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Abstract
Crowds express emotions as a collective individual, which is evident from the sounds that
a crowd produces in particular events, e.g., collective booing, laughing or cheering in
sports matches, movies, theaters, concerts, political demonstrations, and riots. A critical
question concerning the innovative concept of crowd emotions is whether the emotional
content of crowd sounds can be characterized by frequency-amplitude features, using
analysis techniques similar to those applied on individual voices, where deep learning
classification is applied to spectrogram images derived by sound transformations. In this
work, we present a technique based on the generation of sound spectrograms from
fragments of fixed length, extracted from original audio clips recorded in high-
attendance events, where the crowd acts as a collective individual. Transfer learning
techniques are used on a convolutional neural network, pre-trained on low-level features
using the well-known ImageNet extensive dataset of visual knowledge. The original
sound clips are filtered and normalized in amplitude for a correct spectrogram generation,
on which we fine-tune the domain-specific features. Experiments held on the finally
trained Convolutional Neural Network show promising performances of the proposed
model to classify the emotions of the crowd.
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1 Introduction and previous work

For long time research on sound emotion recognition has mainly focused on the individual
dimension aiming at detecting emotions either perceived by single listeners, typically through
music [17] or produced by single speakers speech [8, 16, 27, 34] and expressed by fine-tuning
different shades of vocal features [21, 25]. Recently, [29] introduced the innovative proposal to
investigate the emotions embedded in the crowd sounds, collectively produced by the partic-
ipants to mass events.

It is well known how a stadium of football fans can loudly express Approval or disapproval,
highlighting different phases of the game, e.g., showing happiness for a goal or delusion for a
missed one. In public events (e.g., concerts, receptions, parties, political meetings, protests,
riots) and the public areas holding social activities (e.g., an open-air marketplace, a shopping
mall, a restaurant, an airport hall), the crowd can collectively express its emotions by laughing,
cheering, booing, shouting in protest, or showing a neutral emotion, like, for example, the
background sound produced by a group quietly chatting at a party, or by a sports stadium
crowd during a boring part of the match.

The innovative concept of crowd sound emotion is of central importance for user-oriented
applications needing to understand the emotional context which influences perceptions and
decisions of the individual users. It is worth noticing that crowd sound has its peculiarities,
which demand specific management. Consider, for instance, an individual panicking in a
Covid-19 social-distanced crowd, triggering a panicking crowd. The same individual in a
crowd-neutral context will require different management. The expression “the crowd roar”
[20] captures the essence of the concept of the collective emotion expressed through sound by
the collective individual, i.e., the crowd, dynamically influencing the behavior of the single
individuals.

Crowd sound is not the result of the simple summation of individuals’ speeches: other
sounds than human speech are present, e.g., screams, whistles, hisses, claps, bumping objects.
In this situation, there is a phenomenon of mirroring, mutual tuning and synchronization, like
in a spontaneous choir. Multiple emotional streams can be emitted by the crowd at the same
time, e.g., in the case of different groups of football fans simultaneously screaming of
happiness and delusion when a team scores; or booing in protest when a penalty is issued. It
is necessary to rethink the emotional classes and their different shades: a specific crowd sound
emotional model needs to be defined.

Crowd sound emotion elicitation can be related to other forms of collective behavior
analysis, such as detection of sentiment polarization [9, 10, 22] and emotional trends in social
media [1, 5, 32, 33] although it presents crucial specificities. A relevant difference is that
emotions in social media are filtered by conscious knowledge because they are mainly
transferred and extracted from text, i.e., emotional words [36]; on the other hand, the
generation of crowd sound requires individuals to create it collectively and simultaneously,
in a massive coincidence of time and place. The individual contribution to the crowd sound is
usually not made up of verbal utterance, but, more often, it consists of sound emissions (e.g.,
hisses, boos, modulated screams). Those individual sounds are less mediated by the individual
cognitive knowledge level, therefore they are more connected with the psychophysical aspect
of emotions. In other words, crowd sounds genuinely represent the collective individual and
naturally embed and carry emotional content.

