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1. Introduction  

Social insects are simple organisms capable (separately) of very limited activities with a 
view to intelligent behaviour. Each of them performs a local task unaware both of the 
behaviour of the others and of the implementation of the global task. However in groups, 
they possess some degree of intelligence, that allows them to perform extremely complex 
tasks. These achievements of social insects are due to the phenomenon of stigmergy - a 
powerful way to coordinate activity over both time and space. The concept of stigmergy has 
been introduced by the French entomologist Pierre-Paul Grassé in the 1950s during his 
studies of nest-building behaviour of termites (Grassé, 1959). Stigmergy is derived from the 
roots "stigma" (goad) and "ergon" (work), thus giving the sense of "incitement to work by 
the products of work" (Beckers et al., 1994).  
Termite nest construction practices are an example of stigmergy. When termites start to 
build a nest, they impregnate little mud balls with pheromone and place them on the base of 
a future construction. Termites initially put mud balls in random places. The probability of 
placing a mud ball in a given location increases with the presence of other mud balls, i.e. 
with the sensed concentration of pheromone (positive feedback). As construction proceeds, 
little columns are formed and the pheromone near the bottom evaporates (negative 
feedback). The pheromone drifting from tops of columns, located near each other, causes the 
upper parts of the columns to be built with a bias towards the neighboring columns and to 
join with them into arches (typical building forms).  
Corpse-gathering behaviour in ant colonies is another example of a functional and easy 
coordination through stigmergy. In this case the stigmergic communication is not realized 
through pheromones but through the corpses themselves. The insects put the corpses of 
dead nestmates together in a cemetery which is far from the nest. The ants pick ant corpses 
up, carry them about for a while, and drop them. It seems that ants prefer to pick up corpses 
from a place with small density of corpses and drop them to a place with higher density. In 
the beginning there exist a lot of single or small clusters of corpses, but as the time goes on 
the number of clusters decreases and their size grows up. At the end the process  results in 
the formation of one (or two) large clusters. As it is evident from the two described 
examples, the ants do not control the overall performance, but rather the environment 
"puppeteer", the structure that eventually emerges, guides the process.    

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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Stigmergy is an indirect means of communication between multiple agents, involving 
modifications made to the environment. The agents are programmed so that they obey a 
simple set of rules and recognize local information to perform a small task. The agent 
carrying out its task, makes changes in the environment, which stimulates another (or the 
same) agent to continue working on the task. The environment itself acts as a shared 
external memory in the context of the system as a whole. The mechanism of stigmergy, 
combined with environmental physics, provides the basic elements of self-organization. Self-
organization is a set of dynamical mechanisms whereby structures appear at the global level 
of a system as a result from interactions among its lower-level components (Bonabeau et al., 
1997). However, the relationship between local and global types of behaviour is not easy to 
understand and small changes at a local level might result in drastic and sometimes 
unpredictable changes at the global level. Four basic ingredients and three characteristic 
features (signatures) of self-organization have been identified. The ingredients are: positive 
feedback, negative feedback, amplification of fluctuations and presence of multiple interactions; the 
signatures are: creation of spatiotemporal structures in an initially homogeneous medium, 
possible attainability of different stable states, and existence of parametrically determined 
bifurcations (Bonabeau et al., 1997; Holland & Melhuish, 1999). 
Stigmergic concepts have been successfully applied to a variety of engineering fields such as 
combinatorial optimization (Dorigo et al., 1999; Dorigo et al., 2000), routing in 
communication networks (Di Caro & Dorigo, 1998), robotics, etc.  In robotics, by means of 
simulated robot teams Deneubourg et al. (1990) have studied the performance of a 
distributed sorting algorithm (modelling brooding in ant colonies) based on stigmergic 
principles. Beckers et al. (1994) have extended Deneubourg’s work, using physical robots 
that collect circular pucks into a single cluster, starting from a homogeneous initial 
environment. The robots have been equipped with two infra-red (IR) sensors, a gripper for 
pushing objects around, and a switching mechanism, which can sense the local 
concentration of objects only as below or above a fixed threshold. They have obeyed very 
simple behavioural rules and have required no capacity for spatial orientation and memory. 
Holland & Melhuish (1999) have proposed a very similar approach that examines the 
operation of stigmergy and self-organization in a homogeneous group of physical robots, in 
the context of the task of clustering and sorting objects (Frisbees) of two different types.   
Stigmergy fits excellently into the behaviour-based robot control architecture, which is 
robust and flexible against the continually changing world. The real-world physics of the 
environment may be a critical factor for a system level behaviour to emerge. Simulation can 
provide a picture of possibilities for emergent behaviour. But the use of simulation means 
that the system is not "grounded" and is unable to exploit the real world physics of the 
environment. It is for this reason that some authors (Beckers et al., 1994; Holland & 
Melhuish, 1999) have chosen to implement stigmergic mechanisms directly to behaviour-
based robots rather than to undertake any preliminary simulation studies. However, the 
evolutionary simulation is perhaps the best methodology for the moment for investigating 
stigmergic phenomena in general, as the real experiments are expensive, time consuming 
and destructive.    
Experiments, similar to those, reported by Beckers et al. (1994), have been repeated in a 
simulated environment with one robot working alone and two robots working 
simultaneously in Ref. (Tsankova & Georgieva, 2004). Stigmergy based foraging robots need 
random movements in order to ensure exploration of all the places of the arena within a 
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reasonable period of time (Beckers et al., 1994). The problem to solve here is to find a way of 
speeding up the foraging process, because random movements make the process of 
formation of the final pile time consuming. Placing simulated detectors for object 
concentration in order to enhance the perceptive capabilities of the robots is a way of 
avoiding the loss of time due to wondering in an area without objects, as suggested in the 
literature (Tsankova et al., 2005; Tsankova et al., 2007). The detectors determine the 
directions with the maximum and minimum (non-zero) concentrations of pucks (with 
respect to the robot). The final foraging time has been improved in Ref. (Tsankova et al., 
2007) by using two artificial immune networks: one for the navigation control of foraging 
robots and the other for the object picking up/dropping behaviour. However, the way to be 
realized the proper detector for object concentration and the accelerating the foraging 
process - these are still open questons.  
For speeding up the foraging process one more time, emotional intervention on the immune 
navigation control and the object picking up/dropping behaviour is proposed in this 
research work. It is implemented as a frustration signal coming from an artificial amygdala 
(a rough metaphor of the natural amygdala, which is situated deep in the brain centre and is 
responsible for emotions). In a number of studies it has been shown that the psychological 
factors in general and the emotional factors in particular can be correlated to certain changes 
in the immunological functions and defense mechanisms (Lazarus & Folkman, 1984; Azar, 
2001), i.e. the immune system can be influenced by emotions. This provides a reason for the 
design of a mixed structure consisting of an innate action selection mechanism, represented 
by an immune network, and an artificial amygdala as a superstructure over it (Tsankova, 
2001; Tsankova, 2007). Another emotional intervention, implemented as an advisor, is 
applied to the picking up/dropping behaviour mechanism. Depending on the level of 
frustration the advisor forces the robot, carrying an object, to retain or to drop the object 
when the robot encounters small or large clusters, respectively. That enhances the positive 
feedback from the stimulus and speeds up the formation of the final pile. 
To illustrate the advantages of the proposed emotional intervention in stigmergy-based 
foraging behaviour, five control algorithms are simulated in MATLAB environment. They 
use (respectively): (1) random walks; (2) purposeful movements based on enhanced 
perception of object concentration; (3) immune network based navigation; (4) emotionally 
influenced immune network based navigation; and (5) emotional intervention on an 
immune navigator and on the robot’s picking up/dropping behaviour. The comparative 
analysis of these methods confirms the better performance of the last two of them in the 
sense of improving the speed of the foraging process.  

