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Across a wide range of animal taxa, prosodic modulation of the voice can express
emotional information and is used to coordinate vocal interactions between multiple
individuals. Within a comparative approach to animal communication systems, I
hypothesize that the ability for emotional and interactional prosody (EIP) paved the way
for the evolution of linguistic prosody – and perhaps also of music, continuing to play
a vital role in the acquisition of language. In support of this hypothesis, I review three
research fields: (i) empirical studies on the adaptive value of EIP in non-human primates,
mammals, songbirds, anurans, and insects; (ii) the beneficial effects of EIP in scaffolding
language learning and social development in human infants; (iii) the cognitive relationship
between linguistic prosody and the ability for music, which has often been identified as
the evolutionary precursor of language.

Keywords: language evolution, musical protolanguage, prosody, interaction, turn-taking, arousal, infant-directed
speech, entrainment

PROSODY IN HUMAN COMMUNICATION

Whenever listeners comprehend spoken speech, they are processing sound patterns. Traditionally,
studies on language processing assume a two-level hierarchy of sound patterns, a property
called “duality of pattern” or “double articulation” (Hockett, 1960; Martinet, 1980). The first
dimension is the concatenation of meaningless phonemes into larger discrete units, namely
morphemes, in accordance to the phonological rules of the given language. At the next level,
these phonological structures are formed into words and morphemes with semantic content and
arranged within hierarchical structures (Hauser et al., 2002), according to morpho-syntactical
rules. Surprisingly, this line of research has often overlooked prosody, the “musical” aspect
of the speech signal, i.e., the so-called “suprasegmental” dimension of the speech stream,
which includes timing, frequency spectrum, and amplitude (Lehiste, 1970). Taken together,
these values outline the overall prosodic contour of words and/or sentences. According to the
source–filter theory of voice production (Fant, 1960; Titze, 1994), vocalizations in humans -
and in mammals more generally- are generated by airflow interruption through vibration of
the vocal folds in the larynx (‘source’). The signal produced at the source is subsequently
filtered in the vocal tract (‘filter’). The source determines the fundamental frequency of the
call (F0), and the filter shapes the source signal, producing a concentration of acoustic
energy around particular frequencies in the speech wave, i.e., the formants. Thus, it is
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important to highlight that in producing vocal utterances,
speakers across cultures and languages modulate both segmental,
and prosodic information in the signal. In humans, prosodic
modulation of the voice affects language processing at multiple
levels: linguistic (lexical and morpho-syntactic), emotional, and
interactional.

Linguistic Prosody
Prosody has a key role in word recognition, syntactic structure
processing, and discourse structure comprehension (Cutler et al.,
1997; Endress and Hauser, 2010; Wagner and Watson, 2010;
Shukla et al., 2011). Prosodic cues such as lexical stress patterns
specific to each natural language are exploited to segment words
within speech streams (Mehler et al., 1988; Cutler, 1994; Jusczyk
and Aslin, 1995; Jusczyk, 1999; Johnson and Jusczyk, 2001;
Curtin et al., 2005). For instance, many studies of English have
indicated that segmental duration tends to be longest in word-
initial position and shorter in word-final position (Oller, 1973).
Newborns use stress patterns to classify utterances into broad
language classes defined according to global rhythmic properties
(Nazzi et al., 1998). The effect of prosody in word processing is
distinctive in tonal languages, where F0 variations on the same
segment results in totally different meanings (Cutler and Chen,
1997; Lee, 2000). For instance, the Cantonese consonant-vowel
sequence [si] can mean “poem,” “history,” or “time,” based on the
specific tone in which it is uttered.

Prosodic variations such as phrase-initial strengthening
through pitch rise, phrase-final lengthening, or pitch
discontinuity at the boundaries between different phrases mark
morpho-syntactic connections within sentences (Soderstrom
et al., 2003; Johnson, 2008; Männel et al., 2013). These prosodic
variations mark phrases within sentences, favoring syntax
acquisition in infants (Steedman, 1996; Christophe et al., 2008)
and guiding hierarchical or embedded structure comprehension
in continuous speech in adults (Müller et al., 2010; Langus et al.,
2012; Ravignani et al., 2014b; Honbolygo et al., 2016). Moreover,
these prosodic cues enable the resolution of global ambiguity in
sentences like “flying airplanes can be dangerous” – which can
mean that the act of flying airplanes can be dangerous or that the
objects flying airplanes can be dangerous – or “I read about the
repayment with interest,” where “with interest” can be directly
referred to the act of reading or to the repayment. Furthermore,
sentences might be characterized by local ambiguity, i.e.,
ambiguity of specific words, which can be resolved by semantic
integration with the following information within the same
sentence, as in “John believes Mary implicitly” or “John believes
Mary to be a professor.” Here, the relationship between “believes”
and “Mary” depends on what follows. In the case of both global
and local ambiguity, prosodic cues to the syntactical structure
of the sentence aid the understanding of the utterance meaning
as intended by the speaker (Cutler et al., 1997; Snedeker and
Trueswell, 2003; Nakamura et al., 2012).

Prosodic features of the signal are used to mark questions
(Hedberg and Sosa, 2002; Kitagawa, 2005; Rialland, 2007), and in
some languages, prosody serves as a marker of salient (Bolinger,
1972) or new (Fisher and Tokura, 1995) information. Consider
for instance, “MARY gave the book to John” vs. “Mary gave the

book to JOHN,” in which the accented word is the one the speaker
wants to drive the listener’s attention to in the conversational
context.

Emotional Prosody In Humans
The prosodic modulation of the utterance can signal the
emotional state of the speaker, independently from her/his
intention to express an emotion. Research suggests that specific
patterns of voice modulation can be considered a “biological
code” for both linguistic and paralinguistic communication
(Gussenhoven, 2002). Indeed, physiological changes might cause
tension and action of muscles used for phonation, respiration,
and speech articulation (Lieberman, 1967; Scherer, 2003). For
instance, physiological variations in an emotionally aroused
speaker might cause an increase of the subglottal pressure (i.e.,
the pressure generated by the lungs beneath the larynx), which
might affect voice amplitude and frequency, thus expressing
his/her emotional state. Crucially, in cases of emotional
communication, prosody can prime or guide the perception of
the semantic meaning (Ishii et al., 2003; Schirmer and Kotz,
2003; Pell, 2005; Pell et al., 2011; Newen et al., 2015; Filippi
et al., 2016). Moreover, the expression of emotions through
prosodic modulation of the voice, in combination with other
communication channels, is crucial for affective and attentional
regulation in social interactions both in adults (Sander et al.,
2005; Schore and Schore, 2008) and infants (see section “EIP in
Language Acquisition” below).