In this work, we extend and improve an introductive visionary study on the recognition of
emotional crowd sounds in mass events, presented in the workshop SAT at the 2019 System,
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Men and Cybernetics IEEE Conference [17]. Rethinking the emotional classes for crowd
context, we present an extension of the preliminary ideas on crowd sound and a crowd-sound
emotion model implementation, using deep learning and transfer learning techniques. The
resulting crowd sound emotion recognition system has successfully experimented on a larger
dataset of real crowd sounds purposely collected. An improved set of auditory scales for the
spectrogram transformation and their application to this specific domain have been
experimented and assessed.

The key points of the proposed system are the sound-to-spectrogram transformation and the
spectrogram image classification based on transfer learning. Since we assume that information
about the emotional content of crowd sounds relies on frequency-amplitude features, the idea
is to transform the labelled crowd sound in a set of spectrogram images used for deep learning
classification training.

Transfer Learning (TL) techniques are applied to a Convolutional Neural Network (CNN),
pre-trained on the extensive database of visual knowledge ImageNet [7], to avoid the large
number of sound crowd examples needed to train a deep network from scratch. A sliding
window is moved, over each original sound clip [29], in order to generate a set of spectrogram
images. The images feed the Convolutional Neural Network AlexNet [23], pre-trained on
ImageNet [7] and modified in the last levels in order to embed the classes of the specific crowd
sound emotion model. The new levels weights are adjusted by a supervised domain-specific
fine-tuning phase [2–4, 19, 31]. It is worth noticing that TL methodology is not new to sound
recognition [30, 35], but its application to emotional speech is due to recent works [25]. To the
best of our knowledge, this work and the preliminary [17] represent the first application to
crowd sound emotion recognition. An improved set of auditory scales for the spectrogram
transformation compared to those in [17] has experimented, and their performance evaluated.

In the following Section 2, the system architecture workflow, and the applied methodolo-
gies based on CNN, TL, and sound-to-spectrogram transformations are presented, in Section 3
experiments are described and results reported and discussed, conclusions are finally drawn in
section 4.

2 The system architecture workflow

In the proposed system (see Fig. 1 System Architecture), the organization of the information
flow for the Heterogeneous Transfer Learning (HTL) includes two main phases:

& sound-to-spectrograms transformation;
& Knowledge Transfer training.

In the sound-to-spectrograms transformation phase, the sound parameters of labeled clips
of varying duration are first normalized; the clips are then divided into fixed-length blocks,
each of which produces, in turn, a spectrogram, labeled with the emotion from the original clip.

The Knowledge Transfer training phase consists first in modifying the last layers of the
original CNN, according to state-of-the-art techniques [6], resetting and adapting them to the
classes of the new domain, the modified CNN is re-trained using the information encoded in
the spectrograms to recognize the emotional crowd labels. The fine-tuned CNN, obtained by
re-training, will be used to test emotional crowd sounds recognition.
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2.1 Sound normalization

Each original sound clip has been sliced in sound blocks of tb = 1 s using a time sliding
window with ts = 0.25 s slide and tb–ts = 0.75 s overlap. This procedure allows for obtaining
images of uniform size. The sound blocks time length has been chosen experimentally, aiming
to obtain a balance between accuracy in tracking frequency peak variations and reducing the
computational load.

Differently from other works on speech recognition, which mainly analyze the human voice
frequencies, i.e., 20–8000 Hz, in this work we purposely chose to keep the whole human
hearing frequency spectrum, i.e., the 20–20,000 Hz range.

The reason for choosing this frequency range is that, although the main contribution in
terms of information comes from frequencies in the voice spectrum, crowd speech samples
often include additional sounds. For instance, the sound of people cheering may contain
glasses shaking or hands clapping. In contrast, a booing crowd sound clip can consist of
attentive sounds, clattering, movement noise, and chattering, where each sound information
may prove crucial for the ultimate labeling process. Trigger reactions can be different in
different cultures.

We normalized the loudness of the dataset to −23 Loudness Units (LU or LUFS, referenced
to Full Scale), following the EBU R128 standard [11].

