated system, even with the best algorithms, cannot be able to discover very 

complex strategies or behaviors by its own. The combinatorial explosion is simply to 

huge and time consuming.  Imitation appears  as  a  powerful  tool  for  learning.  The 

problem is  that  most  of  the  works  on  imitation  (e.g.,  Meltzoff  and Moore  1977) 

assume the imitator as a model of the demonstrator, and this implies the presence of a 

complex internal (and innate) mechanism to manage the imitation process.

Our  idea  at  the  Neurocybernetics  Team  was  to  develop  a  simple  sensory-motor 

regulation  system,  somewhat  like  a  homeostat  (Ashby  1952)  to  learn  the 

correspondence between the visual position of the robot arm and its proprioception. 

In this architecture, the robot simply detects the area in the image where more motion 

is occurring and tries to learn to associate this location with the different possible 

proprioceptions. If the robot perceives a difference between its proprioception and its 

vision, it tries to reduce it. An interesting side effect is that if a human is moving his 

arm in the robot field of view, the robot perceives the motion and tries to reduce the 

error between its proprioception and the visual information.  As a result, the robot 

arm begins moving, following the movement of the human demonstrator.  Therefore, 

an external observer has the impression that our robot is imitating, while all it tries to 

do is remaining in a fixed position, and it is just moving to reduce the error between 

its proprioception and its vision (see Figure 6).



   

Figure 5: Low-level imitation principle applied to a robotic arm.

Here, perceptual ambiguity is used to bootstrap the imitative behavior, which only 

relies on a very simple sensory-motor strategy. The neural network used for this is not 

so obvious, though, since it  works with a single camera, a five-degree-of-freedom 

arm, and it allows to build a multi-modal map (Gaussier  et al.  1998, Andry  et al. 

2000, Andry  et al. 2002). Learning the complete movement is easy since the robot 

does not try to learn the trajectory of the demonstrator's arm trajectory, but it simply 

needs to store its own sequence of actions. Unfortunately, an external reward is needed 

to decide if the trajectory has to be stored or not  was it a good imitation? Was it a―  

real demonstrator or just a shadow our robot arm was following? We will see latter 

how to avoid the use of an explicit learning signal.

Another interesting example is the work of (Takanishi et al. 1997). They proposed the 

design of a robotic head with a neck and an active vision system allowing to control 

the gaze of two CCD cameras. The system was tested in different situations showing 

that active movements of the robot camera and active movements of the head/neck in 

the direction of  the  target  allowed a better  measure  of  the target  localization.  An 

interesting  side-effect  was  how  much  this  simple  sensory-motor  coupling  was 

appealing  to  the  observers.  We  had  the  feeling  the  robot  “wanted”  to  look  at 

something. Moreover, when the object was too near to the head, the head was moving 

back  and  the  observer  had  the  impression  that  the  robot  was  trying  to  avoid  an 

unpleasant  situation.  It  was a  clear  case of  a  robotic  system able to trigger  some 

empathic behaviors, due to our tendency to assign intentions to others.

This system was able to trigger an emotional response in the human observers by the 

only use of a simple hardwired sensory-motor mechanism. This result opens the door 

to  the  development  of  non-conventional  human/machine  interfaces  showing  how 

powerful the evocation of emotional feeling can be to interact with a human  even if―  

the robot does not have any emotional system at all. 

4.2 Imitation as a communication tool

As seen in the previous section, passive imitation is interesting to trigger some basic 

social interactions. However, in baby/parents relations there is no need for an explicit 

reward  to  learn  a  particular  behavior.  Consequently,  in  the  case  of  a  robot,  the 

question  is:  how  could  internal  reward  be  produced  that  does  not  depend  on  a 



symbolic signal? The solution came from the study of baby/parent interaction and 

more precisely on the fact that the synchrony of the exchange was crucial to maintain 

the attention of the baby (Nadel 2000). We proposed a simple mechanism merging all 

the input data in order to try to predict the rhythm of the global incoming flow of 

sensory data. If the system succeeds to predict the rhythm, we consider that the robot 

is in the rhythm of the interaction and that this later is successful: the robot generates 

by itself a positive reward that reinforces its current behavior. On the contrary, if the 

robot fails to predict the rhythm of the exchange we consider that the robot is not in 

the rhythm of the exchange; a negative reward is then generated, inhibiting the current 

behavior. 

We were able to show that this kind of mechanism can be used to teach an arbitrary 

set of sensory-motor rules to a computer without giving it any reward (Andry  et al. 

