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Abstract: Emotional dysregulation symptoms following a concussion are associated with an increased
risk for emotional dysregulation disorders (e.g., depression and anxiety), especially in adolescents.
However, predicting the emergence or worsening of emotional dysregulation symptoms after concus-
sion and the extent to which this predates the onset of subsequent psychiatric morbidity after injury
remains challenging. Although advanced neuroimaging techniques, such as functional magnetic
resonance imaging and diffusion magnetic resonance imaging, have been used to detect and monitor
concussion-related brain abnormalities in research settings, their clinical utility remains limited.
In this narrative review, we have performed a comprehensive search of the available literature re-
garding emotional regulation, adolescent concussion, and advanced neuroimaging techniques in
electronic databases (PubMed, Scopus, and Google Scholar). We highlight clinical evidence showing
the heightened susceptibility of adolescents to experiencing emotional dysregulation symptoms
following a concussion. Furthermore, we describe and provide empirical support for widely used
magnetic resonance imaging modalities (i.e., functional and diffusion imaging), which are utilized to
detect abnormalities in circuits responsible for emotional regulation. Additionally, we assess how
these abnormalities relate to the emotional dysregulation symptoms often reported by adolescents
post-injury. Yet, it remains to be determined if a progression of concussion-related abnormalities
exists, especially in brain regions that undergo significant developmental changes during adolescence.
We conclude that neuroimaging techniques hold potential as clinically useful tools for predicting and,
ultimately, monitoring the treatment response to emotional dysregulation in adolescents following
a concussion.

Keywords: concussion; adolescence; post-concussion symptoms; emotion dysregulation; functional
MRI; resting state MRI; diffusion MRI

1. Introduction

Concussion, also known as mild traumatic brain injury (mTBI), is defined as a transi-
tory disturbance in brain functioning due to complex pathophysiological processes induced
by a traumatic event [1,2]. Sport- and recreation-related concussions represent the ma-
jority of these injuries in children and adolescents, affecting 1.9 million youth in the U.S.
each year [3]. Diagnosing concussions and determining clinical recovery depend on an
individual-centered approach. In this approach, identifying an ‘injury state’ depends on
the presence of concussion symptoms that began immediately following the traumatic
event. Common concussion symptoms include headache, fatigue, dizziness, nausea, mem-
ory difficulties, sleep disturbances, and changes in mood and personality [4]. Thus, the
self-reporting (or caregiver-reporting) of these symptoms is a fundamental part of this
diagnosis. This is complicated by the subjective nature of the symptom reporting (and,
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thus, by the possibility of patients over- or under-reporting their symptoms) and by the
absence of objective diagnostic tests and/or biological markers of concussion [5]. As a
result, a high percentage of concussions may go undiagnosed. In contrast, an equally
high portion of those with new or preexisting psychiatric symptoms may be erroneously
diagnosed with a concussion [6]. This becomes even more complicated in adolescents,
where an undiagnosed or unresolved concussion might increase the risk of downstream
consequences (e.g., prolonged symptoms, academic difficulties, and, less commonly, second
impact syndrome or negative outcomes) [4,7] in developing brains.

On average, concussion symptoms in youth resolve within the first two weeks of in-
jury [3,8,9]. However, in some instances, symptoms persist for longer, leading to Persistent
Post-Concussion Symptoms (PPCS). Adolescents typically take longer (i.e., around four
weeks) to recover from a concussion than children and adults [10–12], with adolescent girls
taking the longest [13]. The longer recovery time can increase the impact of concussion on
this age group. This may lead to persistent symptomatology, with approximately 21–35% of
concussed adolescents developing PPCS [14–16]. PPCS in adolescents can adversely affect
social functioning and academic performance [4] and are often associated with emotional
dysregulation [17,18].

It is important to note that due to the rapid development of limbic regions prior to
adolescence and the more gradual development of the prefrontal cortex throughout adoles-
cence, this age period is considered a window of heightened vulnerability for psychiatric
morbidity. The imbalance in maturity between limbic regions and the prefrontal cortex is
thought to contribute to the typical difficulties in regulating emotions and behaviors that
occur during adolescence (see Figure 1) [19]. Therefore, sustaining a concussion during
adolescence may increase susceptibility to emotional dysregulation in this age group. De-
spite substantial progress in identifying the clinical outcomes of concussion [20–22], the
complex pathophysiologic mechanisms underlying emotional dysregulation symptoms are
poorly understood in both pediatric and adult samples.
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Emotional regulation refers to the ability to monitor, evaluate, and adapt behaviors in
response to emotional stimuli [23]. Emotions are patterns of perceptions, experiences, and
reactions to challenging situations, and the dynamic cycle of perception, evaluation, and
response changes continuously [24]. This adaptive function may help or harm someone,
depending on how well emotions are regulated. Controversial among researchers is
whether concussed patients develop emotional dysregulation symptoms as (1) a direct
result of injury to brain regions involved in emotional regulation circuits, (2) a secondary
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effect of frustrations and/or uncertainty associated with their injury, or withdrawal from
sports participation, and/or (3) because of a preexisting vulnerability.