2.2 Generation of crowd-speech frequency/amplitude spectrograms

The generation of spectrogram images of single sound blocks makes necessary to choose a
frequency scale in order to produce consistent homogeneous image representations. Such
choice can potentially affect the analysis results because different scales emphasize different
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Fig. 1 System architecture of the
experimental method.
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frequency ranges, thus different components of the sounds in a crowd sound block tend to
emerge with different scales. In this work, we systematically analyze four frequency scales,
which have been chosen for their intrinsic characteristics, expressing the different contribution
in increasingly lower frequency ranges:

1 Mel [34], for the 4–6 kHz range
2 Erb [28], for the 2–4 kHz range
3 Bark [37], for the 0–3.5 kHz range
4 Log [25], for the 0.02-2 kHz range

Each sound block computes spectrograms in all the four frequency scales: in Fig. 2, the
spectrograms of a random sample per each category and scale are shown, while an example of
the spectrograms for the same 1-s segment can be seen in Fig. 3; in both figures, the x-axis
represents time, the y-axis frequency, and the color intensity represents the amplitude of the
signal.

In particular, the most widely used frequency auditory scale in the literature, related to
spectrogram-based image deep-learning classification, is theMel (Melodic) perceptual scale of
pitches. Spectrogram-based image classification is used in the state-of-the-art for human
speech and music classification. The Mel scale represents the sound pitch based on listener
perception. A perceptual pitch of 1000 Mel is assigned to a tone of 1000 Hz, 40 dB above the
listener’s threshold. The Mel spectrogram represents the short-term power spectrum of a
sound, transforming the input raw sound sequence in a bidimensional feature map where the
x-axis represents time, the y-axis represents the frequency (Log10 scale), and the values
represent amplitude.

Bark

Approval Disapproval Neutral

Erb

Log

Mel

Fig. 2 Spectrograms examples for blocks of different categories for each scale.
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The magnitude of the generated spectrograms is of a size 257 × 259 for frequency and time,
using the jet colormap of 64 colors, which is particularly suitable for our recognition goal,
because of the luminance of colors, which is not easily garbled. On the other side, the intense
luminance may generate ripples causing the recognition of non-existing pitches in the classi-
fication step [26]. This side effect has been avoided using a hamming window, described in the
following paragraphs, which helps to smooth the discontinuities in the original non-integer
number of periods in the signal.

The spectrogram images have been downsized to 227 × 227 pixels, which are the input
dimensions for our CNN.

The hamming-window size is 400 samples, with a frame increment of 4.5 milliseconds.

2.3 Domain-specific training of the AlexNet CNN

In the experiments, the analyzed emotions of Approval/Disapproval are compared with a
Neutral emotion, in direct correspondence with the crowd emotions obtained from clips
containing people cheering/clapping, booing, and noisy background chattering in crowded
events.

Visual transfer learning is employed to benefit from both the vast, existing visual knowl-
edge base and the fast training time required. Convolutional Neural Networks trained with
extensive image datasets, such as the popular ImageNet, have been proved to embed excellent
recognition abilities [13, 18, 24]. AlexNet, trained on ImageNet, is one of the first of such CNN
and is still among the most widely used for deep learning-based image classification.

The basic idea for transfer learning in this domain is that different layers in deep neural
networks recognize various characteristics of the training domain. More precisely, the first
layers in a network know low-level image features. The deeper we go in the network, the more
the following layers express an increasing complexity in the recognition ability. The last
layers, which implement the actual classification, reassemble with appropriate weights the

Bark Erb

logMel

Fig. 3 Spectrograms examples for the same block with different scales.
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previously detected image patterns in such a way that reflect the characteristics of a specific
domain. In contrast to the specificity of the last layers, the basic knowledge, contained in the
first layers, is common and can be shared between different domains.

Such a feature is perfectly adaptable to our domain, where the low-level features of images,
e.g., edges, corners, shapes, and color distribution, are common to all the image instances in a
spectrogram environment and are shared with almost any other item in the ImageNet dataset.
When we consider low-level features regardless if they come from photos or geometrical
images and drawings, the essential elements are common.

The Knowledge Transfer of the low-level features from the AlexNet Convolutional Neural
Network is entirely feasible and fine to this aim.

AlexNet is pre-trained on a vast number of images of different categories of the ImageNet
database. The learning transfer consists of modifying both its topology and weights, where the
final layers are replaced with new layers specific to the crowd emotional task, i.e., fully-
connected layers.