Prosody for Interactional Coordination In
Humans
A crucial aspect of spoken language is its interactional nature.
In conversations, speakers typically use prosodic cues for
interactional coordination, i.e., implicit turn-taking rules that aid
the perception of who is to speak next and when, predicting
the content and timing of the incoming turn (Roberts et al.,
2015). The typical use of a turn-taking system might explain
why language is organized into short phrases with an overall
prosodic envelope (Levinson, 2016). Within spoken interactions,
prosodic features such as low pitch or final word lengthening
are used for turn-taking coordination, determining the rhythm
of the conversations among speakers (Ward and Tsukahara,
2000; Ten Bosch et al., 2005; Levinson, 2016). These prosodic
features in the signal are used to recognize opportunities for turn
transition and appropriate timing to avoid gaps and overlaps
between speakers (Sacks et al., 1974; Stephens and Beattie, 1986).
Wilson and Wilson (2005) suggested that both the listener and
the speaker engage in an oscillator-based cycle of readiness to
initiate a syllable, which is at a minimum in the middle of
syllable production, at the point of greatest syllable sonority, and
at a maximum when the prosodic values of the syllable lessen,
typically in the final part of the syllable. The listener is entrained
by the speaker’s rate of syllable production, but her/his cycle is
counterphased to the speaker’s cycle. Therefore, the listener will
be able to take turn in speaking if s/he detects that the speaker is
not initiating a new cycle of syllable production. In accordance to
this model, Stivers et al. (2009) provided evidence for biologically
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rooted timings in replying to speakers on the base of prosodic
features in the signal, a finding that is indicative of a strong
universal basis for turn-taking behavior. Specifically, this study
provides evidence for a similar distribution of response offsets
(unimodal peak of response within 200 ms of the end of the
utterance) across conversations in ten languages drawn from
traditional indigenous communities to major world languages.
The authors observed a general avoidance of overlapping talk and
minimal silence between conversational turns across all tested
languages.

A Comparative Approach to Emotional
and Interactional Prosody
Given the centrality of prosody in spoken communication, it
is worth addressing the adaptive role of prosody on both an
evolutionary and a developmental level. Here, I hypothesize
that prosodic modulation of the voice marking emotional
communication and interactional coordination (hereafter EIP,
emotional and interactional prosody), as we observe it nowadays
across multiple animal taxa, evolved into the ability to modulate
prosody for language processing – and might have played an
important role in the emergence of music (Figure 1) (Phillips-
Silver et al., 2010; Bryant, 2013; Zimmermann et al., 2013). In
support of this hypothesis, within a comparative approach, I
will review studies on the adaptive use of prosodic modulation
of the voice for emotional communication and interactional
coordination in animals.

Importantly, following Morton (1977) and Owren and Rendall
(1997), I aim to address the behavioral and functional effects
of emotional vocalizations in animals, as conveyed by their
prosodic characteristics and by the interactional dynamics of
communication act. Therefore, I will adopt the very basic,
but fundamental assumption that the prosodic structure of
calls (which reflects the physiological/emotional state of the
signaler) and call-answer dynamics induce nervous-system and
physiological responses in the receiver. For instance, a call

FIGURE 1 | Visual representation of the research hypothesis. The ability
to process acoustic prosody in emotional communication and in interactional
coordination is widespread across animal taxa. Here, I hypothesize that this
ability evolved into the ability to process linguistic prosody and music in
humans.

might induce an increased level of emotional arousal or of
attention. These physiological responses might trigger specific
types of behaviors in the listeners, for instance escape or
physical approaching (Nesse, 1990; Frijda, 2016). Ultimately,
these behaviors are the immediate functional effect of the
communication act (Owren and Rendall, 2001; Rendall et al.,
2009).

A crucial dimension, constitutive of a multiple communicative
behaviors across animal species, is interactional coordination.
Examples of interactional coordination are widespread across
animal classes, including unrelated taxa. This suggests that this
ability has evolved independently in a number of species under
similar selective pressures (Ravignani, 2014). There are three
main types of interactional coordination in animal acoustic
communication: choruses, antiphonal calling, and duets (Yoshida
and Okanoya, 2005). In choruses, males simultaneously emit a
signal for sexual advertisement or as an anti-predator defensive
behavior. Antiphonal calling occurs when more than two
members of a group exchange calls within an interactive context.
Duets occur when members of a pair (e.g., sexual mates,
caregiver-juvenile) exchange calls within a precise time window.
Importantly, the modulation of the prosodic features of the vocal
signals is key to coordinating these communicative behaviors.

Based on Tinbergen (1963), in order to grasp an integrative
understanding of animal vocal communication, I will go
through four levels of description: mechanisms, functional effects
(Table 1), phylogenetic history, and ontogenetic development.
Two strands of analysis are relevant in the context of comparative
investigation on the adaptive advantages of prosody in relation
to the origins of language: (a) research on the evolutionary
‘homologies,’ which provides information on the phylogenetic
traits that humans and other primates share with their common
ancestor; (b) investigations on “analogous” traits, aimed at
finding the evolutionary pressures that guided the emergence
of the same biological traits that evolved independently in
phylogenetically distant species (Gould and Eldredge, 1977;
Hauser et al., 2002). As to the ontogenetic level of explanation,
I will review empirical data on the beneficial effects of EIP for the
development of social and vocal learning skills in multiple animal
species.

Within this line of research, it is important to highlight that
extensive research has identified the evolutionary precursor of
language in a general ability to produce music (Brown, 2001;
Mithen, 2005; Patel, 2006; Fitch, 2010, 2012). There are at
least two orders of argumentation supporting the hypothesis
that aspects of musical processing were involved in human
language evolution: (a) research on the cognitive link between
music and verbal language processing; (b) comparative data
on animal communication systems, suggesting that this ability,
already in place in different primate as well as in many
non-primate species, might have evolved into an adaptive
ability in the first hominins. Based on the reviews of (a)
and (b), I propose to identify the emotional and interactional
functions of prosody as dimensions that are sufficient to
an account for the “musical” origins of language. This
conceptual operation will provide a parsimonious account for
the investigation of the origins of language as well as of
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language acquisition at a developmental level, keeping this
research close to both ethological and cognitive principles of
explanation.

MUSICAL ORIGINS OF LANGUAGE:
REVISITING DARWIN’S HYPOTHESIS

A close look to the empirical studies on animal communication
reveals how EIP is widespread across a broad range of animal
taxa. A comparative investigation will provide us with relevant
information on the adaptive valence, and therefore on the
evolutionary role, of such crucial dimensions in the domain of
animal communication. Darwin provides an important insight
on this topic:

Primeval man, or rather some early progenitor of man, probably
first used his voice in producing true musical cadences, that is in
singing, as do some of the gibbon-apes at the present day; and we
may conclude, from a wide-spread analogy, that this power would
have been especially exerted during the courtship between sexes, –
would have expressed various emotions, such as love, jealousy,
triumph, – and would have served as a challenge to rivals.

(Darwin, 1871, pp. 56–57; my emphasis).

Darwin’s hypothesis that early humans were singing, as
gibbons do today, has called for a comparative investigation
into the ability to make “music” as a precursor of language
(Rohrmeier et al., 2015). In order to gain a clearer understanding
of the adaptive value of musical vocalizations in animals, and
of its adaptive role for the emergence of human language, we
need to examine: (i) to what extent it is correct to attribute
musical abilities to non-human animals, and (ii) whether the
ability to process EIP, rather then a general ability for music in
non-human animals, can be considered an adaptive prerequisite
necessary for the emergence of human language. I believe that
making the distinction between a general aptitude for music and
the use of EIP, might improve the investigation of the origins
of language. This line of investigation will shed light on the
adaptive role of EIP for the emergence of language, and perhaps
of the ability for music itself in both human and non-human
animals.