2. The Task and the Robots  

The basic effort in this work is directed toward developing a system of two simulated robots 
for gathering a scattered set of objects (pucks) into a single cluster (like the corpse-gathering 
behaviour of ants) and also toward speeding up the foraging process in comparison with the 
results of similar experiments, reported in the literature. To achieve this task by stigmergy, a 
simulated robot is designed to move objects that are more likely to be left in locations where 
other objects have previously been left. The robot is equipped with a simple threshold 
mechanism - a gripper, able to pick up one puck. An additional detector for puck 
concentration is used to determine the directions (with respect to the robot) with maximum 
and minimum (non-zero) concentrations of pucks (Tsankova et al., 2005). This information is 
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needed to prevent the random walks and to speed up the clustering process. The robots 
have to pick up pucks from places with small concentration and drop them at places with 
high concentration of pucks. Five methods of stigmergy based controls are discussed. The 
first method relies on random walks and codes the stigmergic principles in simple rules 
with fixed priorities (Beckers et al., 1994; Tsankova & Georgieva, 2004). The other four 
methods are characterized with enhanced sensing of puck concentration and include 
(respectively): (1) simple rules with fixed priorities (Tsankova et al., 2005), (2) an immune 
network for navigation control (Tsankova et al., 2005; Tsankova et al., 2007), (3) emotionally 
influenced immune network based navigation, and (4) emotional intervention on an 
immune navigator and on the picking up/dropping behaviour mechanism. The aim is to 
evaluate the performance of the robots equipped with the above mechanisms and controls 
in simulations. Before starting each run, 49 pucks are placed in the form of a regular grid in 
the arena, as shown in Fig.12a. At the beginning of each of the experiments, the robots start 
from a random initial position and orientation. Every minute of runtime, the robots are 
stopped, the sizes and positions of clusters of pucks are recorded, and the robots are 
restarted. The experiment continues until all 49 pucks are in a single cluster. A cluster is 
defined as a group of pucks separated by no more than one puck diameter (Beckers et al., 
1994).  
The geometry of robots is shown in Fig.1a, where the radii of the robot and the puck are 

m036.0=R  and m015.0puck =R , respectively. Each robot carries a U-shaped gripper with 

which it can take pucks. The robots are run in a square area m5.1m5.1 × . The robots are 

equipped with simulated obstacle detectors (five infra-red sensors) and a simulated 
microswitch, which is activated by the gripper when a puck is picked up. Obstacle detectors 
are installed in five directions, as shown in Fig.1b. They can detect the existence of obstacles 

in their directions (sectors 5,...,2,1, =iSi ), and the detecting range of sensors is assumed to 

be equal to the diameter of the robot. The detectors for puck concentration are located at the 
same position as the obstacle detectors (Fig.1b). The simulated detector for concentration of 
pucks can enumerate the pucks (but does not discriminate clusters), which are disposed in 

the corresponding sector iS  with a range, covering the entire arena. The readings of the 

detectors for puck concentration are denoted by 5,...,2,1, =iC i . They are normalized as   

 ∑
=

=
5

1

/
j

puck
j

puck
ii NNC ,    5,...,2,1=i , (1) 

where puck
iN  is the number of pucks, located in the sector iS .  

For the sake of simplicity of simulation the following assumptions in the design of the 
gripper, the microswitch and the pucks are used (Tsankova & Georgieva, 2004):  

• A puck will be scooped only when it fits neatly inside the semicircular part of the 
gripper. 

• If part of a puck is outside of the gripper, the puck will not be scooped, it will not be 
pushed aside, and the robot will pass across it.  

• When the microswitch is activated, the puck may be dropped  either on an empty area 
or on other pucks.  

• The pile may grow in height. 
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Figure 1. Autonomous mobile robot used in simulations 

3. The Algorithms 

The five algoritms, mentioned above, are described in more details in this section. The last 
two of them are the proposed innovations, including an improvement of the robot's 
navigation and puck picking up/dropping behaviour by introducing an artificial emotional 
mechanism. The first three algorithms have already been proposed in the literature, and the 
experiments based on them (implemented in this work) serve as a basis for comparison with 
the outcomes of the proposed innovations.    
I. Stigmergy with random walks 
The following rule set is inspired by Ref. (Beckers et al., 1994) and describes the basic 
behaviours of robots (Tsankova & Georgieva, 2004):  

(1) If  (there is not a puck in the gripper) & (there is a puck ahead) then take one puck in 
the gripper.   

(2) If (there is one puck in the gripper) & (there is a puck ahead) then drop a puck, go 

backward for a while ( backwardt ) and turn at a random angle.   

(3) If  there are no pucks ahead  then go forward. 

(4) If  there is an obstacle (wall or another robot) ahead  then avoid the obstacle (turn at a 
random angle and go forward). 

Moving in a straight line is the robot's default behaviour, which is executed when no sensor 
is activated. This behaviour continues until an obstacle is detected or the microswitch is 
activated (pucks are not detected as obstacles). When the robot detects an obstacle it 
executes the obstacle avoidance behaviour. On the spot it turns away from the obstacle at a 
random angle until detectors no longer find out the obstacle, and then goes forward 
(Beckers et al., 1994). If the robot carries a puck when it encounters the obstacle, the gripper 
will retain the puck during the turn. The execution of the obstacle avoidance behaviour 
suppresses the puck dropping one. The threshold of the gripper allows it to take only one 
puck; more pucks force the microswitch to trigger the puck dropping behaviour. The robot 
releases the puck from the gripper, goes backwards for a while, and then turns at a random 
angle, after which returns to its default behaviour and moves forward in a straight line.  
II. Stigmergy with enhanced sensing of object concentration 
The following set of rules describes the robot’s behaviours, when the puck concentration is 
taken into account (Tsankova et al., 2005): 
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(1) If  (there is not a puck in the gripper) & (there is a puck ahead) then take one puck in 
the gripper.     

(2) If  (there is one puck in the gripper) & (there is a puck ahead) then drop a puck and go 

backward for a while ( backwardt ).  

(3) If (there is not a puck in the gripper) & (there are no pucks ahead) then follow the 
direction, corresponding to the minimum (non-zero) reading of the detectors for puck 
concentration. 

(4) If (there is one puck in the gripper) & (there are no pucks ahead) then follow the 
direction, corresponding to the maximum reading of the detectors for concentration of 
pucks. 

(5) If  there is an obstacle (wall or another robot) ahead then avoid the obstacle (turn on the 
obstacle avoidance behaviour). 

