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Abstract

According to the World Economic Forum, the diffusion of unsubstantiated rumors on online

social media is one of the main threats for our society. The disintermediated paradigm of

content production and consumption on online social media might foster the formation of

homogeneous communities (echo-chambers) around specific worldviews. Such a scenario

has been shown to be a vivid environment for the diffusion of false claim. Not rarely, viral

phenomena trigger naive (and funny) social responses—e.g., the recent case of Jade Helm

15 where a simple military exercise turned out to be perceived as the beginning of the civil

war in the US. In this work, we address the emotional dynamics of collective debates around

distinct kinds of information—i.e., science and conspiracy news—and inside and across

their respective polarized communities. We find that for both kinds of content the longer the

discussion the more the negativity of the sentiment. We show that comments on conspiracy

posts tend to be more negative than on science posts. However, the more the engagement

of users, the more they tend to negative commenting (both on science and conspiracy).

Finally, zooming in at the interaction among polarized communities, we find a general nega-

tive pattern. As the number of comments increases—i.e., the discussion becomes longer—

the sentiment of the post is more and more negative.

Introduction

People online get informed, discuss and shape their opinions [1–3]. Indeed, microblogging

platforms such as Facebook and Twitter allow for the direct and disintermediated production

and consumption of contents [4–7]. The information heterogeneity might facilitate users selec-

tive exposure to specific content and hence the aggregation in homophilous communities [8–

15]. In such echo-chambers users interaction with different narratives is reduced and the

resulting debates are often polarized (misinformation) [16–21].

Unfortunately, despite the enthusiastic rhetoric about collective intelligence [22–24], the

direct and undifferentiated access to the knowledge production process is causing opposite

effects—e.g., the recent case of Jade Helm 15 [25] where a simple military exercise turned out

to be perceived as the beginning of the civil war in the US. Unsubstantiated rumors often jump
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the credulity barrier and trigger naive social responses. To an extent that, recently, the World

Economic Forum labeledmassive digital misinformation as one of the main threats to our soci-

ety. Individuals may be uninformed or misinformed, and the debunking campaigns against

unsubstantiated rumors do not seem to be effective [26].

Indeed, the factors behind the acceptance of a claim (whether substantiated or not) may be

altered by normative social influence or by the coherence with the system of beliefs of the indi-

vidual [27–31], making the preferential driver of contents the confirmation bias—i.e., the ten-

dency to select and interpret information coherently with one’s system of beliefs.

In [16, 17, 19] it has been pointed out that the more users are exposed to unsubstantiated

rumors, the more they are likely to jump the credulity barrier.

Recent studies [32, 33] pointed out that reading comments affects the perception of the

topic and, thus, the discussion.

In this work we analyze a collection of conspiracy and scientific news sources in the Italian

Facebook over a time span of four years. The main distinctive feature of the two categories of

pages is the possibility to verify the reported content. Scientific news are generally fact-checked

and are the results of a peer review process. Conversely, conspiracy news are generally partial

information about a secret plot. We identify pages diffusing conspiracy news—i.e., pages pro-

moting contents neglected by main stream media and scientific pages—aiming at diffusing sci-

entific results. To have an exhaustive list of pages, we define the space of our investigation with

the help of Facebook groups very active in debunking conspiracy stories and unverified rumors

(Protesi di Complotto, Che vuol dire reale, La menzogna diventa verità e passa alla storia).

We target emotional dynamics inside and across content polarized communities. In particu-

lar, we apply sentiment analysis techniques to the comments of the Facebook posts, and study

the aggregated sentiment with respect to scientific and conspiracy-like information. The senti-

ment analysis is based on a supervised machine learning approach, where we first annotate a

substantial sample of comments, and then build a Support Vector Machine (SVM [34]) classifi-

cation model. The model is then applied to associate each comment with one sentiment value:

negative, neutral, or positive. The sentiment is intended to express the emotional attitude of

Facebook users when posting comments.

Although other studies apply sentiment analysis to social media [35–38], our work is the

first linking the interplay between communities emerging around shared narratives and specifi-

cally addressing the emotional dynamics with respect to misinformation spreading. Indeed,

this work provides important insights toward the understanding of the social factors behind

contents consumption and the formation of polarized and homophilous clusters with a specific

interest in conspiracy-like information.

We focus on the emotional behavior of about 280k Facebook Italian users and through a thor-

ough quantitative analysis, we find that the sentiment on conspiracy pages tends to be more neg-

ative than that on science pages. In addition, by focusing on polarized users—i.e., users mainly

exposed to one specific content type (science or conspiracy)—we capture an overall increase of

the negativity of the sentiment. According to our results, the more active polarized users are, the

more they tend to be negative, both on science and conspiracy. Furthermore, the sentiment of

polarized users is negative also when they interact with one another. Also, as the number of com-

ments increases—i.e., the discussion turns longer– the sentiment is more and more negative.

Results and Discussion

Sentiment classification

Emotional attitude towards different topics can be roughly approximated by the sentiment

expressed in texts. It is difficult to exactly formalize the sentiment measures since there are
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often disagreements between humans, and even individuals are not consistent with

themselves.