Neuroimaging techniques, including computed tomography and magnetic resonance
imaging, have been widely used to objectively characterize neurodevelopmental changes as
they occur throughout the lifespan [25–28]. Neuroimaging has also been extensively used
to detect brain abnormalities in concussed samples [29,30]. An emerging line of research
further indicates that detecting abnormalities in emotional regulation regions may help
explain anxiety symptoms in adolescents following concussion [29]. However, using these
techniques is currently clinically indicated as neither a diagnostic nor a prognostic tool
for concussion [30,31]. There are practical challenges to including advanced neuroimag-
ing techniques in clinical practice [31], including (1) high costs for implementation and
maintenance, (2) prolonged time to collect neuroimaging data that does not match current
workflows, and (3) specialized training needed to properly interpret findings. Their use
is also often inaccessible in clinical practice, contributing to their limited use in clinical
settings. Nonetheless, neuroimaging techniques offer an objective way to identify neural
correlates of concussion and/or predict outcomes in adolescents [30] and hold promise in
further helping to disentangle the contribution of concussion-related brain abnormalities
from changes associated with normative adolescent development, typical of this period.
Demonstrating the utility of neuroimaging to identify abnormalities associated with emo-
tional dysregulation in adolescent concussions may promote the use of neuroimaging in
clinical practice.

The goal of this narrative review is to highlight current evidence on the utility of
advanced neuroimaging techniques in investigating emotional dysregulation in adolescents
following concussions. To this end, we provide a comprehensive narrative review of
the available literature in electronic databases (PubMed, Scopus, and Google Scholar)
using keywords such as concussion, post-concussion symptoms, emotional dysregulation,
psychological symptoms, psychiatric symptoms, mood symptoms, depression, anxiety,
neuroimaging, functional magnetic resonance imaging, and diffusion magnetic resonance
imaging. An additional search was conducted using keywords such as children, adolescent,
adolescence, youth, and adult to identify studies reporting findings in different age ranges
between 2010 and 2023. To provide the reader with a conceptual framework, we will
(1) review emotional dysregulation following concussion from a neurodevelopmental
perspective; (2) provide an overview of how the employment of different neuroimaging
modalities could enhance our understanding of the neuropathophysiological mechanisms
driving emotional dysregulation in adolescent concussion; and (3) highlight neuroimaging
findings linking concussion and emotional dysregulation from the existing literature. With
this work, we seek to convey the breadth and depth of available research on the utility of
advanced neuroimaging techniques in investigating emotional dysregulation in adolescent
concussions. Additionally, we aim to identify research gaps and provide recommendations
for future research in this area.

2. Emotional Dysregulation following Concussion

In the early—acute (<72 h) and sub-acute (72 h to 1 week)—stages of concussion,
symptoms tend to be global in nature and reflect overall injury severity [32]. After the first
week, symptoms typically cluster into more distinct clinical profiles—i.e., cognitive/fatigue,
vestibular, ocular-motor, headache/migraine, cervical, and anxiety/mood [33]—with emo-
tional dysregulation symptoms among the most challenging for clinicians and practitioners
to recognize [34,35] and address [36]. With estimates ranging from 7% to 36%, emotional
dysregulation symptoms in concussion are highly non-specific. These symptoms include
anxiety, depression, affect lability, irritability, hostility, impulsivity, and personality changes.
Prominent in mood and anxiety disorders, these symptoms are typically transient in con-
cussion, resolving within one to two weeks of injury [32]. However, in some adolescents,
these symptoms persist for longer (more than four weeks), with a significant minority
experiencing emotional dysregulation symptoms up to one year post-injury [17,18,37,38].
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For example, in a large (N = 14,765) sample of high school students in the United States,
36% of students with a concussion history reported persistent depressive symptoms for up
to 12 months [35].

Research over the past decade has helped inform practitioners that depression [12,39,40],
anxiety [40,41], posttraumatic stress disorder (PTSD) [42], substance use [43], and suicidal
ideation or attempts [44–46] are prevalent in adolescents with a history of concussion. Nonethe-
less, estimates of psychiatric morbidity following concussion continue to vary (for recent
reviews, see [47,48]), partly reflecting the challenges of identifying psychiatric symptoms in
individuals without a preexisting psychiatric condition [49]. The heterogeneity of screen-
ing tools is another likely contributor to this variability, as these tools (e.g., Patient Health
Questionnaire-9 and General Anxiety Disorder-7) [50,51] tend to be used in place of more
rigorous structural clinical interviews or psychiatric rating scales in routine assessments of
concussion [49]. Thus, while there has been substantial progress in understanding the clinical
outcomes of concussion, it remains unclear whether we can identify patients at high risk for
psychiatric morbidity following a concussion, especially adolescents.