When no obstacle detector is activated, the robot executes a goal following behaviour with 

an artificial goal G  (Fig.1b) corresponding to the place with the maximum or minimum 

concentration of pucks, depending on the presence or absence of a puck in the gripper, 
respectively. The puck concentration detectors determine the direction of the artificial goal. 
If all pucks are disposed behind the robot, the low-level control makes the robot turn until a 
puck concentration detector becomes active. The goal following behaviour continues until 
an obstacle is detected or the microswitch is activated. The obstacle avoidance and the puck 
dropping behaviour are the same as the behaviours described in the previous algorithm 
(Algorithm I). 
III. Stigmergy with an immune navigation control 
The immune networks for this and for the next control algorithms use enhanced sensing of 
object concentration. In conformity with the immune navigation control, the set of rules of 
Algorithm II (from rule (1) to rule (5)) is modified so that the first two rules remain unchanged, 
and the other three are substituted by the following rule (3a) (Tsankova et al., 2005; 
Tsankova et al., 2007): 
(3a) If  (there are no pucks ahead) OR (there is an obstacle ahead) then turn on the collision 

free goal following behaviour, realized by an artificial immune network.  

If there is one puck in the gripper, the direction of the goal G  is the direction corresponding 

to the sector with the maximum number of pucks, and if there is no puck in the gripper – the 
direction with the minimum puck concentration. The immune network implements a 
collision-free goal following behaviour.   
IV. Stigmergy with an emotionally influenced immune navigation control 
An artificial emotion mechanism (EM1 in Fig.6) is proposed as a superstructure over the 
immune network based navigator. It may influence the decision-making mechanism of the 
immune network, modulating the dynamics of antibody selection that is described in detail 
in Sections 5 and 6. The control algorithm is the same as Algorithm III, but the rule (3a) is 
replaced by the following rule (3b):  
(3b) If  (there are no pucks ahead) OR (there is an obstacle ahead) then turn on the collision 

free goal following behaviour, realized by an emotionally influenced immune network.  
It is expected that the emotional intervention will improve the robot's collision-free goal 
following behaviour, and therefore it will speed up the foraging process.   
V. Stigmergy with two artificial emotion mechanisms 
The first of the two artificial emotion mechanisms (EM1) serves for the emotional 
intervention on the immune navigator as it was described in Algorithm IV. The innovation 
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here is the second artificial emotion mechanism (EM2) used as an advisor of the puck 

picking up/dropping mechanism by the regulation output 1;0prohibit
droppingpuck =γ  (Fig.7). The 

following set of rules describes the robot’s behaviours, when the two emotion mechanisms 
are taken into account: 
(1) If  (there is not a puck in the gripper) & (there is a puck ahead) then take one puck in 

the gripper.     

(2a) If  (there is one puck in the gripper) & (there is a puck ahead) & ( 0prohibit
droppingpuck =γ ) then 

drop a puck and go backward for a while ( backwardt ).  

(2b) If  (there is one puck in the gripper) & (there is a puck ahead) & ( 1prohibit
droppingpuck =γ ) then 

retain the puck and turn on the collision free goal following behaviour, realized by an 
emotionally influenced immune network.  

(3) If  (there are no pucks ahead) OR (there is an obstacle ahead) then turn on the collision 
free goal following behaviour, realized by an emotionally influenced immune network.   

The emotional advisor of the puck picking up/dropping mechanism in fact influences on 
the puck dropping behaviour only, as the robot releases the puck under a large frustration 

level (regulation output of EM2 is 0prohibit
droppingpuck =γ ), and retains the puck when the 

frustration is small ( 1prohibit
droppingpuck =γ ) (Fig.7). The first case corresponds to large puck 

density, detected by the sensors, and the second – to small density. Due to the dynamics of 
the amygdala's model (5), the frustration's threshold is different, depending on the direction 
of robot's movement – towards a larger cluster or in the opposite direction. It is expected 
that this will enhance the positive feedback from the stimulus (the maximum cluster of 
objects) and will improve the foraging process in the vicinity of large clusters. 

4. Immune Networks  

4.1 Biological and artificial immune networks 

The human body maintains a large number of immune cells – lymphocytes, mainly T-cells 
and B-cells. When an antigen (a foreign body) invades the human body, only a few of these 
immune cells can recognize the invader. The idiotypic network hypothesis, proposed by Jerne 
(1974), is based on the concept that lymphocytes are not isolated, but communicate with 
each other through interaction among antibodies. B-lymphocytes have specific chemical 
structure and produce “Y” shaped antibodies. The antibody recognizes an antigen like a key 
and lock relationship. The structure of the antigen and the antibody is shown in Fig.2, where 
the part of the antigen recognized by the antibody is called epitope, and the part of the 
antibody that recognizes the corresponding antigen determinant is called paratope. The 
antigenic characteristic of the antibody is called idiotope. Antibodies stimulate and suppress 
each other by the idiotope-paratope connections and thus form a large-scaled network. 
The idiotypic network theory is usually modelled with differential equations simulating the 
dynamics of lymphocytes. Farmer et al. (1986) have first suggested an abstracted 
mathematical model of Jerne’s immune network theory. In robotics Ishiguro et al. (1995b) and 
Watanabe et al. (1999) have developed a dynamic decentralized behaviour arbitration 
mechanism based on immune networks. In their approach "intelligence" is expected to 
emerge from interactions among agents (competence modules) and between a robot and its 
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environment.  A collision-free goal following behaviour has been performed in Ref. 
(Ishiguro et al., 1995b), and a garbage-collecting problem taking into account self-sufficiency 
– in Ref. (Watanabe et al., 1999). More detailеd surveys of artificial immune systems and 
their applications can be found in Refs. (Dasgupta & Attoh-Okine, 1997; Garrett, 2005). The 
description of the dynamics of the antibody selection mechanism and the artificial immune 
navigator, as they have been presented in Ref. (Tsankova et al., 2007), follows below. 

 epitope

antigen

idiotope

paratope

antibody 1

antibody 2

antibody 1

antibody 3

P1

P2

P3

Id1

Id2

Id3

B-cell 1

B-cell 3

B-cell 2

stimulation

suppression  

Figure 2. Structure of immune network (Ishiguro et al., 1995b) 

4.2 Dynamics of antibody selection mechanism 

Consider a goal following and obstacle avoidance navigation task. In such a situation, for 
example, the distance and direction to the detected obstacle or to the goal work as an 
antigen, the competence module (simple behaviour/action) can be considered as an 
antibody, and the interaction between modules is presented as stimulation/suppression 

between antibodies. The concentration )(tai  of the i -th antibody is calculated as (Ishiguro 

et al., 1995a; Ishiguro et al., 1995b): 

 )()(
1

)(
1)(

1
,

1
, takmtam

N
tam

Ndt

tda
iii

N

k
kki

N

j
jij

i ⎟⎟⎠
⎞

⎜⎜⎝
⎛

−+−= ∑∑
==

, (2) 

where N  is the number of the antibodies, ijm ,  and im  denote affinities between the 

antibody j   and the antibody i , on the one hand, and the antibody i  and the detected 

antigen, respectively. The first and the second terms on the right hand side denote the 
stimulation and suppression coming from other antibodies, respectively. The third term 

represents the stimulation coming from the antigen, and the fourth term ik - the natural 

death. The affinity coefficients ijm ,  and im  are calculated by  (Ishiguro et al., 1995b): 

 )()(, kPkIm i

L

k
jij ∑ ⊕= α ,      )()( kPkEm i

L

k
i ∑ ⊕= β , (3) 
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where α  and β  are positive constants, ⊕  represents the exclusive-or operator, L  is the 

length of the paratope, the idiotope and the epitope, written as binary strings. )(kI j , )(kPi  

and )(kE  represent the k -th binary value in the idiotope string of the antibody j , the 

paratope string of the antibody i , and the epitope string, respectively. If the concentration 

of the antibody exceeds a priori given threshold, the antibody is selected and its 
corresponding behaviour becomes active towards the world. 