In this study, as is often in the sentiment analysis literature [39], we have approximated the

sentiment with an ordinal scale of three values: negative (−), neutral (0), and positive (+). Even

with this rough approximation, and disagreements on single cases, it turns out that on a large

scale, when one deals with thousands of sentiment assignments, the aggregated sentiment con-

verges to stable values [40].

Our approach to automatic sentiment classification of texts is based on supervised machine

learning. There are four steps: (i) a sample of texts is manually annotated with sentiment, (ii)

the labeled set is used to train and tune a classifier, (iii) the classifier is evaluated on an indepen-

dent test set or by cross-validation, and (iv) the classifier is applied to the whole set of texts.

We have collected over one million of Facebook comments. About 20k were randomly

selected for manual annotation. We have engaged 22 native Italian speakers, active on Face-

book, to manually annotate the comments by sentiment. The annotation is supported by a

web-based platform Goldfinch—provided by Sowa Labs, http://www.sowalabs.com–and was

accomplished in two months. About 20% of the comments were intentionally duplicated, in

order to measure the mutual (dis)agreement of human annotators.

There are several measures to evaluate the inter-annotator agreement and performance of

classification models. We argue that the inter-annotator agreement provides an upper bound

that the best classification model can achieve. In practice, however, different learning algo-

rithms have various limitations, and, most importantly, only a limited amount of training data

is available. In order to compare the classifier performance to the inter-annotator agreement,

we have selected three measures which are applied to evaluate both, performance and agree-

ment: Accuracy, F
1
, and Accuracy±1. Exact definitions are in the Methods section, here we just

briefly summarize them. Accuracy is the fraction of correctly classified examples for all three

sentiment classes—no ordering between the classes is taken into account, and all three are

treated equally. F1 is the harmonic mean of precision and recall for a selected class. F
1
ð�;þÞ is

the average of F1 for the negative and positive class only, ignoring the neutral class. It is a stan-

dard measure of performance for sentiment classification [41]. The idea is that the misclassifi-

cation of neutral sentiment can be ignored as it is less important then the extremes, i.e.,

negative or positive sentiment (however, it still affects their precision and recall). Accuracy±1

(an abbreviation for Accuracy within 1) completely ignores the neutral class. It counts as errors

just the negative sentiment examples predicted as positive, and vice versa. It takes into account

the fact that the neutral class is between the negative and the positive, and tolerates misclassifi-

cations within neighbouring classes.

Table 1 gives the evaluation results. In the case of the inter-annotator agreement, 3,262

examples were labeled twice by two different annotators, and measures assess their agreement.

In the case of a sentiment classifier evaluation, we applied 10-fold cross-validation. The results

Table 1. Comparison of the inter-annotator agreement and classifier performance over three evalua-
tionmeasures. The results for an average sentiment classifier are from 10-fold cross-validation, with 95%
confidence interval.

Annotator agreement Sentiment classifier

No. of testing examples 3,262 19,642

Accuracy(−, 0, +) 72.0% 64.8 ± 1.1%

F
1
ð�;þÞ 73.3% 65.5 ± 1.0%

Accuracy±1(−, +) 97.2% 97.0 ± 0.3%

doi:10.1371/journal.pone.0138740.t001
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in Table 1 are the average of 10 classifiers, with 95% confidence interval. One can see that the

average classifier has reached a performance close to human agreement. In terms of extreme

errors, i.e., 1 − Accuracy±1 the performance of the classifier is as good as the agreement

between the annotators. However, in terms of Accuracy and F
1
, there is still some room for

improvement. We speculate that the main reason for the gap is a relatively low number of

annotated examples. Based on our experience in training SVM classifiers in other domains

(such as stock market, elections, generic tweets, etc.), we estimate that about 50,000 to 100,000

training examples are needed to reach the level of the inter-annotator agreement.

Fig 1 gives the distribution of sentiment values after applying the classification model to the

entire set of over one million comments. We assume that the sentiment values are ordered, and

that the difference from the neutral value to both extremes, negative and positive, is the same.

Thus one can map the sentiment values from ordinal to a real-valued interval [−1, +1]. The

mean sentiment over the entire set is −0.34, prevailingly negative.

Sentiment on science and conspiracy posts

The sentiment analysis and classification task allowed us to associate each comment of our

dataset to a sentiment value—i.e., −1 if negative, 0 if neutral, and 1 if positive. Taking all the

comments of science and conspiracy posts, we can simply divide them into negative, neutral

and positive (Fig 2, left), and analyze their proportions. We find that 70% of the comments on

science pages is neutral or positive, differently from conspiracy pages (51%). Moreover, com-

ments on science pages are twice as positive (20%) than those on conspiracy pages (10%).