2001).  It was the frequency of the trials of the human demonstrator that was directly 

used by the computer to infer if it has or not to reinforce its current behavior. In order 

to close this “interaction loop” between the robot (or computer) and the human, we 

would  need  to  endow  the  artifact  with  the  ability  to  display  the  “internal  state” 

induced  by  this  reward  in  a  way  that  is  not  only  efficient  but  also  intuitive  and 

acceptable to humans. Let us now consider how roboticists approach the design of 

expressive artifacts.

5 Emotions in Human-Robot Interaction

Whereas  emotion  modeling  for  individual  robots  has  focused  on  the  design  of 

architectures, i.e., the “inner” aspect of emotions, the design of emotions for robots 

interacting socially has primarily paid attention to the “external” features of emotional 

expression. Emotional expression is certainly a key factor in social communication 

and interaction, since the external manifestations of emotions can play a major role as 

“signaling” mechanisms, at several levels. For example, the emotional expression of 

an  individual  can be used by  another  as  social  reference,  to  “assess”  the  type of 

situation  it  is  confronted  with  and  the  appropriate  response  to  it.  In  some cases, 

emotional expression carries some “information content,” and it can then be said to 

play a communicative role; it can be controlled to some extent and be intentionally 

used to let others know one’s emotional state so that they can make expectations about 

our  own behavior  and  adapt  theirs  accordingly.   Emotions  also  contribute  to  the 

construction of intersubjectivity.

Ideally, we would like to see these “internal” and “external” aspects fully integrated in 

the same robotic architectures in a not too distant future. For the time being, however, 

the enormous challenges that each of these problems poses in robotics has caused that 

attempts at bringing them together have so far been very simple and rather “ad hoc.” 

In  this  section  we  will  therefore  deal  only  with  the  “external  manifestations”  of 

emotions in the context of human-robot interaction.



5.1 Why expressive robots?

Work  on  expressive  robots  for  interaction  with  humans  is  receiving  increasing 

attention. Intuitively, we can think of different roles that emotional expression can 

play in social interactions between humans and robots:

Conveying intentionality. People need to understand the behavior observed in their 

social (human or artificial) partners as resulting from causes or intentions that allow 

them to form coherent explanations to interpret past behavior, make predictions and 

establish  expectations  about  future  behavior.  Emotions and personalities  are  often 

postulated as such causes of behavior and sources of intentions. Autonomous robots 

might, in addition, use emotions and their expressions to convey intentions or needs to 

humans.

Eliciting  emotions.  In  the  same  way  as  other  people’s  emotions  elicit  emotional 

responses  from humans,  emotions  in  robots  can  be  used  with  the  same purpose, 

seeking responses that either match the robot’s emotional state (e.g., a pilot assistant 

that tries to bring the pilot to an alert state) or are instrumental to it (e.g., a robot 

expressing sadness due to its inability to accomplish a task can receive the help of a 

“moved” human). 

Human comfort. Robots able to express emotions and adapt their interactions to the 

emotional state of their social partners can be expected to make humans feel more 

comfortable during interaction. One obvious reason is that this interaction is tailored 

to  meet  the  emotional  needs  of  the  human.  Another  important  reason,  is  that 

emotional behavior and expressions make the robot more believable, as in a sense it is 

perceived as being “closer” to ourselves  or at least to a living being.―

Enhanced communication. Emotional expression being a key element in non-verbal 

communication,  endowing  a  robot  with  emotional  expressions  can  make 

communication cognitively less costly for the human partner. If emotional robots are 

to achieve a sufficient level of sophistication to interpret our subtle expressions and 

obtain relevant  information from contextual  clues at  some point  in  the  future,  we 

might also want them to “understand” what we mean, not (only) what we say.

Giving the impression of life, believability, and interaction adapted to humans seem 

thus to be the main features that expressive robots should show to be accepted as 

“social partners” by us. How can they be actually implemented in robots?

5.2 Designing emotional expression for robots

Building a “believable” expressive robot that can interact with humans poses many 

challenges  that,  in  our  opinion,  need  to  be  approached  from a  multi-disciplinary 

perspective. In addition to the more technical aspects, robot designers are confronted 

with a number of conceptual problems for which psychological theories and models, 

conceived to analyze existing (biological) systems rather than to build artificial ones, 

do not provide much guidance. Let us examine some of them.