4.3 Artificial immune navigator 

In this work by "navigator" will be denoted the collision-free goal following behaviour 
control.  The obstacle detectors give binary information 1/0 about the existence or absence 
of obstacles in their range, respectively. On the basis of the readings of the puck 

concentration detectors 5,...,2,1, =iC i  a simulated goal detector can recognize the direction 

of the goal (maximum/minimum puck heaping) at any position of the obstacle detectors. In 
the case, in which there is a puck in the gripper, the simulated goal detector responds with 1 

to the direction of )(maxmax iCC =  and with 0 to the other four directions. When the robot 

does not carry a puck, it responds with 1 to the direction of )(minmin iCC =  and 0 to the 

rest. Therefore, the robot's simulated detectors discover two types of antigens (obstacle-
oriented antigens and goal-oriented ones), and each antigen has a five-bit epitope. The 
antigens inspire the same two types of antibodies. The antibody’s paratope (Fig.3) 
corresponds to the desirable condition (the precondition, which has to be fulfilled before the 
activation of the antibody), and its idiotope - to the disallowed antibodies (the antibodies 
which are impossible or undesirable when the condition of the paratope and its 
corresponding action are implemented) (Ishiguro et al., 1995b). For mobile robot navigation 
a simple immune network with 12 a priori prepared antibodies is used (Tsankova & 
Topalov, 1999; Tsankova et al., 2005) (Fig.4). The first six antibodies are stimulated by 
obstacle-oriented antigens, and the other six – by goal-oriented ones. Their actions are: move 
forward (Front), turn right (RS, RM), turn left (LS, LM), move backward (TurnBack). In Fig.4 
the goal-oriented paratopes are not presented as binary strings, as they are expressed in 

calculations, for the sake of the easier explanaion of the network. For example, 1SG∈  is 

expressed in calculations  by 00001  and denotes that the goal ( G ) appears in the sector 

1S  of the goal detector, and noneG∈ - is expressed by 00000 , which shows that the goal 

is not discovered in the five sectors of the goal sensor, i.e. it is behind the robot. The symbol 
# denotes that the condition can be taken as either 0 or 1, i.e. it can be considered not so 

important information. Therefore, in (3), when #)( =kPi  or #)( =kI j  it determines that 

25.0)()()()( =⊕=⊕ kPkEkPkI iij . The idiotope includes disallowed antibodies for a 

situation, in which the paratope condition is fulfilled. For example, the paratope of antibody 

9 shows that the goal is discovered in front of the robot in the sector 3S  and the 

corresponding action is “move forward“ (Front). This behaviour will be impossible, if there 

is an obstacle in front of the robot, i.e. if the obstacle detectors react with the string ##1## , 

which unites the paratopes of the antibodies 2, 3, 4, 5 and 6, and they are considered to be 
disallowed. The readings of the puck concentration detectors form the goal-oriented 

antigens. For example, if the maximum puck heaping has occurred in the sector 4S , i.e. 
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4max S∈C , and the minimum - in 1S  ( 1min S∈C ), then the epitope string will be 01000  or 

00001 , corresponding to the availability or absence of a puck in the gripper. In Fig.4 the 

stimulation connections from the idiotopes to the corresponding paratopes are shown by 
arrows.  

 Action IdiotopeParatope

Desirable condition Action Disallowed antibodies

 

Figure 3. Antibody (Ishiguro et al., 1995b) 

Obstacle oriented antibodies

Action IdiotopeParatope

1 # #  0  #  # Front

2 # # 1  0  # RS

9

3 # 0  1  #  # LS

9

4 0  1 1 1  # LM

8, 9, 10

5 # 1 1 1  0 RM

8, 9, 10

6 1 1 1 1 1 TurnBack

7, 8, 9, 10, 11

G S ,S ,S ,S , none1 2 4 5
∈

G S ,S ,S , none1 2 5∈

G S ,S ,S ,none1 4 5
∈

G S , none5∈

G S ,none1
∈

7, 8,10,

11,12

7, 8,

11, 12

7, 10,

11, 12

11, 12

7, 12

12

1, 2, 3, 4, 5

9

11

1, 2, 3, 4

7

1, 2, 3, 5

8

1, 2

10

1, 3

G S1
∈

G S2
∈
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Figure 4. Immune network for collision free goal following behaviour (Tsankova & Topalov, 
1999; Tsankova et al., 2005) 

For each particular situation detected by sensors, only one of all antibodies wins (in 
conformity with (2) and (3)) and its action becomes the target behaviour (direction of 
movement) for the mobile robot. In this work the weight of the two types of behaviour – 
obstacle avoidance and goal following - is expressed by additional multiplication of the 

coefficients im  of the obstacle-oriented antibodies (from 1 to 6) and the goal-oriented 

antibodies (from 7 to 12) by the weight coefficients goalk  and obstk , respectively: 

 6,...,2,1   ,)()(
1

obst =⊕= ∑
=

ikPkEkm i

L

k
i β ;   12,...,8,7   ,)()(

1
goal =⊕= ∑

=

ikPkEkm i

L

k
i β . (4) 

5. Emotional Intervention on Immune Network  

The emotional intervention on an artificial immune network is inspired by the interactions 
between  immune and emotional systems in living organisms, which have been developed 
during their struggle to cope with continually changing internal and external environments 
through hundred millions of years. Today psychoneuroimmunology investigates the link 
between bi-directional communication among the nervous, endocrine, and immune systems 
and its implications for physical health. In this Section follows: an overview of the 

www.intechopen.com



Emotional Intervention on Stigmergy Based Foraging Behaviour 
of Immune Network Driven Mobile Robots 

 

527 

definitions of emotions, models of emotions and their applications, to the purpose of 
choosing a proper computational model for influence on the artificial immune network 
designed in the previous Section. At the end, the way of integrating the selected model into 
the equations of dynamics of antibody selection is described.     