To measure the effect induced on users by a post, we compute the average sentiment of all

its comments. We grouped posts sentiment by defining three thresholds in order to equally

divide the space; in particular, we say a post to be negative if the average sentiment 2 [−1,

−0.3], neutral if 2 (−0.3,0.3), and positive if 2 [0.3,1]. Fig 2 (center) shows the aggregated senti-

ment of science and conspiracy posts. Notice that the sentiment of conspiracy posts is mainly

negative (54%), differently from science posts, for which the negative sentiment represents

Fig 1. Sentiment distribution over the entire set of one million comments.

doi:10.1371/journal.pone.0138740.g001
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only the 27%. On the other hand, it is twice as positive for science posts (23%) than for conspir-

acy posts (11%).

When focusing on users, the approach is analogous. We define the sentiment of a user as

the mean of the sentiment of all her comments. The mean sentiment for each user is then clas-

sified as negative, neutral, or positive by means of the same thresholds used for posts. Fig 2

(right) shows the aggregated sentiment both for science and conspiracy users. We find that the

sentiment of users commenting on conspiracy pages is mainly negative (55%), while the senti-

ment of a small fraction of users (10%) is positive. On the contrary, the sentiment of users com-

menting on science pages is particularly neutral (45%), and negative only for 29% of users.

Almost the same percentage (26%) is represented by positive sentiment.

Sentiment and virality

Now we focus on the interplay between the virality of a post and its generated sentiment. In

particular we want to understand how the sentiment varies for increasing levels of comments,

likes, and shares. Notice that each of these actions has a particular meaning [42–44]. A like

stands for a positive feedback to the post; a share expresses the will to increase the visibility of a

given information; and a comment is the way in which online collective debates take form

around the topic promoted by posts. Comments may contain negative or positive feedbacks

with respect to the post. Fig 3 shows the aggregated sentiment of a post as a function of its

number of comments (top), likes (center), and shares (bottom) both for science (left) and con-

spiracy (right) posts. The sentiment has been regressed w.r.t. the logarithm of the number of

comments (resp., likes, shares). We do not show confidence intervals, since they are defined

(C.I. 95%) as �X � S:E: ¼ �X � 1:96 s
ffiffi

n
p and when n!1, S.E. = 0. We notice that the sentiment

decreases both for science and conspiracy when the number of comments of the post increases.

However, we also note that it becomes more positive for science posts when the number of

likes and shares increase, differently from conspiracy posts.

To assess the direct relationship between the number of comments and the negativity of the

sentiment, a randomization test was performed. In particular, we took all the comments of sci-

ence (resp., conspiracy) posts and randomly reassigned the original sentiments. Then, we

regressed the sentiment w.r.t. the number of comments and compared the obtained slope with

the one shown in Fig 3 (top). Over 10k randomized tests, the obtained slope was always greater

than the original one. More precisely, while the slope for the original comments for Science is

Fig 2. Sentiment on science and conspiracy pages. Proportions of negative, neutral and positive comments (left), posts (center), and users (right) both on
science and conspiracy pages.

doi:10.1371/journal.pone.0138740.g002
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equal to −0.051 (resp., −0.070 for Conspiracy), the quantiles of the distribution of the slopes in

the randomized test are: Q0 = −0.010, Q1 = −0.002, Q2 = −0.00002, Q3 = 0.002, Q4 = 0.010

(resp., Q0 = −0.004, Q1 = −0.0008, Q2 = −0.000004, Q3 = 0.0008, Q4 = 0.005, for Conspiracy).

Therefore, given that the negative relationship between the sentiment and the length of the dis-

cussion disappears when the comment sentiments are randomized, we conclude that the length

of the discussion is a relevant dimension when considering the negativity of the sentiment.

Summarizing, we found that both comments and posts, as well as users of conspiracy pages

tend to be much more negative than those of science pages. Interestingly, the sentiment

Fig 3. Sentiment and post consumption. Aggregated sentiment of posts as a function of their number of comments, likes, and shares, both for science
(left) and conspiracy (right). Negative (respectively, neutral, positive) sentiment is denoted by red (respectively, yellow, blue) color. The sentiment has been
regressed w.r.t. the logarithm of the number of comments/likes/shares.

doi:10.1371/journal.pone.0138740.g003
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becomes more and more negative when the number of comments of the post increases—i.e.,

the discussion becomes longer– both on science and conspiracy pages. However, differently

from conspiracy posts, when the number of likes and shares increases, the aggregated senti-

ment of science posts becomes more and more positive.

Sentiment and users activity

In this section we aim at understanding more in depth how the sentiment changes with respect

to users’ engagement in one of the two communities. Previous works [17, 19, 20] showed that

the distribution of the users activity on the different contents is highly polarized. Therefore we

now want to focus on the sentiment of polarized users. More precisely, we say a user to be

polarized on science (respectively, on conspiracy) if she left more than 95% of her likes on sci-

ence (respectively, on conspiracy) posts (for further details about the effect of the thresholding

refer to the Methods Section).

Therefore, we take all polarized users having commented at least twice, i.e., 14,887 out of

33,268 users polarized on science and 67,271 out of 135,427 users polarized on conspiracy.