The question, then, is: Are gibbons, and non-human animals
in general, able to make music in a way that is comparable to
humans? Recent research has shown that birds, monkeys, and
humans share the predisposition to distinguish consonant vs.
dissonant music (Hulse et al., 1995; Izumi, 2000; Sugimoto et al.,
2009). Moreover, studies suggest that rhesus macaques, Macaca
mulatta (Wright et al., 2000), rats, Rattus norvegicus (Blackwell
and Schlosberg, 1943), and dolphins, Tursiops truncatus (Ralston
and Herman, 1995) are able to recognize two melodies as
the “same” melody even when transposed one octave up or
down. Songbirds, which in contrast miss this ability, have been
shown to rely on absolute frequency over relative pitch within
a scale (Cynx, 1995; Hoeschele et al., 2013). Furthermore,
as Patel (2010) suggests, birdsong has a rhythm that, despite
violating human metric conventions, is nonetheless stable
and internally consistent. Recent research has also established
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that some parrot species (Cacatua galerita and Melopsittacus
undulatus) and a California sea lion (Zalophus californianus)
are able to extract the pulse from musical rhythm, moving
along with it (Fitch, 2013 for a review). Hence, we can
accept that a biological inclination toward the ability for music
is also present, to a certain extent, in non-human animals
(Doolittle and Gingras, 2015; Fitch, 2015; Hoeschele et al.,
2015).

However, non-human animals’ ability to modulate sounds
in courtship or rivalry contexts, which Darwin identified as a
precursor of language, might be described, more parsimoniously,
as an instance of EIP. Here, I suggest that the ability to modulate
prosody in emotional communication and within turn-taking
contexts (rather than the ability for music), as enough to describe
the emergence of vocal utterances in the early Homo. Darwin’s
hypothesis may thus be updated in light of contemporary
research and read in the following terms: the first hominins
communicated exploiting prosody for emotional expression and
communicative coordination. As I will clarify in the following
sections, extensive research indicates that in different animal
species the ability to vary prosodic features in the voice, in
conjunction with the ability to coordinate sound production with
others – expressing emotions, and possibly triggering emotional
reactions – has an adaptive value. This use of prosody has
positive effects in relation to sexual partner attraction, territory
defense, group cohesion, parental care (Searcy and Andersson,
1986). Thus, the investigation of prosodic modulation of the voice
provides an excellent, and surprisingly overlooked paradigm
for a comparative approach addressing the adaptive features
grounding the emergence of language. In the next sections, I
will review studies reporting on EIP in non-human primates,
non-primate mammals, birds, insects, and anurans.

EIP in Non-human Primates
The ability to modulate the prosodic features of a signal can
be considered a homologous trait, i.e., a trait that humans and
other primates share with their common ancestor. Experiments
conducted both in the field and in captivity suggest that several
species of prosimians and anthropoids are able to modulate
spectro-temporal features of a call (frequency, tempo, and
amplitude) as noise-induced vocal modifications (Hotchkin and
Parks, 2013 for an extensive review). Research on chimpanzees’
(Pan troglodytes) panthoots, a type of long-distance calls emitted
while traveling or in the presence of abundant food sources,
reveals individual and contextual modulation of the prosodic
structure of this call (Notman and Rendall, 2005). De la Torre
and Snowdon (2002) found that also pygmy marmosets, Cebuella
pygmaea, adjust the frequency and temporal structure of their
contact calls in a way appropriate to the frequency distortion
effects of the habitats where they are located in order to maintain
the acoustic structure of the long distance vocalization.

Studies provide evidence on arousal-related modulation of the
call structure in non-human primates (Morton, 1977; Briefer,
2012). Specifically, it has been shown that high call rate (tempo),
number of calls, and elevated fundamental frequency range
correlate positively with high levels of arousal in chimpanzees,
Pan troglodytes (Riede et al., 2007), squirrel monkeys, Saimiri

sciureus (Fichtel et al., 2001), bonnet macaques, Macaca radiata
(Coss et al., 2007), vervet monkeys, Macaca mulatta (Seyfarth
et al., 1980), rhesus monkeys, Chlorocebus pygerythrus (Hauser
and Marler, 1993; Jovanovic and Gouzoules, 2001; Hall, 2009),
baboons, Papio papio (Rendall et al., 1999; Seyfarth and Cheney,
2003), mouse lemurs, Microcebus spp. (Zimmermann, 2010), tree
shrews, Tupaia belangeri (Schehka et al., 2007). It is important
to stress that the modulation of these acoustic features of the
signal derives from arousal-based physiological changes, thus
these modulations are not under the voluntary control of the
signaler. For instance, emotionally induced changes in muscular
tone and coordination can affect the tension in the vocal
folds, and consequently the fundamental frequency range of the
vocalization and the voice quality of the caller (Rendall, 2003).
Crucially, although the transmission of the emotional content
of the signal is not intentional, the receivers are nonetheless
sensitive to it, and are able to perceive, for instance, the level of
urgency of the situation in which the call is produced, behaving
in the most adaptive way (Zuberbühler et al., 1999; Seyfarth
and Cheney, 2003). Further research is required to investigate
whether different levels of arousal are encoded in (or decoded
from) the structure of the interactive calls between conspecifics
(Filippi et al., submitted), and whether the dynamics of alternate
calling affects the emotional or attentive state of the signalers
themselves.

Evidence suggests that non-human primates can coordinate
the production of a signal with the vocal behavior of a
mate or of other individuals of a group, modulating the
acoustic features of vocalizations for communicative purposes.
For instance, the ability for antiphonal calling, i.e., to flexibly
respond to conspecifics in order to maintain contact between
group members, has been reported in recent work conducted
across prosimians, monkeys, and lesser apes: chimpanzees, Pan
troglodytes (Fedurek et al., 2013), barbary macaques, Macaca
sylvanus (Hammerschmidt et al., 1994), Campbell’s monkeys,
Cercopithecus campbelli (Lemasson et al., 2010), Diana monkeys,
Cercopithecus diana (Candiotti et al., 2012), pygmy marmosets,
Cebuella pygmaea (Snowdon and Cleveland, 1984), common
marmosets, Callithrix jacchus (Miller et al., 2009), cotton-top
tamarins, Saguinus oedipus (Ghazanfar et al., 2002), squirrel
monkeys, Saimiri sciureus (Masataka and Biben, 1987), vervet
monkeys, Macaca mulatta and Chlorocebus pygerythrus (Hauser,
1992), geladas, Theropithecus gelada (Richman, 2000) and
Japanese macaques, Macaca fuscata (Sugiura, 1993; Lemasson
et al., 2013). These so-called antiphonal vocalizations are guided
by a sort of “turn taking” conversational rule system employed
within an interactive and reciprocal dynamic between the calling
individuals. Versace et al. (2008) found that cotton top tamarins,
Saguinus oedipus can detect and wait for silent windows to
vocalize. Call alternation in monkeys promotes social bonding
and keeps the members of a group in vocal contact when visual
access is precluded.