Features

Human emotional expression is  multi-modal and highly complex,  very difficult  to 

reproduce in robots in its entirety. Researchers have to select a subset of features to 

convey emotion in a way that makes expression believable—although not necessarily 

realistic—to  the  human  observer.  Inspiration  and  data  are  usually  sought  from 

psychology,  classical  animation (e.g.,  Thomas and Johnston 1981),  and very often 

empirical testing. Faces are the most commonly used means of expression, usually in 

a simplified (and caricaturized) presenting eyes, a mouth, eyebrows, and eyelids in the 

most  complex  versions.  Very  few attempts  exist  to  produce highly  realistic  faces, 

including  elements  such  as  artificial  skin  (see  Menzel  and  d’Aluisio  2000  for 

examples). Posture and movement (of the elements of the face and sometimes of other 

body parts, e.g., a neck) are regarded as highly important for expression; in particular 

movement  must  be  coherent,  well  synchronized  and  have  the  right  timing.  Some 

researchers (e.g., Breazeal 2002) put forward the use of features activating the “baby 

scheme”—features that make adults react to them as they would to a baby—although 

it  has been discussed that the use of those features is not necessary for emotional 

expression (Cañamero 2002b) but rather might make the robot itself more appealing 

or “cute” to the human eye. Expressive faces are sometimes combined with vocal 

inflexion (see e.g., Picard 1997, Breazeal 2002), although current speech synthesis 

systems still cannot produce voice of human quality and tend to sound too artificial.

Underlying model

Is  facial  emotional  expression  better  modeled  as  a  discrete  set  of  prototypical 

expressions or as points in a space of continuous dimensions? The choice of one or 

the other model has an impact on the type and quality of the expressions produced, 

but again the literature does not provide much guidance and roboticists must generally 

resort to the use of their own intuition and much empirical testing. Most robotic faces 

follow a discrete categories approach and use few degrees of freedom (typically four 

to  six)  and  few  expressive  features  (typically  two  to  four)  to  produce  highly 

stereotyped but  easily  readable expressions,  such as  Sparky (Scheeff  et  al.  2002), 

shown  in  Figure  7,  left;  some  of  these  robots  also  allow  to  blend  prototypical 

expressions to form more complex and “chimeric” ones, such as Feelix (Cañamero 

and  Fredslund  2001),  depicted  in  Figure  7,  center.  The  fact  that  stereotyped 

expressions are easily readable makes these robots suitable for simple interactions in 

which it is important to avoid putting strong cognitive demands on the human user, 

such as when interacting with children or people with cognitive disabilities, and when 

the user must pay attention in priority to some other task and the face is used as an 

expressive “interface.” Other robots designed to engage in more complex interactions 

and to produce more subtle expressions follow a dimensional approach. This if for 

example the case of Kismet (Breazeal 2002), a robotic head with many degrees of 

freedom, many expressive features, and carefully timed movement (Figure 7, right), 

designed as a testbed to investigate infant-caretaker interactions. The expressions of 

this robot are not always easily interpretable; however, it  can produce more subtle 

expressions that engage humans to interact with it as they would with an infant.



      

Figure 7. Expressive robots. Left: Sparky. Center: Feelix. Right: Kismet.

Level of complexity

The fact that the emotional expression of the robot has to be believable to humans 

does not imply that it must be realistic.  As a matter of fact, most expressive robots 

have caricaturized faces rather than detailed reproductions of human faces. Although 

some researchers struggle to achieve realistic human-like faces, there seems to be a 

good  reason  to  prefer  simplicity  unless  a  nearly  perfect  level  of  realism can  be 

attained. This idea is reflected in the “uncanny valley” hypothesis put forward by the 

Japanese  roboticist  Masahiro  Mori  and  summarized  in  (Reichard  1978):  The 

emotional reaction of humans to human appearance and movement in robots is not 

linear. It increases positively with similarity, but a chasm is found, when similarity is 

high enough to appear human but imperfections in shape or movement are perceived 

as  very  disturbing,  producing  a  negative  emotional  reaction.  A  strong  positive 

emotional  reaction  is  found  again  when  similarity  is  perfect.  According  to  Mori, 

movement seems to have more weight in this reaction than appearance. A cartoon-

like, very caricaturized face with rudimentary movement can thus be more effective 

than a very sophisticated robotic face, since the state of the art in robotics is still far 

from producing the required level of complexity.

“Shallow” or “deep” modeling?