Fig 4 shows the Probability Density Function (PDF) of the mean sentiment of polarized users

with at least two comments. In Table 2 we compare the mean sentiment of all users and

Fig 4. Sentiment and polarization. Probability Density Function (PDF) of the mean sentiment of polarized
users having commented at least twice, where −1 corresponds to negative sentiment, 0 to neutral and 1 to
positive.

doi:10.1371/journal.pone.0138740.g004
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polarized users having commented at least twice. Our results show that the overall negativity

increases w.r.t. all users, such a feature is more evident on the conspiracy side.

We now want to investigate how the mean sentiment of a user changes with respect to her

commenting activity –i.e., when her total number of comments increases. In Fig 5 we show the

mean sentiment of polarized users as a function of their number of comments. The more active

a polarized user is, the more she tends toward negative values both on science and conspiracy

posts. The sentiment has been regressed w.r.t. the logarithm of the number of comments. Inter-

estingly, the sentiment of science users decreases faster than that of conspiracy users. We

Table 2. Sentiment and polarized users.

Science Conspiracy

Sentiment All users Polarized All users Polarized

Negative 29% 34% 55% 66%

Neutral 45% 46% 35% 27%

Positive 26% 20% 10% 7%

Mean sentiment of all users and polarized users having commented at least twice.

doi:10.1371/journal.pone.0138740.t002

Fig 5. Sentiment and commenting activity. Average sentiment of polarized users as a function of their
number of comments. Negative (respectively, neutral, positive) sentiment is denoted by red (respectively,
yellow, blue) color. The sentiment has been regressed w.r.t. the logarithm of the number of comments.

doi:10.1371/journal.pone.0138740.g005
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performed a randomization test taking all comments on both categories and then randomly

reassigning the original sentiments. Then, we regressed the sentiment w.r.t. the number of

comments and compared the obtained slope with the one shown in Fig 5. The obtained slope

over 10k randomized tests was always greater than the original one. In particular, while the

slope for the original comments for Science is equal to −0.070 (resp., −0.037 for Conspiracy),

the quantiles of the distribution of the slopes in the randomized test are: Q0 = −0.006, Q1 =

−0.001, Q2 = 0.00001, Q3 = 0.001, Q4 = 0.006 (resp., Q0 = −0.003, Q1 = −0.0005, Q2 = 0.00001,

Q3 = 0.0005, Q4 = 0.003, for Conspiracy). Therefore users activity is a relevant dimension when

considering the value of the sentiment, which is more and more negative on both categories

when the users activity increases.

Interaction across communities

In this section we aim at investigating the sentiment when usual consumers of science and con-

spiracy news meet. To do this we pick all posts representing the arena where the debate

between science and conspiracy users takes place. In particular, we select all posts commented

at least once by both a user polarized on science and a user polarized on conspiracy. We find

7,751 such posts (out of 315,567) –reinforcing the fact that the two communities of users are

strictly separated and do not often interact with one another.

In Fig 6 we show the proportions of negative, neutral, and positive comments (left) and

posts (right). The aggregated sentiment of such posts is slightly more negative (60%) than for

general posts (54% for conspiracy, 27% for science, see Fig 2). When focusing on comments,

we have similar percentages of neutral (42%) and negative (48%) comments, while a small part

(10%) is represented by positive comments. We want to understand if the sentiment correlates

with the length of the discussion. Hence, we analyze how the sentiment changes when the

number of comments of the post increases, as we previously did for general posts (Fig 3). Fig 7

shows the aggregated sentiment of such posts as a function of their number of comments.

Clearly, as the number of comments increases –i.e., the discussion becomes longer– the senti-

ment is more and more negative. Moreover, comparing with Fig 3, when communities interact

with one another, posts show a higher concentration of negative sentiment.

Fig 6. Sentiment between communities. Proportions of negative, neutral, and positive comments (left) and
posts (right) of all the posts commented at least once by both a user polarized on science and a user
polarized on conspiracy.

doi:10.1371/journal.pone.0138740.g006
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Also in this case we performed a randomization test taking all the comments and randomly

reassigning the original sentiments. Then, we regressed the sentiment w.r.t. the number of com-

ments and compared the obtained slope with the one shown in Fig 7. Over 10k randomized tests,

the obtained slope was always greater than the original one. In particular, while the slope for the

original comments is equal to −0.048, the quantiles of the distribution of the slopes in the ran-

domized test are:Q0 = −0.009,Q1 = −0.002,Q2 = 0.00004, Q3 = 0.002,Q4 = 0.009. Therefore, we

conclude that the length of the discussion does affect the negativity of the sentiment.

Conclusions

In this work we analyzed the emotional dynamics on pages of opposite worldviews, science and

conspiracy. Previous works [17, 19, 20] showed that users are strongly polarized towards the

two narratives. Moreover, we found that users of both categories seem to not distinguish

between verified contents and unintentional false claims. In this manuscript we focused on the

emotional behavior of the same users on Facebook. In general, we noticed that the sentiment

on conspiracy pages tends to be more negative than that on science pages. In addition, by

focusing on polarized users, we identified an overall increase of the negativity of the sentiment.