Turn-taking duet-like activities have been reported in
caregiver-juvenile pairs in gibbons (Koda et al., 2013) and
marmosets (Chow et al., 2015). In both species, caregivers
interact with their juveniles, engaging in time-coordinated
vocal feedback. This behavior scaffolds the development of
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turn-taking and social competences in the juvenile marmosets,
Callithrix jacchus (Chow et al., 2015), and seems to enhance
vocal development in juvenile gibbons, Hylobates agilis agilis
(Koda et al., 2013). Vocal duets in male-female pairs have been
reported in: gibbons, Hylobates spp (Geissmann, 2000a), lemurs,
Lepilemur edwardsi; (Méndez-Cárdenas and Zimmermann,
2009), common marmosets, Callithrix jacchus (Takahashi
et al., 2013), the coppery titi, Callicebus cupreus (Müller and
Anzenberger, 2002), squirrel monkeys, Saimiri spp. (Symmes
and Biben, 1988), Campbell’s monkeys, Cercopithecus campbelli
(Lemasson et al., 2011), siamangs Hylobates syndactylus
(Haimoff, 1981; Geissmann and Orgeldinger, 2000). Duets
constitute a remarkable instance of interactional prosody,
where members of a pair coordinate their sex-specific calls,
effectively composing a single ‘song’ with two voices. Duets are
interactive processes that involve time- and pattern-specific
coordination among vocalizations flexibly exchanged between
two individuals. Such a level of vocal coordination requires
extensive practice over a long period of time. It seems that this
investment strengthens the bond between the partners, since
the quantity of duets performed is positively correlated with the
pair bonding quality (measured by with grooming practice and
physical proximity). In turn, the strength of the pair bonding
also has positive adaptive effects on the management of parental
care, territory defense, or foraging activities (Geissmann, 2000b;
Geissmann and Orgeldinger, 2000; Müller and Anzenberger,
2002; Méndez-Cárdenas and Zimmermann, 2009).

From this set of studies we can infer that non-human primates
possess the ability to process EIP, which is linked to group
cohesion, territory defense, pair bonding, parental care, and
social development. In conclusion, comparative review of studies
on EIP in primates supports the hypothesis that these abilities
have a functional role, and can thus be considered adaptive
“homologous” traits in non-human primates.

EIP in Non-primate Mammals
Comparative research on non-primate mammals addressed the
ability to modulate prosodic features of the voice, which express
different levels of emotional arousal, and are used in interactive
communications. These studies, focused on traits that are
analogous in humans and non-primate mammals, are crucial
within a comparative frame of research, as they may shed light
on the selective pressures favoring the emergence of the human
ability to process prosody as cue to language comprehension and
maybe also of the human inclination for music.

Evidence has been reported on the ability to modulate the
prosodic features of the vocal signals in several non-primate
mammals: bottlenose dolphins, Tursiops truncatus (Buckstaff,
2004), humpback whales, Megaptera novaeangliae (Doyle et al.,
2008), killer whales, Orcinus orca (Holt et al., 2009, 2011),
right whales, Eubalaena glacialis (Parks et al., 2007, 2011),
free-tailed bat, Tadarida brasiliensis (Tressler and Smotherman,
2009), mouse-tailed bat, Rhinopoma microphillum (Schmidt and
Joermann, 1986), Californian ground squirrel, Spermophilus
beecheyi (Rabin et al., 2003), and domestic cats, Felis catus
(Nonaka et al., 1997). Only little attention has been devoted to
the emotional content of calls in the species mentioned above.

However, recent research conducted on giant pandas, Ailuropoda
melanoleuca (Stoeger et al., 2012) and on African elephants,
Loxodonta africana (Soltis et al., 2005b; Stoeger et al., 2011)
provides evidence that in mammals high levels of arousal can
be expressed through specific acoustic features in the signal,
namely: noisy and aperiodic segments, increased call duration
and elevated fundamental frequency. The effective expression
and perception of emotional arousal may allow individuals
to respond appropriately, based on the degree of urgency
or distress encoded in the call. Thus, the ability to process
these calls correctly may be crucial for survival under natural
conditions.

In addition, studies indicate that, in the case of conflicts
or separation from the group and when visual cues are not
available, the following species of mammals produce antiphonal
calls to signal their identity or spatial location: African
elephants, Loxodonta africana (Soltis et al., 2005a), Atlantic
spotted dolphins, Stenella frontalis (Dudzinski, 1998), bottlenose
dolphins, Tursiops truncatus (Janik and Slater, 1997; Kremers
et al., 2014), white-winged vampire bats, Diaemus youngi (Carter
et al., 2008, 2009; Vernes, 2016), horseshoe bats, Rhinolophus
ferrumequinum nippon (Matsumura, 1981), killer whales, Orcinus
orca (Miller et al., 2004), sperm whales, Physeter macrocephalus
(Schulz et al., 2008), and naked mole-rats, Heterocephalus glaber
(Yosida et al., 2007). Individuals in all these species alternate calls,
following specific patterns of response timing to maintain group
cohesion and bonding relationships. Furthermore, vocal duets
have been reported in Cape-mole rats, Georychus capensis (Narins
et al., 1992). Members of this species alternate seismic signals
(generated by drumming their hind legs on the burrow floor) to
attract sexual mates.

In sum, the studies reviewed in this section indicate that the
ability to process EIP is present also in non-primate mammals,
where it might have evolved as adaptive “analogous traits,” i.e.,
under the same selective pressures (group cohesion, territory
defense, pair bonding, parental care) that triggered its emergence
in primates.

EIP in Birds
The study of mechanisms and processes underlying EIP in birds
has revealed multiple analogous traits, i.e., strong evolutionary
convergences, with vocal communication in humans. By
shedding light on the selective pressures grounding the
emergence of EIP in species that are phylogenetically distant, as
it is the case for humans and birds, this line of research may
enhance our understanding of the evolutionary path of the ability
to process linguistic prosody (and perhaps also music) in humans.

Differently to mammalians, in birds, sounds are produced by
airflow interruption through vibration of the labia in the syrinx
(Gaunt and Nowicki, 1998). Modulation in bird vocalization
is thought to originate predominantly from the sound source
(Greenewalt, 1968), while the resonance filter shapes the complex
time-frequency patterns of the source (Nowicki, 1987; Hoese
et al., 2000; Beckers et al., 2003). For instance, songbirds are
able to change the shape of their vocal tract, tuning it to the
fundamental frequency of their song (Riede et al., 2006; Amador
et al., 2008).
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Importantly, variations in the prosodic features of the calls
may be indicative of the emotional state of the signaler. The
expression of arousal and/or emotional information through the
modulation of prosody in birds has been shown in chickens,
Gallus gallus (Marler and Evans, 1996), ring doves, Streptopelia
risoria (Cheng and Durand, 2004), Northern Bald Ibis, Geronticus
eremita (Szipl et al., 2014), black-capped chickadees, Poecile
atricapillus (Templeton et al., 2005; Avey et al., 2011). The
ability to process different levels of emotional arousal in bird
vocalizations serve numerous functions including signaling type
and degree of potential threats, dominance in agonistic contexts,
or the presence of high quality food (Ficken and Witkin, 1977;
Evans et al., 1993; Griffin, 2004; Templeton et al., 2005).