Is  it  enough  to  model  the  external  features  of  emotional  expression  to  achieve 

believable  interactions  with  humans,  or  should  these  external  manifestation  be 

produced by an underlying emotional system? As we have seen in the case of the 

active vision head described in Section 4.1, simple but cleverly engineered sensory-

motor coupling can result in very believable emotional reactions even if the system 

had not been designed with that purpose in mind. Therefore, in the case of sporadic or 

short-term  interactions,  a  “shallow  modeling”  approach  can  be  enough  and  very 

effective. However, to achieve believable long-term interactions, the external behavior 

of the robot must be not only coherent, but also flexible and adapted to that of its 



partner—features that can only be achieved if external behavior results from a “deep” 

internal model.

5.3 Useful tools?

In Section 5.1, we have sketched some of the reasons that make expressive robots 

interesting  devices  for  interaction  with  humans  from  a  practical  and  engineering 

perspective.  However,  expressive  robots  can  also  be  useful  tools  to  facilitate  and 

support  the  investigation of  research  questions regarding human emotions.  In  this 

respect, we have developed a very simple expressive head (Figure 8) in the context of 

an ongoing collaboration with psychologist  Philippe Brun of University of Rouen. 

This  head  is  being  used  as  a  tool  to  study  imitation  and  evocation  of  emotional 

expressions by typical and autistic children. Therefore, the features and expressions of 

the head need to be very simple—only five degrees of freedom, three in the mouth 

and two in the eyebrows, are used to display a small subset of emotional expressions. 

However, even a simple robot like this presents a number of features that make it an 

interesting tool for research, such as:

Figure 6: Our expressive head. Left: bare version. Right: covered with a mask.

• A few parameters can be modified to control movement, speed, timing, etc., in 

order to vary the dynamics of the expressions.

• A wide range of expressions, both typical and atypical, can be formed.

• The robot can display still or dynamic emotional expressions.

• It  can be used as a tool to display expressions only, or in interaction with the 

human.

• The  degree  of  similarity  with  a  human  face  can  be  easily  varied—always 

remaining  a  caricature  of  it—by adding  other  features,  in  order  to  assess  the 

degree of complexity needed for a “humanoid” to be perceived as “human.”

• A physical device is usually perceived as more appealing and life-like than a video 

image. However, it is not clear whether this is always the case or whether this 

always a positive feature—for example, this might be questionable with autistic 

people.

Such a simple robot allows to investigate a number of questions that would be difficult 

to study otherwise. A more interesting tool, which would also be a model of theories 



on emotion understanding, should be capable of reacting to human expressions and 

behavior,  therefore closing the interaction loop—an issue in our agenda for future 

research. 

6 Concluding Remarks

In this chapter, we have reviewed state-of-the art research in behavior-based robotics 

relevant to the investigation of the contributions of emotions to adaptive behavior and 

social interaction, and therefore to the use of robots as tools and models for emotion 

research. The emphasis that the behavior-based paradigm puts on complete creatures 

in closed-loop bodily interaction with their environment has important implications 

for the design of artificial emotional systems (Cañamero 2001a), particularly:

• To be meaningful to the robot, emotions must be an integral part of its architecture 

rather than an ad hoc appendage. This means that emotions must be grounded in 

an internal value system that is meaningful (adaptive) for the robot’s physical and 

social niche. It is this internal value system that is at the heart of the creature’s 

autonomy and produces the valenced reactions that characterize emotions. 

• Emotion  grounding  requires  that  our  model  clearly  establish  a  link  between 

emotions, motivation, behavior (including expressive behavior), perception, and 

various aspects of “cognition,” so that these elements can affect and feed back into 

one another.

• This link must be rooted in the body of the agent, since it is through the body that 

agents interact with the physical and social world.

This  approach  does  not  imply,  however,  that  only  by  including  explicit  “emotion 

machinery” in the architecture of robots can these produce emotion-oriented behavior 

or provide useful hints for the investigation of emotional phenomena. On the contrary, 

we have seen through several examples in active vision, reinforcement learning and 

imitation, that the use of simple sensory-motor couplings induces emergent behaviors 

or side effects that create emotional reactions in the human observer. These systems 

can  also  provide  valuable  feedback  for  modeling  purposes,  since  the  emergent 

properties introduced by the effects of dynamical interaction can simplify the design 

process and the emotion model itself. Nevertheless, to achieve long-term and flexible 

adaptation to the environment and to the dynamics of social interactions, emotional 

systems appear as a fundamental  constituent of the control architectures of robots 

confronted  to  the  same  types  of  situations  for  which  emotions  provide  useful 

adaptation  mechanisms  in  humans  and  other  animals.  Building  such  artificial 

emotional systems is an example of synthetic psychology in which robots constitute 

efficient tools to simulate and investigate the dynamic effects of cognitive models of 

the brain and in particular of emotional phenomena.
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