5.1 Emotions, models, and applications  
Еmotion is a key element of the adaptive behaviour, increasing the possibility of survival of 
living organisms. Science is still looking for a complete definition of emotion. All feelings 
(states) that affect the survival goal of an agent are called motivational states, such as 
hunger, thirst, pain, sometimes fear, etc. (Bolles & Fanselow, 1980). Emotions, among other 
feelings, can change the facial expressions (Descartes, 1989). According to Ekman (1992), 
there exist six basic emotions: anger, fear, sadness, joy, disgust, and surprise.  
One of the most extensively developed low-level neurological models of emotions is that of 
the amygdala (LeDoux, 1996), especially functioning as a classical fear system of the brain. 
There exist models that have developed a pure physiological simulation of emotions 
(emotions described in terms of their physiological reactions) (Picard, 1997), and others that 
deal with the interactions between emotions (or motivational states), for example, fear and 
pain (Bolles & Fanselow 1980). The event appraisal models of emotions (Ortony et al. 1988; 
Rosman et al., 1990) are higher-level psychological models developed to understand the link 
between events and emotions.  
All of the above mentioned and various other computational models of emotions have 
found application in robotics (Mochida et al., 1995; Breazeal, 2002), affective computing 
(Picard, 1997), believable ("life-like") agents (Bates, 1992) etc. In robotics Mochida et al. 
(1995) have proposed a computational model of the amygdala and have incorporated it into 
an autonomous mobile robot with an innate action selection mechanism based on 
Braitenberg’s architecture No.3c (Braitenberg, 1984). After a brief overview on emotions and 
their models, the computational version of an amygdala's model seems to be the most 
convenient for the purposes of the task treated here. A short description of this model 
follows below.  

5.2 Model of the amygdala as an artificial emotion mechanism  

The amygdala is responsible for the emotions, especially for the most fundamental among 
them - the fear. It is situated deep in the brain’s centre. When the amygdala feels a threat, it 
mobilizes the resources of the brain and the body to protect the creature from damage. 
Sensor information obtained by receptors firstly enters the thalamus, and then forks into the 
cerebral cortex and the amygdala. Information processing in the cerebral cortex is fine-
grained, that is why the signals from the cortex are so slow and refined, and provide 
detailed information about the stimulus. The signals coming from the thalamus are fast and 
crude, reaching the amygdala before the signals from the cortex, but providing only general 
information about the incoming stimulus. The coarse information processing accomplished 
in the amygdala requires less computing time compared to the one needed by the cortex, 
since the amygdala just evaluates whether the current situation is pleasant or not. This 
coarse but fast computation in the emotional system is indispensable for self-preservation of 
living organisms, which have to overcome the challenges of a continually changing world. 
The pathways that connect the amygdala with the cortex ("the thinking brain") are not 
symmetrical - the connections from the cortex to the amygdala are to a large extent weaker 
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than those from the amygdala to the cortex. The amygdala is in a much better position to 
influence the cortex. This is one of the reasons for which "the amygdala never forgets 
(LeDoux, 1996)" and psychotherapy is often such a difficult and prolonged process. Due to 
the above characteristics, it can be considered that the emotional system regulates activities 
in the cerebral cortex feed forwardly (Mochida et al., 1995).   
In the computational model of the amygdala proposed by Mochida et al. (1995), the emotion 
of robots is divided into two states: pleasantness and unpleasantness, represented by a state 
variable called frustration. The neural network representation of this model is shown in 
Fig.5. Using sensory inputs the level of frustration is formulated as (Mochida et al., 1995): 

 ∑∑
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+ −++=
n
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kii
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iik fbSWSWf

1
2

1
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where kf  represents the frustration level of the agent at the moment k , 1ξ  and 2ξ  are 

coefficients, iW  denotes the weight parameter with respect to the obstacle detector iS , and 

b  is the threshold, which determines the patience for unpleasantness; n  is the number of 

equipped obstacle detectors; In (5), the first and the second terms on the right hand side 
denote the frustration levels caused by the direct stimulation of the agent and the recently 
experienced relationship between the agent and the situation, respectively. The regulation 

output )( fγγ =  of the emotional mechanism is determined here as: 
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where kff ←  is taken from (5), γb  is a bias, and ]1;1[−∈γ  (Fig.5). 
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Figure 5. Model of amygdala (Mochida et al., 1995) 

5.3 Emotionally influenced dynamics of antibody selection 

The emotional intervention on the immune network, whose architecture is shown in Fig.4, 
can be implemented as a frustration signal coming from the computational model of an 
amygdala (Fig.5) and influencing the dynamics of the antibody selection mechanism. The 
regulation output γ  of the amygdala is able to modulate different network parameters 

(affinity coefficients and natural death), or to influence directly the change of concentration 
of antibodies. Thus it can change the antibody-winner and the final behaviour of the robot. 

www.intechopen.com



Emotional Intervention on Stigmergy Based Foraging Behaviour 
of Immune Network Driven Mobile Robots 

 

529 

In the particular navigation problem the emotional mechanism can merely affect the 
antibodies for goal following behaviour (from 7 to 12) by suppressing the rate of change of  
the concentrations of those antibodies. This can be obtained by modifying the equations 
from 7 to 12 of the system of differential equations (2) by multiplying together their right 
hand side (derivatives of concentrations) and the regulation output γ  of the amygdala. 

Thus, the system of equations (2) is transformed as it follows (Tsankova, 2007): 

 

,12,...,8,7),,,),((
)(

,6,...,2,1),,,),((
)(

==

==

ikmmtaF
dt

tda

ikmmtaF
dt

tda

iijii
i

iijii
i

γ

 (7) 

where (.)iF  is the right hand side of (2).  

6. Emotional Intervention on Robot's Immune Navigator and on Puck Picking 
up/Dropping Mechanism  

6.1 The navigator 

The emotionally influenced immune navigator, proposed in Algorithms IV and V (Section 
3), consists of: (1) an immune network (Fig.4) as a basic action selection mechanism; and (2) 
an artificial emotional mechanism – a model of an amygdala (Fig.5) as a superstructure over 
the immune network, which modulates the antibody selection. The model of an amygdala 
(5)-(6) weaves into the differential equations, describing the dynamics of antibody selection 
(2)-(4) in a way, similar to the one, described in Subsection 5.3. After a number of 
preliminary experiments with a navigator, which is based on the model (7), that model was 
modified as follows:     

),,),((
)(

nav iijii
i kmmtaF
dt

tda
γ= ,where   ⎩⎨

⎧
==

=
=

,12,...,8,7,1   if  ,
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nav ii

i

γ
γ  (8) 

The modification includes an emotional intervention on both the goal-oriented antibodies 
from 7 to 12 and the antibody 1, which executes a movement forward when there is not an 
obstacle in front of the robot. In the absence of obstacles the regulating output of the 

amygdala has a value of 1=γ , and thus it does not influence the dynamics of the immune 

network. However, in the presence of an obstacle, the selection of antibody 1 is manipulated 
by γ  and the probability for this antibody to be selected on a system level (8) decreases. 

Therefore, in these cases the rotary motion, rather than the rectilinear forward motion is 
preferred. As a result, more flexible manoeuvring is expected in difficult situations, such as 
Π -shaped obstacles and narrow passages. A block diagram of the system “emotionally 
influenced immune navigator – mobile robot” is shown in Fig.6, where α  is the “action” 

part  of the antibody winner, and ),( ωv=v  is the target velocity vector. 