In particular, the more active polarized users, the more they tend to be negative, both on sci-

ence and conspiracy. Furthermore, the sentiment of polarized users is negative also when they

Fig 7. Sentiment and discussion. Aggregated sentiment of posts as a function of their number of
comments. Negative (respectively, neutral, positive) sentiment is denoted by red (respectively, yellow, blue)
color.

doi:10.1371/journal.pone.0138740.g007
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interact with one another. Also in this case, as the number of comments increases –i.e., the dis-

cussion becomes longer– the sentiment of the post is more and more negative. This work pro-

vides important insights about the emotional dynamics in a disintermediated environment.

Indeed, recent studies [32, 33] pointed out that reading comments of other user may affect the

discussion. Our findings confirm such a phenomenon and make explicit that the longer the

discussion the more negative the sentiment. In particular, discussions around conspiracy news

degenerate faster than the scientific one. This latter point opens to interesting question about

the quasi-religious mentality of conspiracists [45] and the way in which such an echo-chamber

digests and debate news and events.

Methods

Ethics statement

The entire data collection process has been carried out exclusively through the Facebook

Graph API [46], which is publicly available, and for the analysis (according to the specification

settings of the API) we used only public available data (users with privacy restrictions are not

included in the dataset). The pages from which we download data are public Facebook entities

(can be accessed by anyone). User content contributing to such pages is also public unless the

user’s privacy settings specify otherwise and in that case it is not available to us.

Data collection

We identified two main categories of pages: conspiracy news –i.e. pages promoting contents

neglected by main stream media– and science news. The first category includes all pages diffus-

ing conspiracy information –pages which disseminate controversial information, most often

lacking supporting evidence and sometimes contradictory to the official news (i.e., conspiracy

theories). The second category is that of scientific dissemination, including scientific institu-

tions and scientific press having the main mission to diffuse scientific knowledge. Note that we

do not focus on the truth value of information but rather on the possibility of verifying the con-

tent of the page. While the latter is an easy task for scientific news—e.g., by identifying the

authors of the study or if the paper passed a peer review process—it usually becomes more dif-

ficult for conspiracy-like information, if not unfeasible. We defined the space of our investiga-

tion with the help of Facebook groups very active in debunking conspiracy theses (Protesi di

Complotto, Che vuol dire reale, La menzogna diventa verità e passa alla storia). We categorized

pages according to their contents and their self description. The resulting dataset –downloaded

over a timespan of four years (2010 to 2014)– is composed of 73 public Italian Facebook pages

and it is the same used in [19] and [20]. To the best of our knowledge, the final dataset is the

complete set of all scientific and conspiracy information sources active in the Italian Facebook

scenario. Table 3 summarizes the details of our data collection.

Classification and annotator agreement measures

Our approach to sentiment classification of texts is based on supervised machine learning,

where a sample of texts is first manually annotated with sentiment and then used to train and

evaluate a classifier. The classifier is then applied to the whole corpus. The measures to assess

the agreement between annotators and the quality of the classifier are based on coincidence

and confusion matrices, respectively.

Annotators were asked to label each text with negative� neutral� positive sentiment. When

two annotators are given the same text, they can either agree (both give the same label) or dis-

agree (they give different labels). The annotators can disagree in two ways: one label is neutral

Emotional Dynamics in the Age of Misinformation
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while the other is extreme (negative or positive), or both are extreme: one negative and one posi-

tive—we call this severe disagreement. A convenient way to represent the overall (dis)agreement

between the annotators is a coincidence matrix, where each text that is annotated twice appears

in the table twice. Table 4 gives a generic 3 × 3 annotator agreement table, while the actual data

are in Tables 5 and 6. All agreements are on the diagonal of the table. As the labels are ordered

(negative� neutral� positive), the further the cell from the diagonal, the more severe is the

error. From such a table one can calculate the annotator agreement (the sum of the main diago-

nal divided by the number of all the elements in the table) and the severe disagreement: the sum

of top right and bottom left corners divided by the number of all the elements in the table.

To compare the predictions of a classifier to a golden standard (manually annotated data, in

our case), a confusion matrix is used. Table 4 also represents a generic 3 × 3 confusion matrix

for the (ordered) sentiment classification case. Each element hx, yi represents the number of

examples from the actual class x, predicted as class y. All agreements/correct predictions are in

Table 3. Breakdown of the Facebook dataset.

Total Science Conspiracy

Pages 73 34 39

Posts 270,666 62,075 208,591

Likes 9,164,781 2,505,399 6,659,382

Comments 1,017,509 180,918 836,591

Shares 17,797,819 1,471,088 16,326,731

Likers 1,196,404 332,357 864,047

Commenters 279,972 53,438 226,534

doi:10.1371/journal.pone.0138740.t003

Table 4. A generic 3 × 3 coincidencematrix/confusionmatrix. An element hx, yi denotes the number of
examples from the actual class x, predicted as class y.