3. Neural Correlates of Emotional Regulation

In the brain, ventro-limbic and dorso-limbic systems are involved in processing and
regulating emotions (see Figure 2) [52]. The ventral system is primarily involved in coordi-
nating information from the cortex, evaluating the salience of a stimulus, and eliciting an
emotional state in response to the stimulus [53,54]. The amygdala plays a central role in
the ventral system by evaluating emotional valence stimuli based on previously learned
experiences [55–57]. The dorsal system is primarily involved in regulating emotional states
and their associated behaviors [58,59]. The dorsal anterior cingulate gyrus is a hub within
the executive functioning network [60], while the ventral striatum plays a key role in
reward and reinforcement learning [61,62].
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Figure 2. Schematic diagram of emotion perception. This figure displays the brain regions important
for the processes underlying emotion perception. Abbreviations: DLPFC, dorsolateral prefrontal
cortex; DMPFC, dorsomedial prefrontal cortex; ACG, anterior cingulate gyrus; VLPFC, ventrolateral
prefrontal cortex (Figure reproduced with permission from Ref. [52]. Copyright 2003 by Society of
Biological Psychiatry).

Within and between these systems, the subregions of the prefrontal cortex are di-
rectly and indirectly connected to other cortical and subcortical regions by major white
matter tracts [59]. The inferior longitudinal fasciculus connects the occipital lobe with
the medial temporal regions to attribute emotional salience to visual stimuli [63]. The
uncinate fasciculus connects subcortical limbic regions with different subregions of the
prefrontal cortex to regulate emotions and plan complex behaviors [64]. The cingulum
bundle connects subcortical limbic regions with the cingulate cortex and is associated with
emotional processing, emotional regulation, and executive functioning [64–71].
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During adolescence, prefrontal cortical regions undergo significant structural and
functional changes [72]. As adolescents transition from childhood to adulthood, the combi-
nation of pubertal and environmental factors (e.g., the rise of sex hormones, exposure to
new experiences, social interactions, and acquisition of new skills) promote the strengthen-
ing or weakening of the connections within and between these systems [73]. The ability of
the brain to reorganize its structure and function in response to environmental demand is
referred to as brain plasticity [73]. The plastic changes that, during adolescence, occur in
the prefrontal cortex support higher-order cognitive functions such as emotion regulation,
decision-making, and social behavior [74]. The learning of new skills and the acquisition
of new competence during this developmental period are key to adaptation [75]. While
plasticity is beneficial for positive adaptation, it also increases the vulnerability of these
systems to neurological injuries, such as concussions [76].

4. Role of Neuroimaging in Concussion

Concussions can damage the brain by either direct collision or the acceleration/deceleration
forces associated with impact [77]. Direct collisions can cause diffuse damage due to the propa-
gation of waves through the brain [78]. Biochemically, the effect of these forces on the brain is
thought to activate a ‘neurometabolic cascade’ of events that, following the sheering/disruption
of neuronal membranes, involves non-specific depolarization, the release of neurotransmitters
(particularly excitatory amino acids), and the influx/efflux of ions such as calcium, magnesium,
and potassium across the neuronal cytoplasmic membrane [78–80]. Concomitantly, there is a
physiological decrease in cerebral blood flow [81]. The rapid and dynamic forces associated
with the impact can cause profound geometric distortions and microscopic damage to the
axon cytoskeleton of white matter fibers (diffuse axonal injury). This type of injury is usually
associated with axonal dysfunction [82]. Frontal, temporal, and occipital midline brain regions
are particularly vulnerable to acceleration and deceleration forces [83].

Neuroimaging procedures offer a way to examine the pathophysiologic processes of
concussion in vivo. Quick and capable of detecting a broad spectrum of pathologies, com-
puted tomography is the current standard neuroimaging procedure for brain injuries on
the day of injury. However, patients with concussion typically undergo neither computed
tomography nor ‘conventional’ magnetic resonance imaging as the diagnostic capacity of
these procedures for mild forms of brain injury is limited [84]. In fact, computed tomogra-
phy is not suitable for the detection of developmental changes occurring in the adolescent
brain or pathophysiological processes characteristic of acute, subacute, or chronic stages
of concussion [31,85]. These limitations significantly restrict the clinical utility of this
technique in concussion. Current guidelines for adults and pediatrics (e.g., the American
Medical Society of Sports Medicine) recommend clinical neuroimaging only when there is
concern about intracranial hemorrhage [31]. Magnetic resonance imaging is also widely
used in clinical settings as an essential tool for diagnosing and monitoring a wide range of
medical conditions. Technological advances in magnetic resonance imaging have led to im-
provements in image quality through the use of higher magnetic fields (3 Tesla and above)
and a decrease in scanning time. Techniques such as GeneRalized Autocalibrating Partially
Parallel Acquisitions—GRAPPA, SENsitivity Encoding—SENSE, and/or Simultaneous
Multi-Slice Imaging—SMS enable the acquisition of high-quality images in a relatively short
period of time. Of the magnetic resonance imaging modalities, functional and diffusion
magnetic resonance imaging have been widely used to characterize different properties of
the brain functioning and structure, ranging from normative brain development to medical
conditions [86–89].