The kinematics of a mobile robot with two driving wheels, mounted on the same axis, and a 
front free wheel is used in simulations (Fig.1a). The motion of the mobile robot is controlled 
by its linear velocity v  and angular velocity ω . The trajectory tracking problem under 

assumption for “perfect velocity tracking” is posed as in Kanayama et al. (1990) and Fierro 
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& Lewis (1995). Details of this low-level tracking control are omitted due to the limited 
space here. 
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Figure 6. Block diagram of the system ‘emotionally influenced immune navigator – mobile 
robot’  

6.2 The puck picking up/dropping mechanism  
The idea behind the emotional intervention on the puck picking up/dropping mechanism is 
to use the frustration threshold of a second amygdala EM2 (Fig.7), whose inputs are the 
sensor readings of puck concentration, in order to influence the puck dropping behaviour. If 
a robot with a full gripper collides with a puck ahead (or clusters of pucks), it will drop the 
puck only if the frustration of the amygdala EM2 exceeds a certain threshold. In the opposite 
case it will retain the puck and will continue moving in the same direction. Since the robot 
does not perceive the pucks as an obstacle, it does not go round them, but passes across 
them. It is assumed, that the matter in the robot’s hand is a single puck or a very small 
cluster of pucks, since the frustration is below the threshold. So, the stigmergic process will 
rather benefit than be harmed  by the destruction of the small cluster (if this occurs). Due to 
the dynamics of the amygdala's model, the frustration threshold is different, depending on 
the direction of the robot's movement – towards a larger cluster or in the opposite direction. 
The regulation output of EM2 generates the following signal: 

 ⎩⎨
⎧

>

≤
=

. 0   if   ,1

, 0   if   ,0prohibit
droppingpuck γ

γ
γ  (9) 

where the values ‘0’ and ‘1’ mean ‘permission’ and ‘prohibition’ of the puck dropping 
behaviour, respectively. A block diagram illustrating EM2 is shown in Fig.7.  
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Figure 7. Block diagram of the emotional intervention on puck dropping behaviour   
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7. Simulation Results and Discussions 

7.1 Simulation experiments with emotionally influenced navigator 

The improvement of the navigation of a single robot should be aimed at increasing the 
reliability and the efficiency of work of the overall robot group in the puck foraging task. 
The simulation experiments in this Subsection emphasize the emotionally affected immune 
navigator; they make clear both the mechanism of action of amygdala's model and the way 
by which it influences the immune navigator; show the advantages of the mixed structure 
by a comparative analysis carried out between the proposed emotionally influenced 
immune navigator and the following control structures: (1) Braitenberg's vehicle No.3c with 
an emotional mechanism (Mochida et al., 1995), and (2) the immune network based 
navigator. 
The simulation experiments were implemented in MATLAB environment with the sampling 

time set to s 01.0=oT . The parameters of the trajectory tracking controller were chosen to 

correspond to a critical dumping case (Kanayama et al., 1990), and the reference linear and 

angular velocities were m/s3.0ref =v  and rad/s0ref =ω , respectively. The duration of the 

movement backward was s75.0backward =t . The parameters needed for modelling the 

dynamics of the antibody selection were heuristically determined as: 1== βα ; 1obst =k  

and 4.0goal =k ; the death rate 12,...,2,1,1.0 == iki ; and the threshold for the antibody 

selection mechanism 33.0thresh =a . The following values for the angles of the immune 

network’s “action” part were experimentally chosen: rad0=Front , rad65.0=−= RSLS , 

rad4.1=−= RMLM , and rad4.1=Back . The parameters of the amygdala’s model have 

been investigated theoretically and experimentally in (Tsankova, 2001) and the values, 

determined as proper there, were used in this study, i.e.: 003.01 =ξ , 3.02 =ξ , 12.0=b , 

5=γb  and T)25.075.05.275.025.0(=W . The frustration signal was limited in 

accordance with its definition domain ];[ maxmin fff ∈ , where 0min =f  and 18max =f  

(Tsankova, 2001).  
The robot, controlled by the immune navigator without emotional intervention, was 
simulated, and the results from the simulation are shown in Fig.8. The symbols ∗ , ×  and o  
denote the goal position, as well as the initial and final position of the robot, respectively. 

The robot orientation with respect to the inertial basis is denoted by θ . The measuring units 

on the two axes of the robot’s rectangular work area are metres. Different behaviours were 
obtained by suppressing some antibodies of the immune network shown in Fig.4. For 
example, obstacle avoidance behaviour (Fig.8a) was derived by suppressing the goal-
oriented antibodies from 7 to 12, and for achieving wall following behavior (Fig.8b) the 
antibody 1 was additionally suppressed. As a result of suppressing the obstacle-oriented 
antibodies from 1 to 6, goal following behaviour was evoked (Fig.8c). When all 12 antibodies 
interacted (without any external inhibition) the resultant behaviour was a collision-free goal 
following behaviour (Fig.8d).   
Fig.9a shows another simulation result of a robot with an immune navigator without 
emotional intervention. Although all antibodies interact without any external inhibition, the 
robot sometimes gets stuck in small corners, dead ends, and narrow passages. Fig.9b 
illustrates a better performance of the robot in the same environment, when it is equipped 
with the proposed emotionally affected immune navigator. On the basis of amygdala’s 
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frustration level f  the regulation output  navγ  influences the immune network by 

suppressing, stopping or reversing the goal following behaviour, and thus focuses the 
attention on the avoidance of obstacles in critical situations. The amygdala (in high 
frustration) stimulates wall following behaviour rather than obstacle avoidance (the 
antibody 1 is suppressed simultaneously with the goal following antibodies from 7 to 12)  
(Fig.6). This behaviour proves to be more successful than the obstacle avoidance in respect 
to increasing the probability for overcoming some closed-loop situations. For easier 
understanding of the effect of emotional intervention on the immune navigator, the 
transitions of the activity of frustration and the regulation output of the amygdala in the 
case of Fig.9b are calculated. The results are shown in Fig.10, where the letters from "A" to 
"J" correspond to those in Fig.9b. The frustration level increases when the robot reaches an 
impasse, and the goal following activity decreases. The robot could resign the goal 

pursuing. The maximum possible value of frustration 18max =f  (or near it) in the intervals 

“AB”, “CD”, “EF”, “GH”, and “IJ” corresponds to a “near-dead-end” situation (the obstacle 
is exactly between the robot and the goal, in front of the robot, in the role of a bracket) or a 
“narrow passage” situation.  
 