As to the interactional dimension of prosody, evidence for
choruses has been reported in: Common mynas, Acridotheres
tristis (Counsilman, 1974), Australian magpies, Gymnorhina
tibicen (Brown and Farabaugh, 1991), and in black-capped
chickadees, Poecile atricapillus (Foote et al., 2008). This activity
has been shown to favor social bonding, synchronization of
activities, and group or territory defense.

Research has described the capacity to modulate and
coordinate vocal productions in antiphonal calling between
individuals of different groups in European starlings, Sturnus
vulgaris (Hausberger et al., 2008) and in nightingales, Luscinia
megarhynchos (Naguib and Mennill, 2010). Crucially, Henry
et al. (2015) found that prosodic features of vocal interactions
in starlings are influenced by the immediate social context,
the individual history, and the emotional state of the signaler.
Camacho-Schlenker et al. (2011) suggest that in winter
wrens, Troglodytes troglodytes, call exchanges among neighbors
might have different aggressive/submissive values. Thus, these
antiphonal calls can escalate in territorial contests, influencing
females’ mate choice.

Multiple studies report duets in songbirds. Indeed, duets
among sexual partners, which coordinated their phrases by
alternation or overlap, are widespread among songbirds. As in
non-human primates, they help to maintain pair bonds and
are used to defend territories or resources. Duets have been
reported in: fred-backed fairy-wrens, Malurus melanocephalus
(Baldassarre et al., 2016; reviews: Langmore, 1998; Hall, 2009;
Dahlin and Benedict, 2014). Notably, the capacity to coordinate
the production of sounds with the vocalizations of a partner
requires control over the modulation of phonation in frequency,
tempo, and amplitude. Dilger (1953) suggests that in crimson-
breasted barbets, Psilopogon haemacephalus, the coordination
of two sexual mates in duetting could affect the production
of reproductive hormones, thereby ensuring synchrony in the
reproductive status of the breeding partners. Thus, the ability to
coordinate or synchronize vocal sounds has an adaptive value
that may have guided the evolution of song complexity and
plasticity in songbirds (Kroodsma and Byers, 1991). Indeed, the
ability to produce complex sequences of sounds is indicative
of an individual’s capacity to memorize complex sequences and
how fine a caller’s motor and neural control is over the sounds
of the song (Searcy and Andersson, 1986; Langmore, 1998).
This strong index of mental and physical skills is shown to be
important in a mate choice context in zebra finches, Taeniopygia

guttata (Neubauer, 1999) and Bengalese finches, Lonchura
striata (Okanoya, 2004). Similarly, recent research conducted on
humans suggest that women have sexual preferences during peak
conception times for men that are able to create more complex
sequences of sounds (Charlton et al., 2012; Charlton, 2014).

Importantly, both in humans and songbirds vocal learning
has an interactive dimension. Interestingly, in both groups, the
ability to alternate and coordinate vocalizations with conspecifics
is acquired by interactive tutoring with adult conspecifics (Poirier
et al., 2004; Feher et al., 2009; see section “EIP in Language
Acquisition” below). Goldstein et al. (2003) argue that such
convergence reveals that the social dimension is an important
adaptive pressure that favored the acquisition of complex
vocalizations in humans and songbirds (Syal and Finlay, 2011).

Taken together, studies reporting on EIP in songbirds support
the hypothesis that the ability to modulate prosodic features
of the calls, marking emotional expression and interactional
coordination, can be identified as an analogous and adaptive
trait that humans and songbirds share. Thus, based on
these data, we can infer that the abilities involved in EIP
might have set the ground for the emergence of language in
humans.

EIP in Anurans
The adaptive and functional value of EIP emerges quite clearly
also considering research on a variety of anurans’ species, which
are notably phylogenetically very distant to the Homo line. As
in humans, and generally, similarly to mammals, the source
of vocal sounds in anurans is airflow interruption through
vibration of the vocal folds in the larynx (Dudley and Rand,
1991; Prestwich, 1994; Fitch and Hauser, 1995). Calls emitted
in different contexts, such as sexual advertisement and male-
male aggression, show clear spectral, and acoustic differences
(Pettitt et al., 2012; Reichert, 2013). Although it has never
been tested empirically, it is plausible that these different call
features reflect differences in the level of emotional arousal in the
signaler.

In most species of anurans investigated so far, males
acoustically compete for females under conditions of high
background noise produced by conspecifics. As a consequence,
males have developed calling strategies for improving their
conspicuousness, i.e., the ability to fine-tune the timing of their
calls according to the prosodic and spectral characteristics of the
acoustic context (Grafe, 1999).

Anurans aggregate in choruses. The ability for simultaneous
acoustic signaling in choruses might have evolved as an anti-
predator behavior – specifically, to confuse the predators’
auditory localization abilities (Tuttle and Ryan, 1982) and under
sexual selection pressures, as females prefer collective calls to
individual male calls. In fact, besides being heard as a group,
males have to produce a signal that could stand out from the
collective sound in order to attract the female. In order to
be heard as a “leader,” advertising individual qualities (Fitch
and Hauser, 2003), each signaler has to emit a signal faster
than his neighbor. This “time pressure” eventually results in
a very tight overlap or synchronization of signals between
calling individuals. Females in most species of anurans prefer
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the calls of “leaders,” individuals that emit more prominent
calls (Klump and Gerhardt, 1992), flexibly adjusting their onsets
accordingly. Evidence suggests that females in the Afrotropical
species Kassina fusca prefer leading male calls when the degree
of call overlap with the other signallers is high (75 and 90%).
However, intriguingly, in this species, females prefer follower
male calls when the degree of call overlap is low (10 and
25%). Thus, follower males in K. fusca actively adjust their
overlap timing in accordance to their vocalizing neighbors,
in order to attract females (Grafe, 1999). Ryan et al. (1981)
found that in the neotropical frog Physalaemus pustulosus,
singing in a chorus is adaptive as it decreases the risk of being
attacked by a predator and at the same time, increases mating
opportunities.

Antiphonal calling in anurans has never been reported. In
contrast, duets are described in: the Neotropical Caphiopus
bombifrons and Pternohyla fodiens (Bogert, 1960), the common
Mexican treefrogs, Smilisca baudinii and in the genuses
Eleutherodactylus and Phyllobates (Duellman, 1967). Tobias et al.
(1998) reported remarkable duetting behaviors in the South
African clawed frog, Xenopus laevis. Females in this species
have a very short sexual receptivity time window, in which they
have to accurately locate a potential sexual mate. This is not
an easy task, considering the high population density and the
low visibility in their natural habitat. These constraints may
have led to fertility advertisement call by females (rapping)
when oviposition is imminent. Tobias et al. (1998) found that
females swim to an advertising male and produce the rapping
call, which stimulates male approach and elicits an answer call.
Thus, the two sexes respond to each other’s calls (which partially
overlap), a behavior that results in a rapping–answer interaction.
Interestingly, Bosch and Márquez (2001) found that in midwife
toads, Alytes obstetricans, males engage in duets in competitive
contexts. This research suggests that, when duetting, males adjust
the temporal structure of their calls, increasing calling rate. This
variations correlates with the caller’s body size and seems to affect
females’ mate choice.