Over the past fifteen years, the employment of advanced magnetic resonance imag-
ing methods has promoted a better understanding of the pathophysiologic mechanisms
of concussion. Their use in longitudinal designs is likely to shed light on important
mechanisms underpinning the acute, sub-acute, and chronic stages of concussion. For
example, in adolescence, these approaches are well-suited to determine if a progression of
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concussion-related abnormalities exists in chronic stages of concussion after disentangling
the contribution of the neurodevelopmental changes typical of these ages.

4.1. Functional Magnetic Resonance Imaging

Broadly, functional magnetic resonance imaging measures the hemodynamic response,
the Blood-oxygen-level-dependent (BOLD) signal, as a proxy of neural activity. This activity
corresponds to the oxygen consumption of firing neurons, and it can be assessed either
during rest (resting state magnetic resonance imaging) or during task performance (task
magnetic resonance imaging) [90,91]. In addition, these methods allow for identifying the
temporal correlation between brain regions and quantifying their functional integration or
connectivity [90,91].

When analyzing resting-state magnetic resonance imaging, researchers generally focus
on functional segregation or functional integration across networks [92–96]. Different statisti-
cal approaches have been proposed to investigate these aspects of brain activity. Functional
segregation examines regional characteristics of the brain and divides these regions based
on their functionality [92–96]. Proposed approaches involve identifying (1) the Amplitude of
Low Frequency Fluctuations (ALFF) for individual regions or (2) the Regional Homogeneity
(ReHo) or synchronization between regions and their nearest neighbors [92–96]. Functional
integration measures the connectivity and synchrony between different regions of the
brain [92–96]. This connectivity can be direct (a structural pathway connecting two regions)
or indirect (a connection between two regions is mediated by another region) [92–96].
Common approaches to assessing functional integration are Independent Component
Analysis (ICA) and Graph theory analysis [92–96]. ICA involves separating the functional
signal into independent functional networks based on synchronized BOLD activity and
measuring the connectivity within such networks [92–96]. Graph theory analysis models
the brain as a network of nodes and edges [92–96]. Nodes indicate the brain regions and
the edges indicate the connection between these brain regions [92–96]. Within these models,
several features are measured, including path length (number of edges), clustering (local
neighborhood connectivity), and small-world (connectivity between nodes when most of
them are not directly connected but can be reached through a few connections) [92–96]. In
concussion, these methods are suitable for identifying region-specific or network-based
changes following injury, how brain networks adapt to the functional changes associated
with concussion, and whether changes in connectivity patterns are implicated in the pres-
ence or persistency of symptoms, including emotional dysregulation symptoms. Resting
state studies in adolescents who sustained a concussion have shown hyperconnectivity
and hypoconnectivity compared to controls, depending on the regions studied [97–100].
Hyperconnectivity has been found within posterior regions (e.g., precuneus and cerebel-
lum) [99] and between the salience network and cerebellum [98]. Hypoconnectivity has
been found within anterior regions (inferior and middle frontal gyrus) [99], between the
dorsal attention network and inferior frontal gyrus [100], within the default mode network
(involved with episodic memory and emotional processing) [97], and between the salience
network and the thalamus [98]. However, the correlation between clinical measures and
resting state abnormalities has yet to be extensively studied.

Task magnetic resonance imaging maps the response of the brain to tasks administered
during imaging collection [101]. Different tasks have been used in humans to engage
functionally distinct brain regions while performing a given task. These tasks include
the stop signal, which assesses response inhibition by measuring the reaction time to
stop and go trials [102]. The monetary incentive evaluates the anticipation and feedback
processing of rewards that depend on task performance [103]. Additionally, the emotional
face N-back task examines attentional control during a memory task while presenting
emotional distractors such as happy, fearful, and neutral faces [104]. In essence, the
increased bold signal change elicited by a task (hyperactivation) is thought to reflect neural
activity associated with the recruitment of greater brain resources or a compensatory
response required to maintain task performance. On the other hand, decreased bold
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signal change elicited by the same task (hypoactivation) is thought to reflect difficulties
in allocating resources to perform this task [101,105]. In concussion, this approach allows
us to understand how the brain functionally responds to the direct or indirect effects (e.g.,
neurometabolic changes) of injury and which patterns of brain activity may help explain
the cognitive and emotional challenges adolescents face following injury. Task magnetic
resonance imaging findings suggest that those with concussion need to recruit more brain
resources to sustain working memory [106–114] and attention [115,116] when compared
to controls. In adolescents with concussion, poorer working memory is associated with
reduced cortical activation, especially in the dorsolateral prefrontal cortex [117–119].

4.2. Diffusion Magnetic Resonance Imaging

On the other hand, diffusion magnetic resonance imaging provides indices of tissue
microarchitecture by measuring the diffusion imaging properties of the water molecules
in the brain tissue [120–122]. This technique enables the study of structural connectivity
between brain regions. Fractional anisotropy is the most common metric used in diffusion
magnetic resonance imaging, indexing the structural collinearity of the fibers and/or their
integrity—e.g., damage to axon membranes or myelin sheaths [121,122]. It reflects the
preponderance of the water motility along the principal diffusion direction (axial diffusivity)
over secondary diffusion directions that are transverse to the axial diffusivity (i.e., radial
diffusivity) within a voxel.