Actual/Predicted Negative Neutral Positive Total

Negative h−, −i h−,0i h−, +i h−,*i
Neutral h0, −i h0,0i h0, +i h0,*i
Positive h+, −i h+,0i h+, +i h+,*i
Total h*, −i h*,0i h*, +i N

doi:10.1371/journal.pone.0138740.t004

Table 5. A coincidence matrix for the inter-annotator agreement, excluding self-agreement.

Negative Neutral Positive Total

Negative 2,482 545 90 3,117

Neutral 545 1,474 277 2,296

Positive 90 277 744 1,111

Total 3,117 2,296 1,111 6,524

doi:10.1371/journal.pone.0138740.t005
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the diagonal of the table. In the ordinal classification case, the further the cell from the diago-

nal, the more severe is the error.

Accuracy is the fraction of correctly classified examples:

Accuracy ¼ h�;�i þ h0; 0i þ hþ;þi
N

Accuracy within n [47] allows for a wider range of predictions to be considered correct. We

use Accuracy within 1 (Accuracy±1) where only misclassifications from negative to positive and

vice-versa are considered incorrect:

Accuracy�1ð�;þÞ ¼ 1� hþ;�i þ h�;þi
N

F
1
ðþ;�Þ is the macro-averaged F-score of the positive and negative classes, a standard eval-

uation measure [41] used also in the SemEval competition (http://alt.qcri.org/semeval2015/)

for sentiment classification tasks:

F
1
ðþ;�Þ ¼ F

1þ þ F
1�

2

F1 is the harmonic mean of Precision and Recall for each class [48]:

F
1
¼ 2 � Precision � Recall

Precisionþ Recall

Precision for class x is the fraction of correctly predicted examples out of all the predictions

with class x:

Precisionx ¼
hx; xi
h�; xi

Recall for class x is the fraction of correctly predicted examples out of all the examples with

actual class x:

Recallx ¼
hx; xi
hx; �i

From the above tables and definitions, one can see that the annotator agreement is equiva-

lent to Accuracy and that severe disagreement is equivalent to 1 − Accuracy±1. F
1
has no coun-

terpart between the annotator agreement measures, but is a standard measure in evaluation of

sentiment classifiers. On the other hand, Cohen’s kappa [49] is a standard measure of inter-

rater agreement, but rarely used to evaluate classification models. The original Cohen’s kappa

is applicable to categorical (unordered) classes, and weighted kappa was devised for ordered

Table 6. A coincidence matrix for the annotators’ self-agreement.

Negative Neutral Positive Total

Negative 486 57 6 549

Neutral 57 434 19 510

Positive 6 19 196 221

Total 549 510 221 1280

doi:10.1371/journal.pone.0138740.t006
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classes. We use Cohen’s weighted kappa [50] to compare the inter-annotator agreement and

self-agreement.

Data annotation

Data annotation is a process in which some predefined labels are assigned to each data point. A

subset of 19,642 comments from the Facebook dataset of one million (Table 3) was selected for

manual sentiment annotation and later used to train a sentiment classifier. A user-friendly web

and mobile devices annotation platform Goldfinch—provided by Sowa Labs, http://www.

sowalabs.com/–was used.

Trustworthy Italian native speakers, active on Facebook, were engaged for the annotations.

The annotation task was to label each Facebook comment—isolated from its context—as nega-

tive, neutral, or positive. The guideline given to the annotators was to estimate the emotional

attitude of the user when posting a comment to Facebook. The exact question an annotator

should answer was: ‘Is the user happy (pleased, satisfied), or unhappy (angry, sad, frustrated),

or neutral?’ A dedicated Facebook group was formed to dispatch detailed annotation instruc-

tions, to provide a forum for discussion, and to post ongoing annotation results which stimu-

lated the annotators to contribute. During the annotation process, which lasted for about two

months, the annotator performance was monitored in terms of the inter-annotator agreement

and self-agreement, based on 20% of the comments which were intentionally duplicated. No

compensation, other then gratitude and personal satisfaction for contributing to interesting sci-

entific research, was awarded.

The annotation process resulted in 19,642 sentiment labeled comments, 3,902 of them

annotated twice. Out of 3,902 duplicates, 3,262 were polled twice to two different annotators

and are used to assess the inter-annotator agreement, and 640 were polled twice to the same

annotator and are used to asses the annotators’ self-agreement. The coincidence matrices with

the inter-annotator agreement and self-agreement are in Tables 5 and 6, respectively.

Note that, in a coincidence matrix, each annotated example appears twice (once for each of

the two annotators), thus the matrix is symmetric. This is in contrast to a confusion matrix

where one knows the ground truth, and the matrix values are the number of examples in the

actual and predicted classes.

The four evaluation measures, defined above, were used to quantify the inter-annotator and

the annotators’ self-agreement. The results are in Table 7.

Classification

Ordinal classification, also known as ordinal regression, is a form of multi-class classification

where there is a natural ordering between the classes, but no meaningful numeric difference

Table 7. Comparison of the inter-annotator and self-agreement over four evaluation measures.