 

0 0.2 0.4 0.6
0 

0.2 

0.4 

0.6 

0.8 

(a)

0 = θ 

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

0=θ

(b)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

2
−= πθ −

0=θ

4
−= πθ −

=θ
2
π−

0=θ

=θ
2
π−

=θ
2
π−2

−= πθ −

0 0.2 0.4 0.6 
0

0.2

0.4

0.6

0.8
2 − = π θ − 

0=θ

= π θ 

* 

*

(c) (d) 

 

Figure 8. Obstacle avoidance (a), wall following (b), goal following (c), and collision-free 
goal following (d) behaviours 
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Figure 9. Immune navigator: (a) - independently acting, and (b) - emotionally influenced 

www.intechopen.com



Emotional Intervention on Stigmergy Based Foraging Behaviour 
of Immune Network Driven Mobile Robots 

 

533 

 

0

2 

4 

6 

0
500

1000
1500

2000
0

5

10

15

20

u 

Number of steps

fr
u

st
ra

ti
o

n
 

A 

B

C 

D

E

F

G

H

I

J

(c)

0 500 1000 1500 2000
0 

10 

20 

Number of steps

fr
u

st
ra

ti
o

n
 A B C D E F G H I J

(a)

0 500 1000 1500 2000
-1 

0 

1 

Number of steps

γ (b)

 

Figure 10. Transition of frustration/regulation output of amygdala used in simulations in 
Fig.9b 
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The change of the frustration signal of the amygdala (5) versus the simultaneous time (number 
of steps) and the weighted sum of sensor readings u  is shown in Fig.10c. In this figure the 

intervals marked with the same colour "o" sign correspond to the high frustration level of the 

amygdala. When u  increases, the value of u  in which f  changes drastically (the threshold) is 

higher than it is when u  decreases. This hysteresis (Fig.10c) is due to the dynamics of the 

amygdala (5). Therefore, the amygdala remembers for a certain period of time "the fear of 
encountered obstacles" (or the enhanced puck concentration – for EM2 in Algorithm V). The 
immune navigator can benefit from the short-term memory of the amygdala in a mixed 
structure composed of the immune network and the emotional mechanism. 
In case of absence of obstacles the artificial amygdala does not influence the action selection 

mechanism, because 1=γ  and equation (7) is the same as (2). When obstacles are present 

the goal following behaviour is switched off ( 0=γ ) and the robot focuses attention on the 

avoidance of obstacles (wall following behaviour or obstacle avoidance).  The value 1−=γ  

usually corresponds to hard situations when a large obstacle is situated between the robot 
and the goal. In this case the antibody (from the goal-oriented antibodies), corresponding to 
the goal direction, has the least probability to win. However, since the detected obstacle is 
possibly situated in this direction too, the avoidance of the obstacle will be facilitated. Thus 
in a critical situation the robot forgets about the goal that could cause it to get stuck, and 
focuses attention on the avoidance of obstacles in order to get out of the impasses. Besides, 
the emotion mechanism EM1 provides the immune navigator with an additional (small 
amount of) memory about the obstacles recently met. The navigation becomes more careful, 
which helps the robot to avoid getting stuck.  
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Additionally, thirty experiments in three different environments (as shown in Fig.11), were 
carried out with the mobile robot being equipped with the following navigators: (1) 
emotionally influenced Braitenberg's architecture No.3c, (2) artificial immune network, and 
(3) emotionally affected immune network. The structures and parameters of the first 
navigator were the same as in Refs. (Tsankova, 1999; Tsankova, 2001). In each sample, the 
robot started from a random initial position and orientation, and had to reach the goal, 
which was also at a random position. The success ratio of the emotionally affected immune 
navigator was higher than that of the others (87% vs. 60% (emotionally affected 
Braitenberg's vehicle No.3c) and 77% (immine navigator without emotional intervention)). 
At the same time the emotionally affected immune navigator was faster (the average time in 
steps) about 1.16 and 1.38 times in comparison to the others, respectively (Table 1). The 
emotionally affected immune navigator had better manoeuvring in narrow passages and 
Π -shaped obstacles (a very difficult test for the agents with local vision and reactive 
behaviour, because it often causes an impasse) than the others. Perhaps this is due to the 
artificial amygdala’s property to function as a short-term memory for the fear of 
encountered obstacles. Besides, the way in which the emotion mechanism EM1 is connected 
to antibodies reinforces the emerging of wall following behaviour (very useful for 
overcoming impasses).   
The very good performance of the emotionally influenced immune navigator compared 
with the other two intelligent navigators considered above confirmed the reason to use the 
emotional intervention for navigation purposes and to transfer it to puck picking 
up/dropping behaviour control in a stigmergy based foraging task. 
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Figure 11. Experimental environments 

Emotionally affected 
Braitenberg No. 3c 

Immune network 
navigator 

Emotionally affected 
immune navigator 

Success [%] Time [steps] Success [%] Time [steps] Success [%] Time [steps] 

60 2063 77 2460 87 1784 

Table 1. Simulation rezults. Each navigator is presented by the average values from thirty 
experiments, distributed in the environments shown in Fig.11  

7.2 Experiments with the five control algorithms   

The five control algorithms described above in Section 3 were simulated in MATLAB 
environment. The use of the first three of them gives a basis for comparison with the last 
two algorithms, whose purpose is to improve the speed of the puck foraging process. The 
expectations are that speeding up is to be achieved by: (1) improvement of the collision-free 
goal folowing behaviour by EM1, and (2) reinforcement of the positive feedback from the 
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stimuli (minimum/maximum puck concentration) by both  EM2 and EM1. The foraging 
task included gathering pucks in a pile by one robot, working alone, and by two robots 
working simultaneously.  
Simulations of puck gathering behaviour by two robots with the first control algorithm 
(with random walks) are shown in Fig.12. As Beckers et al. (1994) have specified, the 
experiments have three more or less distinct phases, regardless of the number of robots. In 
the beginning there are only single pucks on the arena (Fig.12a). In the first phase, a robot 
moves forwards scooping one puck into the gripper. When two pucks have been gathered, 
the robot drops them, leaving them as a cluster of two, and moves off in another direction. 
Shortly after that most pucks are in small clusters with less probability to be destroyed 
(Fig.12b). In the second phase, the robot removes one puck from clusters by striking the 
clusters at a certain angle with the gripper. The puck removed in this way is added to other 
clusters when the robot collides with them. Some clusters increase rapidly at this phase and 
after some time there is a small number of relatively large clusters (Fig.12c). The third and 
most prolonged phase consists of the occasional removal of a puck from one of the large 
clusters, and the addition of this puck to one of the clusters, often to the one it had been 
taken from (Fig.12d,e). As a result, a single cluster is formed (Fig.12f). Spatiotemporal 
structures appear in an initially homogeneous environment, and one of the signs of self-
organization is present. 

0 0.5 1

(e)

0 0.5 1 1.5
0 

0.5 

1 

1.5 
(a)

0 0.5 1 1.5
0

0.5

1

1.5
(c) 

0 0.5 1 1.5

(b)

0

0.5

1

1.5

0

0.5

1

1.5

0 0.5 1 1.5

(d)

0 

0.5 

1 

1.5 

1.5 0 0.5 1 1.5

(f) 

0

0.5

1

1.5

 