Advances in diffusion magnetic resonance imaging have increased our ability to
characterize micro- and macro-structural properties of different brain tissues and detect
abnormalities across different medical conditions (e.g., diffuse axonal injury, transitory
ischemic attack, stroke) [123,124]. State-of-the-art diffusion imaging protocols collect a high
number of diffusion gradient directions (i.e., High Angular Resolution Diffusion Imaging;
HARDI) that allow resolving the crossing fiber issue, for which the tensor model remains
agnostic. Recent recommendations suggest including multiple b-values (i.e., multishell
diffusion imaging [86,125] and Diffusional Kurtosis Imaging; DKI) that, by using multiple
concentric shells, can either inform on the fine-grained micro-structural properties of the
brain tissues or quantify the deviation of diffusion imaging properties from Gaussian
behavior. Specifically, by using different b values, it is possible to better account for the
effect of noise in the diffusion imaging data [87,126,127]. These advanced protocols allow
for the employment of multi-tensor models and cutting-edge mathematical algorithms, such
as Multishell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) and Neurite
Density Dispersion Imaging (NODDI). MSMT-CSD is a diffusion imaging model that
maximizes the precision of the fiber orientation distribution function in white matter voxels
and minimizes partial volume bias in voxels containing gray matter and/or corticospinal
fluid [128–130]. NODDI allows for the compartmentalization of the diffusion imaging
signal in intra- (i.e., axons and dendrites) and extra- (i.e., glia, cerebrospinal fluid) neuritic
spaces, leading to estimates of the microstructural complexity of different tissues in the
brain [131]. Notably, NODDI measures have been shown to be more sensitive than standard
diffusion tensor imaging measures (e.g., fractional anisotropy) to structural-developmental
changes in normative [25,132,133] and clinical [87–89,134–137] samples. Specific NODDI
metrics include the free-water isotropic volume fraction (FISO), reflecting the free water
volume fraction; the Neurite Density Index (NDI), reflecting the intra-neurite density; and
the Orientation Dispersion Index (ODI), reflecting the angular dispersion of neurites.

Studies using diffusion magnetic resonance imaging have found concussion-related mi-
crostructural abnormalities in several brain regions [138–140], including the corpus callo-
sum [141–163], internal capsule/anterior thalamic radiation [147,149,153,156,158,159,162–166],
and centrum semiovalis/superior longitudinal fasciculus [138,147,158,160,162]. Lower fractional
anisotropy in the inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus has
been associated with longer recovery time in adolescent concussion [167]. This is likely due
to a lack of long associative tracts and their integrative functions. In adolescents, diffusion
magnetic resonance imaging abnormalities have been detected up to a month post-injury despite
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improvements in cognitive ability, suggesting that these abnormalities may persist even after
full clinical recovery [168]. Yet, the long-term clinical implications of these findings remain
unclear. Few studies have applied NODDI to study concussion in adolescents. One study has
shown an association between lower NDI in the corpus callosum and increased brain-injury
blood markers (e.g., tau) in adolescent concussions [169]. Another NODDI study has shown that
concussion, when followed by poor quality sleep, is associated with decreased NDI in several
white matter tracts such as the cingulum bundle, optic radiation, striato-fronto-orbital tract, and
superior longitudinal fasciculus I. Furthermore, the study found that decreased NDI in these
tracts is associated with increased postconcussive symptom severity in adolescents [170].

4.3. Other Neuroimaging Modalities

While functional and diffusion imaging have been mostly used to document brain ab-
normalities in concussion, other modalities (e.g., susceptibility-weighted imaging, magnetic
resonance spectroscopy, and dynamic susceptibility contrast) have also been used.

Susceptibility-weighted imaging is susceptible to the parametric properties of different
blood products of micro- and macro-hemorrhage (e.g., deoxyhemoglobin and hemosiderin).
In concussion, employing this technique allows the detection of micro-hemorrhagic lesions
that would otherwise go unnoticed (so-called ‘non-hemorrhagic shearing injury’) [171].
Some studies have shown a relationship between the number and volume of acute hemor-
rhages and clinical outcomes in moderate/severe forms of traumatic brain injury. How-
ever, susceptibility-weighted imaging results are inconclusive for mild traumatic brain
injury/concussion (for recent reviews, see [30,171–174]).

Magnetic resonance spectroscopy is a metabolic imaging method that detects and quan-
tifies metabolites (e.g., N-Acetyl Aspartate, Choline, and Creatine) in the brain tissue [175].
In concussion, magnetic resonance spectroscopy allows for studying neurometabolic
changes associated with concussion-related lesions [172,176]. Low levels of n-acetyl aspar-
tate and high levels of choline have been interpreted as neuronal damage/stress and glia
abnormalities, respectively, in concussion. The magnitude of the changes has also been
associated with the severity of symptoms and history of previous concussions. In contrast,
the persistency of abnormalities after acute/subacute periods has been associated with
persistent post-concussion symptoms [172].