Inter-annotator agreement Annotators’ self-agreement

No. of overlapping examples 3,262 640

Accuracy(−,0, +) 72.0% 87.2%

F
1
ð�;þÞ 73.3% 88.7%

Accuracy±1(−, +) 97.2% 99.1%

Cohen’s weighted kappa 0.61 0.82

doi:10.1371/journal.pone.0138740.t007
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between them [47]. We treat sentiment classification as an ordinal regression task with three

ordered classes. We apply the wrapper approach, described in [51], with two linear-kernel Support

Vector Machine (SVM) [34] classifiers. SVM is a state-of-the-art supervised learning algorithm,

well suited for large scale text categorization tasks, and robust on large feature spaces. The two

SVM classifiers were trained to distinguish the extreme classes (negative and positive) from the

rest (neutral plus positive, and neutral plus negative, respectively). During prediction, if both classi-

fiers agree, they yield the common class, otherwise, if they disagree, the assigned class is neutral.

The sentiment classifier was trained and tuned on the training set of 15,714 annotated com-

ments. The comments were processed into the standard Bag-of-Words (BoW) representation,

with the following settings: lemmatized BoW include unigrams and bigrams, minimum n-

gram frequency is five, TF-IDF weighting, no stop-word removal, and normalized vectors.

Additional features and settings were chosen, based on the results of 10-fold stratified cross-

validation on the training set: normalization of diacritical characters, url replacement, length of

text, presence of upper cased words, negation (language specific), swearing (language specific),

positive words from a predefined dictionary (language specific), unusual punctuation (several

exclamation or question marks, . . .), unusually repeated characters, happy or sad emoticons in

the text, and their presence at the end of the sentence.

The trained sentiment classifier was then evaluated on a disjoint test set of the remaining

3,928 comments. The confusion matrix between the annotators (actual classes) and the classi-

fier (predicted classes) is in Table 8. The sentiment class distribution, after applying the classi-

fier to the whole set of one million Facebook comments, is in Fig 1.

Another evaluation was performed by a 10-fold cross-validation on the complete set of

19,642 training examples. The confusion matrix between the annotators and the 10 classifiers

is in Table 9. The averaged evaluation measures over 10 classifiers, with 95% confidence inter-

val are in Table 1.

Table 8. A confusionmatrix of the sentiment classifier on the test set.

Actual/Predicted Negative Neutral Positive Total

Negative 1,208 501 32 1,741

Neutral 509 987 103 1,599

Positive 86 183 319 588

Total 1,803 1,671 454 3,928

doi:10.1371/journal.pone.0138740.t008

Table 9. A confusionmatrix of sentiment classifiers on the 10-fold cross-validated complete training
set.

Actual/Predicted Negative Neutral Positive Total

Negative 5,779 2,669 302 8,750

Neutral 1,969 5,090 839 7,898

Positive 293 834 1,867 2,994

Total 8,041 8,593 3,008 19,642

doi:10.1371/journal.pone.0138740.t009
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Statistical tools

To characterize random variables, a main tool is the probability distribution function (PDF),

which gives the probability that a random variable X assumes a value in the interval [a, b], i.e.

Pða � X � bÞ ¼
R b

a
f ðxÞdx.

Labeling algorithm. The labeling algorithm may be described as a thresholding strategy

on the total number of users likes. Considering the total number of likes of a user Lu on both

posts P in categories S and C. Let ls and lc define the number of likes of a user u on Ps or Pc,

respectively denoting posts from scientific or conspiracy pages. Then, the total like activity of a

user on one category is given by ls
Lu
. Fixing a threshold θ we can discriminate users with enough

activity on one category. More precisely, the condition for a user to be labeled as a polarized

user in one category can be described as ls
Lu
_ lc

Lu
> θ. In Fig 8 we show the number of polarized

users as a function of θ. Both curves decrease with a comparable rate. Fig 9 shows the Probabil-

ity Density Function (PDF) of the mean sentiment of all polarized users (top) and polarized

Fig 8. Polarized users and activity. The number of polarized users as a function of the thresholding value θ
on the two categories.

doi:10.1371/journal.pone.0138740.g008
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Fig 9. Sentiment of Polarized Users. Probability Density Function (PDF) of the mean sentiment of all
polarized users (top) and polarized users with at least five likes, where −1 corresponds to negative sentiment,
0 to neutral and 1 to positive.

doi:10.1371/journal.pone.0138740.g009

Fig 10. Sentiment and Engagement. Average sentiment of polarized users as a function of the threshold θ,
i.e., the engagement degree, intended as the number of likes a polarized user put in her own category.

doi:10.1371/journal.pone.0138740.g010
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users with at least five likes (bottom). Note that both densities are qualitatively similar. In Fig

10 we show the mean sentiment of polarized users as a function of the threshold θ.

List of pages

In this section, we provide the full list of Facebook pages of our dataset. Table 10 lists scientific

pages, while Table 11 lists conspiracy pages.

Table 10. Scientific news sources. List of Facebook pages diffusing main stream scientific news and their
url.