The whole network is then fine-tuned, focusing on the newly added layers, including
training on the high-level features of the specific problem, i.e., the crowd sound spectrogram
frequency and amplitude visual features, related to the emotion tagged in training set on the
chosen scale. The global learning rate is set to a low value, to avoid modifying too much the
previous original layers. A learning rate multiplier is employed to speed up the learning
process of the new final layers. Transfer Learning allows for faster training time, even by
several orders of magnitude, because basic image features do not need to be learned again by
the network. In this way, we also obtain to require much less training samples to achieve
consistent performances, compared to learning from scratch an entirely new network.

2.4 Crowd sound dataset

The dataset used for this work has been collected by the authors from selected audio clips of real
crowd high-attendance events. Different events have been chosen so that the whole dataset is
composed of several sub-sets related to various events. The original audio clips have been
preprocessed, as explained in sections 2.A and 2.B and labeled according to the audio content
and description. Three categories are considered, namely Approval, Disapproval, and Neutral.

Many audio sources available both in the Web and in scientific research datasets include
fake library sounds, e.g., for audio dubbing, or sounds from professional or naive acting,
cannot guarantee the same authenticity and spontaneity. Authenticity is an extremely relevant
feature of a corresponding dataset for emotional sounds, because, despite the type of the used
deep-learning technique, the neural network can automatically extract the misleading features
due to fake elements of the clip, and then be able to recognize only artificial sounds instead of
original, real ones. The importance of this problem is not related only to the features that
humans can easily understand in a fake sound. Thus, the authenticity of the clip should be
primarily investigated and the use of any sound clip of uncertain source should be avoided.

Furthermore, audio clips recorded in real-life situations can present more complexity than
purposefully studio recorded clips, e.g. uncleannessand background noise. Therefore, real-life
audio clips are of higher interest to be studied for systems that should be able to recognize
sounds from different environments.

The features related to a particular environment, e.g., background noises, the overall
stableness of the volume or the intensity of the sound, and specific voice types, such as a
crowd composed only by children, should not influence the final performance of the deep-
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learning classification system. For this purpose, the audio has been chosen from different
situations, and fragments from the same audio clip are never used both in training and in
testing phases of the classification. The various clips have been selected to share several
similar characteristics (e.g., noise, continuous or rhythmic sounds) to avoid any bias intro-
duced by considering inherently different categories.

The dataset is composed of 69 clips, each of which is split into several 1-s blocks. The last
block of each clip may be less than 1 s, still kept in the dataset. The crowd sound dataset is
composed of 9515 blocks in total from 69 original clips for the three categories. Blocks
containing silence segments were removed, as they were likely to affect performance, shifting
the amplitude scale towards the bottom and therefore squeezing the spectrum area containing
emotional information. The original number of clips, the total original duration per category,
and the total number of blocks after preprocessing are shown in Table 1.

2.5 Experimental setup

A majority-vote validation scheme has been adopted for the experiments. Given a sound clip, a
set of overlapping blocks and the corresponding spectrograms are generated, then for each
spectrogram, an emotion label is predicted. In the majority-vote validation the class of the clip
is determined by collecting the labels of all the blocks spectrograms belonging to such a clip
and selecting the most represented label.

We assume that some samples, especially those corresponding to transition phases (if any)
between neutral and non-neutral emotional content, maybe incorrectly labeled. However, the
predominant content of the clip can still be determined by selecting the most represented label.

The first approach follows the standard practices in image classification, as used in state-of-
the-art works on speech emotion recognition [25], where a dataset is partitioned in two subsets
by randomly picking images and assigning them to the training set and test set, according to a
given proportion. In the used training/test set ratio, 80% of images are assigned to the training
set and 20% to the test set. It can be argued that such an approach, in this specific case, could
easily lead to overfitting, because different spectrogram images, for example, one from the
training set and one in the test set could pertain to the same clip and the subsequent derived
blocks. In this case, a bias is introduced indirectly providing information on the test set while
training the neural network.