5. Magnetic Resonance Imaging Findings Linking Concussion and Emotional
Regulation from the Existing Literature

There has been a paucity of studies examining the structural and functional neural
changes accompanying emotional dysregulation in adolescent concussion, especially as
to whether detecting concussion-related abnormalities in the brain relates to psychiatric
vulnerability following concussion (Table 1). Important evidence of the relationship be-
tween brain structure and emotional dysregulation in concussion comes from animal
studies [177,178].

Table 1. Summary of Neuroimaging Studies on Concussion and Emotional Regulation.

Author(s) Year Title Sample Modality Findings

Dégeilh et al. [179] 2022 Social problems and
brain structure
trajectories following
pediatric mild
traumatic brain
injury

Children with (n = 224)
and without (n = 5736)
a history of
concussion; assessed
at 9–10 and
11–12 years old

sMRI Youths with a suspected history
of concussions had higher levels
of social problems than youth
without concussions. No
differences were found in cortical
thickness between youth with
and without concussion.



Int. J. Environ. Res. Public Health 2023, 20, 6274 9 of 21

Table 1. Cont.

Author(s) Year Title Sample Modality Findings

Lopez et al. [34] 2022 Association between
mild traumatic brain
injury, brain
structure, and
mental health
outcomes in the
Adolescent Brain
Cognitive
Development Study

Youth with concussion
(n = 199) and possible
concussion (n = 527);
assessed at 9–10, 10–11,
and 11–12 years old

sMRI Youths with a suspected history
of concussion had higher levels of
emotional and behavioral
problems than youths without.
Measures of brain structure did
not mediate the relationship
between concussion and
increased mental health problems.

Vasa et al. [180] 2015 Prevalence and
predictors of
affective lability after
paediatric traumatic
brain injury

Children and
adolescents with TBI;
N = 97; 4–19 years

sMRI Orbitofrontal cortex injury
predicted emotional and
behavioral problems 12 months
post-injury.

Max et al. [181] 2012 Depression in
children and
adolescents in the
first 6 months after
traumatic brain
injury

Youth with a history of
TBI (N = 177; 69% with
mild, 18% with
moderate, 54% with
severe TBI); 5–14 years
old

sMRI 11% of youth had new-onset
depression following injury; left
IFG and right frontal white matter
lesions were associated with
new-onset depression.

Wilde et al. [182] 2012 Longitudinal
changes in cortical
thickness in children
after traumatic brain
injury and their
relation to
behavioral
regulation and
emotional control

Children and
adolescents; n = 20
with TBI, n = 21 with
orthopedic injury;
7–18 years

sMRI Youth with TBI showed cortical
thinning over time; thinning in
the right medial frontal and right
anterior cingulate gyrus of youth
with TBI associated with poorer
emotional control over time;
thinning in the medial left frontal
lobe in youth with TBI associated
with poorer behavioral control
over time.

Stein et al. [118] 2021 Changes in working
memory-related
cortical responses
following pediatric
mild traumatic brain
injury: A
longitudinal fMRI
study

Youth with concussion;
N = 29; 8–18 years

fMRI Greater activation of DLPFC and
DMN was associated with
improved working memory
performance and fewer emotional
and behavioral problems between
1-month and 2-month post-injury.

Bohorquez-
Montoya
et al. [183]

2020 Amygdala response
to emotional faces in
adolescents with
persistent
post-concussion
symptoms

Adolescents with
concussion with PPCS
(n = 23) and without
PPCS (n = 13), and
healthy controls
(n = 15);
14–18 years old

fMRI Adolescents with PPCS had a
blunted amygdala response to
emotional stimuli compared to
healthy controls and, to a lesser
extent, adolescents without PPCS.

Ho et al. [184] 2018 An Emotional
Go/No-Go fMRI
study in adolescents
with depressive
symptoms following
concussion

Youth with concussion;
N = 30; 10–17 years old

fMRI Youth with high levels of
depression had reduced frontal
cortex activity in response to
negative emotional stimuli
compared to those with
low-to-moderate levels of
depression.
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Table 1. Cont.

Author(s) Year Title Sample Modality Findings

Santos et al. [29] 2022 The role of puberty
and sex on brain
structure in
adolescents with
anxiety following
concussion

Adolescents with
recent concussion
diagnosis (n = 55) and
matched controls
(n = 50); 12–17 years

dMRI Compared to controls,
adolescents with concussion with
more advanced pubertal
maturation had a lower neurite
density index in cingulum bundle
and forceps minor. Lower neurite
density index was associated with
higher levels of anxiety, especially
in girls.