Page Name Link

1 Scientificast.it www.facebook.com/129133110517884

2 CICAP www.facebook.com/32775139194

3 OggiScienza www.facebook.com/106965734432

4 Query www.facebook.com/128523133833337

5 Gravità Zero www.facebook.com/138484279514358

6 COELUM Astronomia www.facebook.com/81631306737

7 MedBunker www.facebook.com/246240278737917

8 In Difesa della Sperimentazione Animale www.facebook.com/365212740272738

9 Italia Unita per la Scienza www.facebook.com/492924810790346

10 Scienza Live www.facebook.com/227175397415634

11 La scienza come non l’avete mai vista www.facebook.com/230542647135219

12 LIBERASCIENZA www.facebook.com/301266998787

13 Scienze Naturali www.facebook.com/134760945225

14 Perché vaccino www.facebook.com/338627506257240

15 Le Scienze www.facebook.com/146489812096483

16 Vera scienza www.facebook.com/389493082245

17 Scienza in rete www.facebook.com/84645527341

18 Galileo, giornale di scienza e problemi globali www.facebook.com/94897729756

19 Scie Chimiche: Informazione Corretta www.facebook.com/351626174626

20 Complottismo? No grazie www.facebook.com/399888818975

21 INFN—Istituto Nazionale di Fisica Nucleare www.facebook.com/45086217578

22 Signoraggio: informazione corretta www.facebook.com/279217954594

23 JFK informazione corretta www.facebook.com/113204388784459

24 Scetticamente www.facebook.com/146529622080908

25 Vivisezione e Sperimentazione Animale, verità e menzogne www.facebook.com/548684548518541

26 Medici Senza Frontiere www.facebook.com/65737832194

27 Task Force Pandora www.facebook.com/273189619499850

28 VaccinarSI www.facebook.com/148150648573922

29 Lega Nerd www.facebook.com/165086498710

30 Super Quark www.facebook.com/47601641660

31 Curiosità Scientifiche www.facebook.com/595492993822831

32 Minerva—Associazione di Divulgazione Scientifica www.facebook.com/161460900714958

33 Pro-Test Italia www.facebook.com/221292424664911

34 Uniti per la Ricerca www.facebook.com/132734716745038

doi:10.1371/journal.pone.0138740.t010
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Table 11. Conspiracy news sources. List of Facebook pages diffusing conspiracy news and their url.

Page Name Link

1 Scienza di Confine www.facebook.com/188189217954979

2 CSSC—Cieli Senza Scie Chimiche www.facebook.com/253520844711659

3 STOP ALLE SCIE CHIMICHE www.facebook.com/199277020680

4 Vaccini Basta www.facebook.com/233426770069342

5 Tanker Enemy www.facebook.com/444154468988487

6 SCIE CHIMICHE www.facebook.com/68091825232

7 MES Dittatore Europeo www.facebook.com/194120424046954

8 Lo sai www.facebook.com/126393880733870

9 AmbienteBio www.facebook.com/109383485816534

10 Eco(R)esistenza www.facebook.com/203737476337348

11 curarsialnaturale www.facebook.com/159590407439801

12 La Resistenza www.facebook.com/256612957830788

13 Radical Bio www.facebook.com/124489267724876

14 Fuori da Matrix www.facebook.com/123944574364433

15 Graviola Italia www.facebook.com/130541730433071

16 Signoraggio.it www.facebook.com/278440415537619

17 Informare Per Resistere www.facebook.com/101748583911

18 Sul Nuovo Ordine Mondiale www.facebook.com/340262489362734

19 Avvistamenti e Contatti www.facebook.com/352513104826417

20 Umani in Divenire www.facebook.com/195235103879949

21 Nikola Tesla—il SEGRETO www.facebook.com/108255081924

22 Teletrasporto www.facebook.com/100774912863

23 PNL e Ipnosi www.facebook.com/150500394993159

24 HAARP—controllo climatico www.facebook.com/117166361628599

25 Sezione Aurea, Studio di Energia Vibrazionale www.facebook.com/113640815379825

26 PER UNA NUOVA MEDICINA www.facebook.com/113933508706361

27 PSICOALIMENTARSI E CURARSI NATURALMENTE www.facebook.com/119866258041409

28 La nostra ignoranza la LORO forza. www.facebook.com/520400687983468

29 HIV non causa AIDS www.facebook.com/121365461259470

30 Sapere un Dovere www.facebook.com/444729718909881

31 V per Verità www.facebook.com/223425924337104

32 Genitori veg www.facebook.com/211328765641743

33 Operatori di luce www.facebook.com/195636673927835

34 Coscienza Nuova www.facebook.com/292747470828855

35 Aprite Gli Occhi www.facebook.com/145389958854351

36 Neovitruvian www.facebook.com/128660840526907

37 CoscienzaSveglia www.facebook.com/158362357555710

38 Medicinenon www.facebook.com/248246118546060

39 TERRA REAL TIME www.facebook.com/208776375809817

doi:10.1371/journal.pone.0138740.t011
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