EIP In Insects
Crucial implications for the understanding of EIP in humans may
derive from research on insects. Notably, this animal taxon is
phylogenetically quite distant to humans. Therefore, comparative
work on EIP in humans and insects is a perfect candidate to
highlight selective pressures underlying the ability to process the
prosodic modulation of sounds marking emotional expression
and interactional coordination.

It is worth remarking that the mechanisms underlying sound
production in insects are extremely different than the ones
possessed by the animal taxa reviewed so far. In fact, insects
produce advertising or aggressive sounds through stridulation,
i.e., vibration of a specific sound source generating by rubbing
two body structures against each other, for instance, the forewings
in crickets and katydids, or the legs across a sclerotized plectrum,
in grasshoppers (Prestwich, 1994; Bennet-Clark, 1999; Hartbauer
and Römer, 2016). In the Expression of the emotions in man and
animals, Darwin (1872) observed that although stridulation is
generally used to emit a sexual advertisement signal, bees may

vary the degree of stridulation to express different emotional
intensities. However, to my knowledge, the auditory expression
of emotional arousal in insects has received only little empirically
investigation to date (Brüggemeier et al., submitted; Rezával et al.,
2016). In contrast, much research on this class of animals has
addressed the ability for interactional coordination in sound
production.

As to the study of inter-individual coordination as an adaptive
analogous trait in humans and insects, it is important to
refer to a striking phenomenon in the visual domain: fireflies,
winged beetles in the family of Lampyridae, use their ability for
bioluminescence in courtship or mating contexts (Greenfield,
2005; Ravignani et al., 2014a). Several species of this family are
able to entrain in highly precise synchronized flashing, probably
to create a more prominent signal to potential mates from a
remote location (Buck and Buck, 1966).

Similarly to the case of bioluminescent signals in fireflies,
several species of insects have the ability to coordinate timing
patterns of their acoustic signals. Specifically, male individuals
tend to synchronize their signal within choruses. In ratter ants
(genus: Camponotus), the ability to entrain in synchronized signal
production has evolved as an anti-predator behavior (Merker
et al., 2009). However, in most species of studied insects, this
ability seems to have evolved under sexual selection pressures
(Alexander, 1975; Greenfield, 1994a,b; Yoshida and Okanoya,
2005; Ravignani et al., 2014a). Typically, only males generate
acoustic signals, and the mute females approach the singing
males. To produce a louder signal that has a better chance to be
heard by (and attract) females from a greater distance, advertising
males of the tropical katydid species Mecopoda elongata tend to
synchronize the production of acoustic sounds (Hartbauer and
Römer, 2016). Synchrony maximizes the peak signal amplitude of
group display, an emergent property known as the “beacon effect”
(Buck and Buck, 1966).

In the Neotropical katydid Neoconocephalus spiza, females
display a strong preference for males that produce a signal
after a slight lag, or alternatively, to coincide with, but slightly
lead, the other males (Greenfield and Roizen, 1993). As for
anurans, male insects have to produce prominent signals to
stand out from the group and attract a sexual mate. In the
M. elongata, in order to lead the chorus, thus being heard by
the female, each signaler has to emit a signal before another
individual, and at a higher amplitude (Hartbauer et al., 2014).
Thus, each male’s emission rate becomes increasingly faster,
resulting in synchronization of signals. This suggests that time-
coordinated (in this case, synchronized) collective signal is an
epiphenomenon created by competitive interactions between
males within sexual advertisement contexts (Greenfield and
Roizen, 1993). Sismondo (1990) has shown that in M. elongata,
the dynamic of sound production between leaders and followers
has oscillator properties, a finding that echoes data from research
on turn-taking dynamics in human conversations.

Antiphonal calling in insects has never been reported.
Nonetheless, in multiple orders of insects, individuals of opposite
sex engage in time-coordinated duets initiated by the male, with
the female replying within a time window that is often species-
specific (Zimmermann et al., 1989; Bailey, 2003). Males initiating
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a duet often insert a trigger pulse at the conclusion of their
call, and the females might use this as a cue to which they may
reply (Bailey and Field, 2000). Bailey (2003) hypothesized that,
in duetting species, females evolved the ability to reply to males
to counterbalance predation risk and energy consumption linked
to the production of complex and long sounds in males. The
author suggested that signal prominence decrease as a result of
a counter-selection pressure from male costs.

EIP IN LANGUAGE ACQUISITION

As detailed in the previous sections, much research reports on
the ability for EIP across a diverse range of animal taxa providing
data on both homologous and analogous traits involved in EIP,
thus on their adaptive and functional value. These data, combined
with evidence on the pervasive use of prosodic modulation of the
voice in linguistic communications in modern humans, support
the hypothesis that the ability to process EIP might have evolved
into the human ability to process linguistic prosody. This holds
true not only on a phylogenetic scale, but also for human language
development, i.e., on an ontogenetic scale.

When talking to infants, parents of different languages and
cultures typically use vocal patterns that are distinct from speech
directed at adults: this special kind of speech, commonly referred
to as infant-directed speech (hereafter IDS), is often characterized
by shorter utterances, longer pauses, higher pitch, exaggerated
intonational contours (Fernald and Simon, 1984; Fernald et al.,
1989) and expanded vowel space (Kuhl, 1997; de Boer, 2005). IDS
is a good example for the ontogenetic role of EIP in humans, with
striking effects both on children’s acquisition of language and
their development of social cognition. Recent research suggests
that caregivers across multiple cultures instinctively adjust their
speech prosodic features to their infants (Kitamura et al., 2001;
Burnham et al., 2002).

As Fernald (1992) observes, by intuitively moving to a pitch
range that an infant is more sensitive to (i.e., where the perceived
loudness of the signal is increased), mothers compensate for
the infants’ auditory limitations. Indeed, it has been shown that
infants’ threshold of auditory brainstem responses (ABR) are
higher by 3–25 dB than adult ABR thresholds (Sininger et al.,
1997). Given that neonates have greater auditory limitations than
adults (Schneider et al., 1979), the speech addressed to neonates
needs to be more intense in order to be effectively perceived.
A sound of 500 Hz has a higher frequency and will be perceived
by the human hearing system as louder than a sound at 150 Hz
with the same intensity. It follows that speech with a higher
frequency will be more salient to the infant. Therefore, frequency
changes seem to be particularly salient: infants tested in an
operant auditory preference procedure showed a strong listening
preference for the frequency contours of IDS, but not for other
associated patterns such as amplitude or duration (Fernald and
Kuhl, 1987; Cooper et al., 1997).