Alhilali et al. [185] 2015 Evaluation of white
matter injury
patterns underlying
neuropsychiatric
symptoms after mild
traumatic brain
injury

Adults, children, and
adolescents with
concussion; n = 38
with irritability; n = 32
with depression, n = 18
with anxiety, n = 29
controls; 10–47 years

dMRI Compared to controls, those with
depression had reduced FA in the
right NAc, anterior limb of the
internal capsule, and SLF; those
with anxiety had reduced FA in
the cerebellar vermis; no
significant differences were found
in those with irritability; in those
with depression, NAc FA was
negatively correlated with
recovery time.

Maller et al. [186] 2014 The (Eigen) value of
diffusion tensor
imaging to
investigate
depression after
traumatic brain
injury

Adults, n = 26 with
depression only, n = 12
with concussion only,
n = 15 with new-onset
depression and
concussion; n = 25
healthy controls

dMRI Reduced axial diffusivity in
DLPFC, CC, and NAc white
matter tracts in those with
new-onset depression.

Rao et al. [187] 2012 Diffusion tensor
imaging atlas-based
analyses in major
depression after
mild traumatic brain
injury

Adults with
concussion, n = 21;
~36 years

dMRI Reduced FA in fronto-temporal
white matter was associated with
new-onset depression 12 months
post-concussion.

Note. sMRI = structural magnetic resonance imaging; fMRI = functional MRI; dMRI = diffusion MRI; TBI = traumatic
brain injury; FA = fractional anisotropy; CC = corpus callosum; ILF = inferior longitudinal fasciculus; IFOF = inferior
fronto-occipital fasciculus; SLF = superior longitudinal fasciculus; ACC = anterior cingulate cortex; dACC = dorsal
ACC; PFC = prefrontal cortex; DLPFC = dorsolateral PFC; VLPFC = ventrolateral PFC; NAc = nucleus accumbens;
DMN = default mode network.

Animal studies have shown increased anxiety-related behaviors after a concussion,
as measured by the locomotor activity of concussed rats in a maze. These behaviors
were associated with increased neuronal excitability of the amygdala, as demonstrated by
decreased inhibitory synaptic transmission [177]. Another study focusing on the amygdala
examined the freezing behavior of mice under a neutral condition in a fear conditioning
paradigm. These mice showed decreased fear response after concussion and decreased
amygdala activity in voltage-sensitive dye imaging [178]. Overall, these findings suggest
that amygdala dysfunction after injury may explain part of the pathophysiological processes
of concussion. Furthermore, it possibly represents the neural underpinnings of anxiety-
related behaviors observed in animal models of concussion.

In the human literature, children and adolescents appear to have abnormal neural
responses to emotional stimuli after injury [183,184]. Specifically, using functional mag-
netic resonance imaging, studies have found blunted amygdala responding to emotional
stimuli in 14–18-year-old adolescents with a concussion, with a stronger effect in those
with persistent symptomatology [183]. In addition to amygdala dysfunction, concussed
adolescents—compared to non-concussed adolescents— have also shown a wider spread
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of frontal lobe activation when requested to process emotional stimuli during an inhibitory
control task. This suggests needing to compensate more when emotional information
interferes with an inhibitory control task [184]. Amygdala dysfunction and abnormal
communication between the amygdala and frontal lobes have been consistently implicated
in the pathophysiology of both depression and anxiety disorders [111,188–193]. Thus,
concussion-related lesions affecting these regions may contribute to the emotional dysregu-
lation often reported after a concussion.

Evidence from adults suggests that white matter abnormalities in those who developed
depressive symptoms following concussion do not differ from those found in adults with
depression alone [186]. Specifically, when comparing adults with depression to adults with
concussion and depression, Maller et al. found that both groups had reduced collinearity in
white matter tracts that are heavily involved in regulating emotions. These tracts include the
forceps minor and superior longitudinal fasciculus [186]. Diffusion imaging abnormalities
in emotional regulation circuits have been associated with new-onset depression following
concussion [194], similar to those reported in depression [195,196].

To our knowledge, few studies have examined the relationship between the concussed
brain and the emergence of depression or anxiety in children and adolescents. Max,
Keatley [181] found evidence for a relationship between concussion-related abnormalities
in brain regions involved in emotional regulation and the onset of subsequent psychiatric
morbidity. Specifically, they found fronto-temporal lesions in gray (inferior frontal gyrus)
and white (frontal and temporal) matter regions in a sample of children and adolescents
(n = 15) who developed full or subclinical forms of depression or anxiety six months
post-injury. Most of them (60%) had no prior psychiatric history [181]. Our recent work
with concussed adolescents suggests that sex and pubertal status may also play a role [29].
Compared to non-concussed adolescents, concussed adolescents with more advanced
pubertal maturation had lower neurite density index (a NODDI metric that represents
water diffusivity in the intraneuritic space) [131] in the cingulum bundle and forceps
minor [29]. These white matter tracts are involved in emotional regulation [64]. A lower
neurite density index in these tracts was also associated with higher levels of anxiety shortly
after the concussion, particularly in girls [29]. These findings suggest that girls at a more
advanced stage of puberty might be at greater risk for developing psychological problems
from concussion compared to boys at a similar pubertal stage or girls at a less mature stage
of puberty. What remains unknown is if these structural abnormalities are associated with
transient symptomatology (e.g., acute symptoms of emotional dysregulation that resolve
within a few weeks) or if they relate to an increased vulnerability for psychiatric morbidity
later in life.