As described in section A, spectrograms are created from partially overlapping blocks of
sounds extracted from clips: a random split will distribute the spectrograms between training
and test set, separating blocks generated from contiguous frames which share the same
information. If adjacent blocks can be remarkably similar, also non-contiguous blocks can
embed very similar environmental-based information, as explained in detail in section 2.D,
where the approach to select clips for the dataset is described. Therefore, with identical data in
the training and test sets, the network would be able to exploit such highly similar information

Table 1 Per-class clips number, blocks number and duration in the dataset

Class Different Clips Total duration (s) Total of blocks

Approval 39 518 1787
Disapproval 15 118 388
Neutral 15 1874 7340
Total 69 2510 9515
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in the two sets, which likely leads to a lack of generalization capabilities and overfitting on the
specific features of a clip.

For this reason, a second approach for a fair construction or the training/test set has been
finally adopted, it consists in distributing all the blocks of different original sound clip files
either in the training set or in the test set with no overlapping, to test the model recognition
abilities, never-seen-before data.

In this case, the selection criterion was to maintain percentages as similar as possible to the
first experiment, with the additional constraint of moving all the blocks of a specific file either
to the training or to the test set. Therefore, for each category, a percentage between 80% and
90% of the data has been reserved as a training set. The adopted metric is the accuracy,
calculated on the test set [15]. Five networks were fine-tuned for each experiment and each
scale, and their results averaged, for a total of 40 networks and eight averaged results. All the
networks were trained on an NVIDIA GeForce GTX 1070 GPU for four epochs, with mini-
batches of 32 images. Both the initial learning rate and the L2 regularization factor set to
1*10−4.

3 Experimental results

Although the system shows high accuracy scores for both the experimental settings, significant
differences can be observed in the two cases. In particular, the second setting shows, as
expected, slightly lower performance than the first one. This variation could be expected due to
the reasons discussed in paragraph II.E, being it a more realistic and fair test environment. In
both cases, the number of training epochs proves to be approximately the same. Although the
maximum amount of training epochs was set to 4, on average, the system reached peak
performance after 1 for the first scenario and 2 for the second, with no substantial later
improvement.

Results are reported in Tables 2 and 3.
No distinguishable difference can be found between the four scales in the first experimental

setting (see Table 2), probably due to the overfitting issue mentioned in section 3.E.
In the second experimental setting (see Table 3), which is more realistic, i.e., not overfitting,

the average accuracy scores calculated on the single blocks’ labels are still above 90% on
average in all the experiments. Some differences can be observed in terms of performance
between the considered scales. In particular, Bark and Log scales perform better than Erb and
Mel, suggesting that the relevant features of the crowd-sound domain are located in the lower
part of the frequency spectrum. Table 4 shows the confusion matrix for the third network
trained with spectrograms generated by theMel scale. The vast majority of classification errors
occur between the Neutral and Approval categories, with samples of Neutral attributed to

Table 2 Results for experimental setting 1

Scale Accuracy (Avg. over 5 re-training)

Mel 0.9983
Erb 0.9981
Bark 0.9983
Log 0.9968
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Approval. Such a pattern suggests that the Disapproval class holds more distinguishable
characteristics than the other two.

We recall that in Table 4 is represented only one of the 20 networks trained in the five
scales for the second experimental setup, as a sample. The values in the table are thus related to
every single vote, i.e., each classification attempt, on which we choose the most represented
class for each sound clip. The accuracy scores show a similar result for all the five re-trained
networks of the majority-vote classification scheme explained in section 2.E (see Table 5),
where the Log and Mel scales show a perfect classification. We also notice that for the Bark
scale, all but one of the re-trained networks misclassify two disapproval class samples as
Approval, while for the Erb scale, the same misclassification happens only once (on the same
file misclassified by Bark).

The behavior on the overall results suggests that the Log scale guarantees the best results for
the proposed classification task, both in terms of single spectrograms and whole files. The Erb
scale obtained better results than the others, where the retrained networks misclassify two
Disapproval class samples as Approval and, since the misclassification happens on the same
files, a further study could investigate their particular features to understand in which real cases
the classification may fail.