The prosodic features typical of IDS modulate the infants’
attention and emotional engagement (Fernald and Simon,
1984; Locke, 1995), scaffolding language development. The
specific acoustic parameters used in IDS are very effective in

communicating prohibition, approval, comfort, and attention
bid (Papoušek et al., 1990; Fernald, 1992; Bryant and Barrett,
2007) and also in conveying emotional content such as love,
fear, and surprise (Trainor et al., 2000). Therefore, sound
modulation typical of IDS elicits attention and emotional
responses in the infants, and conveys crucial information about
the speaker’s communicative intent (Fernald, 1989). In addition,
the exaggerated pitch parameter cross-culturally employed in IDS
provides markers that have the following uses: (a) to highlight
target words (Grieser and Kuhl, 1988; Fernald and Mazzie,
1991), (b) to convey language-specific phonological information
(Burnham et al., 2002; Kuhl, 2004), (c) as cues to word learning
(Thiessen et al., 2005; Filippi et al., 2014), or (d) as cues to the
syntactic structure of sentences (Sherrod et al., 1977; Fernald and
McRoberts, 1996).

Crucially, caregivers combine sounds and modulate the
intonation (frequency, tempo, and amplitude) of speech,
engaging in time-coordinated vocal interactions with the
children. Contingent responsiveness from caregivers, thus
interactive coordination, facilitates language learning (Goldstein
et al., 2003; Kuhl et al., 2003; Gros-Louis et al., 2006; Goldstein
and Schwade, 2008; Rasilo et al., 2013), and improves the
child’s accuracy in speech production. Moreover, caregiver-
child interactional coordination scaffolds the child’s social
development (Todd and Palmer, 1968; Fernald et al., 1989;
Goldstein et al., 2003; Goldstein and Schwade, 2008; Brandt et al.,
2012), and her/his acquisition of social conventions, such as turn-
taking in conversations (Weisberg, 1963; Kuhl, 1997; Jaffe et al.,
2001). Keitel et al. (2013) found that 3-year-old children strongly
rely on prosodic information to process conversational turn-
taking. Thus, prosodic intonation, in combination with lexico-
syntactic information is used by adults and infants as cues to
anticipate upcoming turn transitions (Lammertink et al., 2015).
In summary, a number of studies indicate that IDS promotes
the social and emotional development of infants and favors the
acquisition of language. Based on these findings, we can conclude
that IDS constitutes a relevant biological signal (Fernald, 1992).

Bringing together comparative data on caregiver-infant
communication in humans and chimpanzees with paleo-
anthropological evidence, Falk (2004) suggested that it is very
likely that the first forms of IDS in the early hominins
evolved as the trend for enlarging brain size, which made
parturition increasingly difficult. This caused a selective shift
toward females that gave birth to neonates with relatively
small and underdeveloped brains who were, consequently,
strongly dependent on caretakers for survival. According to this
hypothesis, humans started to make use of prosodic modulations
in order to engage infants’ attention, and to convey affective
messages to them while engaging in other activities. Interestingly,
this would explain why humans are the only species where tutors
exaggerate the prosodic features of the signal when speaking to
immature offspring. Based on this research, I propose that the
use of prosody for emotional communication and interactional
coordination was critical for the evolutionary emergence of the
first vocalizations in humans. EIP can thus be considered a critical
biological ability adopted by humans on both a phylogenetic and
an ontogenetic scale.
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COGNITIVE LINK BETWEEN LINGUISTIC
PROSODY AND MUSIC: IS EIP THEIR
EVOLUTIONARY COMMON GROUND?

Music is a universal ability performed in all human cultures
(Honing et al., 2015; Trehub et al., 2015) and has often been
identified as an evolutionary precursor of language (Brown, 2001;
Mithen, 2005; Fitch, 2006, 2010, 2012; Patel, 2006). A number of
studies hypothesize that the musical abilities attested in different
species of animals constitute homologous or analogous traits,
which paved the evolution of language in humans (Geissmann,
2000a; Marler, 2000; Fitch, 2005; Berwick et al., 2011). This line of
research follows up on Darwin’s hypothesis on the musical origins
of language (see section: “Darwin’s Hypothesis: In the Beginning
Was the Song”).

The studies on EIP across animal taxa reviewed in the previous
sections, taken together, have crucial implications for this line of
research on the origins of language: it is plausible that the ability
for EIP evolved into the ability to process linguistic prosody
(namely prosodic cues to lexical units, syntactic structure, and
discourse structure comprehension), and perhaps also into the
ability for music itself. If this is true, than shared traits between
the human abilities for linguistic prosody and music should be
empirically observable. Indeed, multiple studies show a large
overlap between these two domains. Koelsch (2012) suggested
that music and language can be positioned along a continuum
in which the boundary distinguishing one from the other is
quite blurry (Jackendoff, 2009; Patel, 2010). Two interesting
cases in which the ability to process linguistic prosody overlaps
with music are the so-called talking drums and the whistled
languages (Meyer, 2004): the talking drums are instruments
whose frequencies can be modulated to mimic tone and prosody
of human spoken languages. Whistled language speakers use
whistles to emulate the tones or vowel formants of their natural
language, keeping its prosody contours (Remez et al., 1981),
as well as its full lexical and syntactic information (Carreiras
et al., 2005; Güntürkün et al., 2015). Intriguingly, although left-
hemisphere superiority has been reported for atonal and tonal
languages, click consonants, writing, and sign languages (Best
and Avery, 1999; Levänen et al., 2001; Marsolek and Deason,
2007; Gu et al., 2013), recent brain studies (Carreiras et al.,
2005; Güntürkün et al., 2015) suggest that whistled language
comprehension relies on symmetric hemispheric activation.
In addition, empirical evidence from brain imaging research
indicates that the ability to process prosodic variations in
language plays a vital role in the comprehension of both verbal
and musical expressions. For instance, amusic subjects show
deficits in fine-grained perception of pitch (Peretz and Hyde,
2003), failing to distinguish a question from a statement solely
on the basis of changes in pitch direction (Patel et al., 2008;
Liu et al., 2010). This observed difficulty in a sample of amusic
patients supports the hypothesis that music and prosody share
specific neural resources for processing pitch patterns (Ayotte
et al., 2002). Further brain imaging studies report a considerable
overlap in the brain areas involved in the perception of pitch and
rhythm patterns in words and songs (Zatorre et al., 2002; Patel,

2003; Merill et al., 2012), and in sound patterns processing in
melodies and linguistic phrases (Brown et al., 2006). Therefore,
based on the outcome of this line of research, we can conclude
that the abilities underpinning linguistic prosody and music
share cognitive and neural resources. However, is it plausible
to identify in EIP an evolutionary common ground for both
abilities?

To date, the cognitive and evolutionary link between the
ability to process prosody as cue to the emotional state of
the signaler and the ability to use prosody as guide to word
recognition, or to syntactic and discourse structure, remains
open to empirical investigation. In contrast much research has
examined the cognitive link between the ability to process
emotional prosody and music in humans, showing that in both
music and language, specific emotions (e.g., happiness, sadness,
fear, or anger) are expressed through similar patterns of pitch,
tempo, and intensity (Scherer, 1995; Juslin and Laukka, 2003;
Fritz et al., 2009; Bowling et al., 2012; Cheng et al., 2012). For
instance, in both channels, happiness is expressed by fast speech
rate/tempo, medium-high voice intensity/sound level, medium-
high frequency energy, high F0/pitch level, much F0/pitch
variability, rising F0/pitch contour, fast voice onsets/tone attacks
(Juslin and Laukka, 2003). Research on this topic suggests that
musical melodies and emotional prosody are two channels that
use the same acoustic code for expressing emotional and affective
content.