6. Factors Contributing to a Knowledge Gap in the Current Literature

As noted above, adolescence is a sensitive developmental window characterized by
structural and functional changes reflecting brain plasticity, and injury may induce a risk for
psychiatric morbidity. A key aspect that needs further investigation is whether a concussion
in the adolescent brain can affect the establishment of connections that support emotion
regulation. This may lead to heightened vulnerability to anxiety and depression later
in life. As noted above, adolescence is a sensitive developmental window characterized
by structural and functional changes reflecting brain plasticity, and injury may induce
risk. However, the lack of longitudinal studies, the paucity of studies in youth, and
heterogeneity due to a lack of standardized protocols across studies contribute to this
knowledge gap. These factors limit the interpretability of the existing findings and their
clinical and translational relevance [197].

To properly address this question, longitudinal neuroimaging studies are needed to
disentangle the effects of concussion on the adolescent brain from those associated with
typical development or those related to preexisting psychiatric vulnerability (e.g., history
of trauma, familial history) and morbidity (e.g., neural correlates of a psychiatric illness
and/or the effects of psychotropic medications). Altogether, the literature reviewed in
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this section provides support for the employment of advanced neuroimaging protocols
as a tool to determine the effect of concussions on the developing brain. Moreover, it
further determines if a progression of concussion-related lesions in brain regions involved
in emotional regulation relates to a heightened vulnerability for psychiatric morbidity
in adolescents who sustain a concussion. However, the lack of longitudinal studies, the
paucity of studies in youth, and heterogeneity due to a lack of standardized protocols
across studies limit the interpretability of these findings and their clinical translational
relevance [197].

7. Clinical Relevance

Understanding the neural mechanisms of emotional dysregulation following concus-
sion in adolescents may promote early identification of at-risk adolescents. Specifically,
based on the networks structurally and/or functionally affected by concussion, advanced
neuroimaging techniques may help (1) assess risk for persistent emotional dysregulation
symptoms and psychiatric morbidity, (2) tailor individualized treatment approaches (e.g.,
cognitive/behavioral therapies), (3) track recovery progress, and (4) inform decisions re-
garding return to activities. The identification of specific regions implicated in emotional
dysregulation following concussion in adolescents might also pave the way for the develop-
ment and inclusion of novel personalized treatments in clinical practice. One such example
is neurofeedback, directed at modulating the functioning of identified targeted regions that
may be key for recovery in adolescent concussion. Neurofeedback is a form of biofeedback
technique that aims to train individuals to consciously control their brain activity [198].
Currently, there is limited evidence of the utility of neurofeedback in treating concus-
sions [199,200]. However, this approach has been successfully implemented to strengthen
emotional regulation networks [201] and treat emotional dysregulation disorders such as
depression [202] in adolescents.

8. Recommendations for Future Research

There is a paucity of studies directly examining the relationship between concussion-
related brain abnormalities and heightened vulnerability to emotional dysregulation in
adolescents. The identification of structural and/or functional abnormalities in emotional
regulation circuits may serve as biomarkers of emotional dysregulation in adolescent
concussion and promote the identification of those adolescents who are most at risk for
psychiatric morbidity following concussion. To achieve this, future studies should employ
advanced neuroimaging techniques in longitudinal designs that allow for the identification
of functional and structural changes in regions and networks involved with emotional
regulation and the effects of environmental factors (e.g., sleep and physical activities) on
brain recovery post-concussion. However, there are important steps to consider before
contemplating their implementation into clinical practice: (1) Standardize neuroimaging
protocols and analytic methods to ensure consistency and facilitate comparison across
different sites; (2) establish data sharing protocols to promote replication of findings incor-
porating different socio–demographic factors (e.g., race, ethnicity, sex, income, and parent
education); (3) foster communication between researchers and clinical providers to facilitate
the translational aspect of concussion neuroimaging research; and (4) perform validation
studies that address the clinical relevance and cost-effectiveness of these techniques in
clinical settings.

9. Conclusions

Although variability in study design, age ranges, sample sizes, and post-injury time
points limits conclusions, the literature reviewed above supports the employment of ad-
vanced magnetic resonance imaging techniques in adolescent concussions. These tech-
niques have the potential to achieve several key objectives: (1) promote a better understand-
ing of the different pathophysiologic mechanisms of acute, subacute, and chronic stages of
concussion; (2) discern between structural and functional abnormalities associated with a
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concussion from those associated with normative development or preexisting psychopathol-
ogy, which may overlap (3) foster early identification of risk for psychiatric outcomes; and
(4) serve as a prognosis tool for returning to activities. These can be instrumental in improv-
ing clinical decision-making and fostering the identification of early intervention strategies
aimed at strengthening emotional and behavioral regulation strategies in at-risk groups.
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