Since, to the best of our knowledge, this work represents the first attempt to use a
spectrogram-based approach with crowd emotional sounds, there are no datasets or results
in the literature to compare our results. To give a general idea on the algorithm performance,
we can provide a coarse-grained comparison with the same approach applied to individual-
speech emotional sound [25], aware that the specific features of the two cases are not
strictly comparable. On crowd sounds, the performances are improved on average of 10%.
Another element why such comparison is only for intuition is that the average results are given
for all the emotional classes (i.e., experimented emotional model), which differ from individual
to crowd emotions.

4 Conclusions and future developments

The main contribution of this work is to introduce a model for crowd sound emotions and to
show the feasibility of the implementation of crowd sound emotions recognition system with

Table 3 Results for experimental setting 2

Scale Accuracy (Avg. over 5 re-training)

Mel 0.9292
Erb 0.9636
Bark 0.9646
Log 0.9924

Table 4 Confusion matrix for Mel scale on each spectrogram of network 2

Real/Predicted Approval Disapproval Neutral

Approval 229 6 0
Disapproval 0 51 0
Neutral 119 34 883
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spectrogram-based techniques integrated with CNN convolutional neural networks. Since the
presented implementation and dataset is to date the first one on crowd sound emotions, we
have to point out that our experiments cannot be directly compared to any previous study in
literature. A general comparison has been discussed, by comparing the experimental results for
crowd sound emotion with the result available for a similar algorithm on a different emotional
model, i.e. on the domain of individual-speech emotions studied in [25]. Note that our domain
and emotional model show a 10% improvement with respect to the 80% average accuracy of
the individual-speech domain on every scale, even in the second experimental setting where
we lower the performance gaining a better consistency. The results support the conclusion that
the transfer learning AlexNet-CNN spectrogram-based approach is suitable for the crowd
emotional sound domain. The results presented in this work also prove that it is possible to
develop a real-time emotional crowd sound recognizer for the given categories. Potential
application fields of such a classifier range from user context-based interfaces to safety and
emergency domains in crowd context.

Priority in future research will include a thorough analysis of the properties to model
emotional crowd sounds to deeper understand and characterize the distinctive traits of each
crowd sound emotion class. While it is relatively easy to recognize the positive/negative
polarity of crowd sound emotions, there are still open questions about the type of emotion
classes. Are there basic emotions that specifically characterize crowd sounds? Are individual-
based emotional models (e.g., Ekman [12]) adequate for the collective individual expressing
through crowd sound? Can a crowd sound show surprise, embarrassment, sadness?

Another issue is the complexity of crowd sound patterns. In the presented experiments, we
have considered short-term crowd sounds. On the other hand, it would certainly be worth
considering longer intervals of time and the dynamic evolution of crowd sound patterns. A
typical example is the pattern of growing crowd excitement followed by a joy burst like those

Table 5 Results for the majority-vote classification scheme

Scale Network Accuracy Correct classification (majority
classification)

Wrong classification (majority
classification)

Mel 0 0.8994 12 0
Mel 1 0.9561 12 0
Mel 2 0.8797 12 0
Mel 3 0.9781 12 0
Mel 4 0.9327 12 0
Erb 0 0.8805 12 0
Erb 1 0.9728 10 2
Erb 2 0.9849 12 0
Erb 3 0.9917 12 0
Erb 4 0.9879 12 0
Bark 0 0.9773 10 2
Bark 1 0.9433 10 2
Bark 2 0.9652 12 0
Bark 3 0.9758 10 2
Bark 4 0.9614 10 2
Log 0 0.9947 12 0
Log 1 0.9894 12 0
Log 2 0.9992 12 0
Log 3 0.9803 12 0
Log 4 0.9985 12 0
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associated with game actions. This patterns should be considered as an emotional unit, instead
of merely focusing on short-term separated sound blocks.

An aspect worth investigating is how to model and distinguish the different emotions
streams generated by different crowd subsets, e.g., sounds associated with a goal/no goal
situation in football matches, where the supporters of opposing teams would simultaneously
produce different sounds, sometimes opposite in term of the conveyed emotion. In this regard,
from the emotional model point of view, it is also necessary to understand if mixed crowd
sound emotion states can be described by the compounding pure crowd emotion or they
require to be explicitly distinguished.
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