As to the evolutionary link between the ability to use prosodic
cues to coordinated interactions in auditory communication
and social entrainment in music, studies conducted on
humans suggests that a strong motivation to engage in
frames of coordinated activities such as social entrainment or
synchronization, favor adaptive behaviors, and specifically, the
inclination to cooperate (Hagen and Bryant, 2003; Wiltermuth
and Heath, 2009; Kirschner and Tomasello, 2010; Koelsch, 2013;
Manson et al., 2013; Morley, 2013; Launay et al., 2014; Tarr et al.,
2014). Consistent with these findings, Phillips-Silver et al. (2010)
suggest that the ability for coordinated rhythmic movement,
and thus entrainment, applies to music and dance as well as to
other socially coordinated activities. From their perspective, the
ability for music and dance might be rooted in a broader ability
for social entrainment to rhythmic signals, which spans across
communicative domains and animal species.

Social engagement in time-coordinated activities, as
interactive communications or music – promotes prosocial
behaviors (Cirelli et al., 2014; Ravignani, 2015). These adaptive
behaviors might have favored the evolution of language,
including the ability to process and exchange prosodically
modulated linguistic utterances within coordinated interactions –
on a phylogenetic scale (Noble, 1999; Smith, 2010).

Crucially, in line with this hypothesis, recent findings suggest
that social coordination favors word learning also in modern
human adults (Verga et al., 2015). Within this frame of research,
empirical evidence indicates that children with communicative
disorders benefit from music therapy for social skills such as
initiative, response, vocalization within an interactive frame of
communication (Müller and Warwick, 1993; Bunt and Marston-
Wyld, 1995; Elefant, 2002; Oldfield et al., 2003). These findings
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are consistent with comparative work on the brain neuroanatomy
in humans and birds suggesting that social motivation and
affect played a key role in the emergence of language at both a
developmental and a phylogenetic scale (Syal and Finlay, 2011).

Taken together, these studies point to the existence of a
biologically rooted link between (i) the ability to use prosody for
the expression of emotions, interactional coordination between
multiple individuals, and language processing, and (ii) the ability
to process music. However, the hypothesis that the ability for EIP
played a crucial role in the emergence of a fully-blown linguistic
and musical abilities in humans is currently open to empirical
investigation (Bryant, 2013).

CONCLUSIONS

Theories on the origins of language often identify the musical
aspect of speech as a critical component that might have
favored, or perhaps triggered, its emergence (Rousseau, 1781;
Darwin, 1871; Jespersen, 1922; Livingstone, 1973; Richman, 1993;
Brown, 2000; Merker, 2000). Indeed, evidence of shared cognitive
processes in music and human language has led to the hypothesis
that these two faculties were intertwined during their evolution
(Brown, 2001; Mithen, 2005; Fitch, 2006, 2010, 2012; Patel, 2006).
Crucially, multiple studies have identified musical behaviors
shown in different species of animals (Geissmann, 2000a; Marler,
2000; Fitch, 2005; Berwick et al., 2011), as precursors for the
evolution of language.

However, in this article I proposed to address the focus of
research on language evolution and development toward the
ability to process prosody for emotional communication and
interactional coordination. This ability, which is widespread
across animal taxa, might have evolved into the ability to process
prosodic modulation of the voice as cue to language processing,
and perhaps also into the biological inclination to music. In
support of this hypothesis, I reviewed a number of studies
reporting adaptive uses of EIP in non-human animals, where
it evolved as anti-predator defense, social development, sexual
advertisement, territory defense, and group cohesion. Based on
these studies, we can infer that EIP provided the same adaptive
advantages to early hominins (Pisanski et al., 2016). In addition, I
reviewed research pointing to the processes involved in EIP as
common evolutionary traits grounding the abilities to process
linguistic prosody and music.

In the course of speech evolution, an increased control of
pitch contour might have enabled a greater vocal versatility
and expressiveness, building on the limited pitch-control used
for emotive, social vocalizations already in use amongst higher
primates (Morley, 2013).

This hypothesis is consistent with the “prosodic
protolanguage” version of Darwin’s musical protolanguage
suggested by Fitch (2005). According to this model, the first
linguistic utterances produced by humans, similar to birdsong,
were internally complex, lacked propositional meaning, but
could be learned and culturally transmitted. The prosodic
protolanguage hypothesis harmonizes with the “holistic
protolanguage” model (Jespersen, 1922; Wray, 1998), according

to which early humans modulated the prosodic values of their
vocalizations, conveying messages as whole utterances that were
strongly dependent on the context of use. By this model, this first
stage was then followed by a process of gradual fractionation of
these holistic, prosodically modulated units into smaller items. It
is plausible that this process paved the emergence of propositions
ruled by combinatorial principles that would increase their
learnability, thus the possibility of their cultural transmission
(Kirby et al., 2008; Verhoef, 2012). The identification of the
cognitive mechanisms underlying EIP has implications for our
understanding of the processes involved in the production and
perception of such songbird-like protolanguage, thus of the
evolutionary process that led to language.

The beneficial value of EIP is evident in modern humans,
particularly in the case of speech addressed to preverbal infants,
where it favors the developmental process of language learning
and emotional bonding. The comparative studies reviewed in
this paper indicate that the prosodic modulation of sounds
within an interactive and emotion-related dynamic is a critical
ability that might have favored the evolution of spoken
language (aiding emotion processing, group coordination, and
social bonding), and continues to play a striking role in the
acquisition of language in humans (Syal and Finlay, 2011).
Further empirical research is required to analyze how the
ability to modulate prosody for emotional communication and
interactional coordination favors the production and perception
of the constitutive building blocks of language (phonemes and
morphemes) and of the syntactic connections between words or
phrases. This line of research might be conducted on infants,
by investigating the developmental benefits of EIP on language
processing.

Comparative studies have addressed the ability to process
linguistic prosody, e.g., trochaic vs. iambic stress patterns in
non-human animals (Ramus et al., 2000; Toro et al., 2003; Yip,
2006; Naoi et al., 2012; de la Mora et al., 2013; Spierings and
ten Cate, 2014; Hoeschele and Fitch, 2016; Toro and Hoeschele,
submitted). Moreover, research has examined non-human
animals’ ability to perceive or produce phonemes (Bowling
and Fitch, 2015; Kriengwatana et al., 2015). Nonetheless, to
my knowledge, the effect of EIP on the perception of the
building blocks of heterospecific or conspecific communication
systems in non-human animals is still open to empirical
examination.

The integration of these studies within a research framework
focused on the functional valence of prosodic modulation
of the voice in animals, i.e., to its emotional, motivational,
and socially coordinated dimensions – will favor a deeper
understanding of the evolutionary roots of human emotional
and linguistic interactions (Anderson and Adolphs, 2014).
Additionally, comparative research on non-human animals and
pre-verbal infants, combined with new methods to explore
emotional and interactive sound modulation in music and
language from a neural and behavioral perspective, promise
empirical, and theoretical progress. This investigative framework
may ultimately result into new empirical questions targeted
at a deeper understanding of the inter-individual, multimodal
dimension of communication.
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