Figure 12. The initial setup (a) and time evolution of a foraging experiment involving two 
robots. Phase I (b) is characterized by a large number of small clusters consisting of 1 to 6 
pucks. In phase II (c) some clusters grow rapidly. Phase III (d, e) includes competition 
between a small number of large clusters and leads to gathering of all pucks in one pile (f) 
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The puck dropping mechanism recognizes only a predetermined threshold of puck density 
– two pucks. It cannot differentiate between the local concentration of two pucks and more 
than two pucks. Stigmergic mechanism organizes the transfer of pucks from smaller to 
larger clusters, although the robots under the first control algorithm are unable to 
discriminate between them with their sensors. The cluster gains pucks from more "frontal" 
collisions of the robots with it, and loses pucks from almost tangential collisions. The 
probability for a frontal or tangential collision with a random cluster to be produced 
depends on the size, shape and position of the cluster. Larger clusters are more likely to gain 
pucks and less likely to lose pucks than smaller clusters. Due to the constant number of 
pucks in the environment, in the end all the pucks will be gathered in a single cluster. If the 
experiment goes on, a puck will occasionally be removed from this single cluster, but it will 
be returned to it as there is no other pucks in the environment which can trigger the puck 
dropping behaviour.  
In the second control algorithm the random walks are replaced by purposeful moves, taking 
into account the perceived maximum/minimum concentration of pucks. Under the 
direction of the place with maximum puck density the robot assumes the direction, 

corresponding to the sector iS , whose reading iC  has counted  the most of pucks (it makes 

no difference whether they are situated in one cluster or not). The direction of the place with 
minimum (non-zero) puck density is determined in a similar way. The robot with an empty 
gripper goes to the place with minimum (non-zero) concentration of pucks, scooping one 
puck into the gripper. If there is a puck in the gripper, the robot turns to the place with the 
maximum pucks and goes forward. The substitution of the random walks with purposeful 
moves does not violate the stigmergic principles, and only suppresses time-consuming 
wandering around in an area without pucks. In the third control algorithm the immune 
navigator implements a collision-free goal following behaviour. The goal directions are the 
directions with maximum and minimum puck concentrations, depending on the availability 
or the absence of a puck in the gripper, respectively. However, since the immune network 
makes decision at the system level, it can assign to the robot a target direction, different 
from the minimum and maximum puck heaping directions. The innovation in the fourth 
control algorithm - the emotional intervention (by EM1) on the immune navigator, leads to 
some improvement of the collision-free goal following behaviour, as it was discused in the 
previous Subsection 7.1. That includes more successful avoidance of obstacles (the boundary 
of working area and the other robot) and also tracking the directions of the 
maximum/minimum puck concentration.   
The advisor (EM2) for the puck dropping behaviour is the basic innovation in the fifth 
control algorithm. In fact advices are followed unconditionally as a permission or 
prohibition of this behaviour. If the conditions for puck dropping are available, then,  in 
comparisson with the previous algorithms (from I to IV), here EM2 prohibits dropping the 

puck if its regulation output 1prohibit
droppingpuck =γ , which can occur  when the robot moves from a 

place with a lower puck concentration to a place with a higher one and the frustration is low 
( u  is under a certain threshold). This prevents the robot from dropping a puck when it 

encounters a single puck or a small cluster, during motion towards a larger cluster. The 
robot will drop the retained puck most probably into that large cluster (where 

0prohibit
droppingpuck =γ ). However, in the opposite direction, the threshold is lower (because of the 

hysteresis, which was shown in the example, illustrated in Fig.10c). Therefore, if there is a 
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puck taken from the large cluster, the robot will drop it in the immediate vicinity of the 
cluster (in the frame of the frustration's hysteretic zone). That may decrease the probability 
of destroying the large cluster. The two actions speed up the formation of large clusters. 
Therefore, EM2 reinforces once again the positive feedback from stimuli, giving the global 
perception of puck concentration certain superiority to the local one. And the result is 
present – speeding up the puck foraging process, which is evident from Fig.13, illustrating 
the time evolution of a foraging experiment involving two robots with the same control 
algorithm. The parameters of the Amygdala 2 in EM2 were the same as those of the 
Amygdala 1 (EM1), except for the upper limiting value of frustration, which here was set to 

be 9max =f . 
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Figure 13.  The time evolution of a foraging experiment involving two robots with the two 
emotional mechanisms EM1 and EM2 (Algorithm V): (a) 1 min, (b) 2 min, (c) 3 min, (d) 4 
min, (e) 5 min, and (f) 7 min 

Fig.14 illustrates the behaviour of one robot working alone for 1.5 min duration, starting 
from the initial setup of pucks under a navigation algorithm based on: (a) random walks, 
and (b) emotionally influenced immune network. The robot with the emotionally influenced 
immune navigator carried out a specific circular movement, foraging pucks from the 
periphery to the centre (Fig.14b) and thus forming a central pile (Fig.13f). This effect has 
been observed in simulations involving a robot equipped only with an immune navigator 
(Tsankova et al., 2007). Maybe this is due to the wall following emergent behaviour, which 
appears under immune network navigation control and which is reinforced by the EM1. 
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The simulation experiments with the five control algorithms, involving either one robot 
working alone, or two robots working simultaneously, led to gathering all pucks in a single 
pile, located in a random place. The two robots working simultaneously finished the task 
faster than the solitary one. The average values of (1) the number of clusters and (2) the 
maximum cluster size from the four experiments with the five control algorithms are shown 
in Fig.15. The results from these experiments are given in Table 2. The performance of the 
algorithms is assessed on the basis of the foraging time. The assessment values are the 
average values of the final foraging time from the four experiments with one solitary 
working robot and two robots working simultaneously. It is evident that the foraging time 
decreases drastically from the first to the fifth control algorithm. The achievement of the two 
robots equipped with the two emotional mechanisms EM1 and EM2 (Algorithm V) and 
working simultaneously is the best. Unfortunately, the proposed control method, 
represented by Algorithm V, as the other ones (except for the method, using random walks), 
relies on a simulated detector for puck concentration, whose physical realization is still an 
open issue. 
 

Time [min] 
Algorithms 

1 Robot 2 Robots 

I. Stigmergy with random walks 1174 705 

II. Stigmergy with enhanced sensing of puck concentration 189 109 

III. Stigmergy with an immune navigation control 18 13 

IV. Stigmergy with an emotionally influenced immune navigation 15 9 

V. Stigmergy with two artificial emotion mechanisms 10 7 

Table 2. Performance of the five control algorithms, described in Section 3. The foraging time 
is presented by the average value from four experiments  

 

 

0 0.5 1 1.5
0

0.5

1

1.5
(b)

0 0.5 1 1.5
0

0.5

1

1.5
(a)

 

Figure 14. Simulation of a foraging behaviour of one robot working alone for 1.5 min 
duration, starting from the initial setup of pucks under navigation algorithm using: (a) 
random walks, and (b) emotionally influenced immune navigator 
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Figure 15. Time evolution of the number of clusters and the size of the biggest cluster for 
experiments with the five algorithms  

8. Conclusion  

The proposed stigmergy based foraging behaviour control using two artificial emotion 
mechanisms – one as a superstructure over the immune navigator, and another as an 
advisor of puck picking up/dropping behaviour, improves the speed of the clustering 
process. The intervention of the EM1 on the immune navigator improves the collision-free 
goal following behaviour of each robot, which affects the final implementation of the 
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foraging task. Besides, it enhances the positive feedback from the stimuli, since it improves 
the tracking of the direction of sensor reading for the minimum/maximum puck 
concentration. The intervention of the EM2 on the puck dropping behaviour reinforces once 
more the positive feedback from the places with maximum puck concentration. Future work 
will include the use of optimization techniques for parameter tuning of the amygdala model 
of the emotional mechanisms EM1 and EM2, as well as of the immune network. It is also 
necessary to experiment with the proposed emotionally influenced control on real immune 
network driven robots implementing a puck foraging task. This brings up the question of 
the physical realization of a detector, resembling the simulated sensor for puck 
concentration.  
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