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While recent advances in deep learning have led to significant improvements in facial

expression classification (FEC), a major challenge that remains a bottleneck for the

widespread deployment of such systems is their high architectural and computational

complexities. This is especially challenging given the operational requirements of various

FEC applications, such as safety, marketing, learning, and assistive living, where real-time

requirements on low-cost embedded devices is desired. Motivated by this need for a

compact, low latency, yet accurate system capable of performing FEC in real-time on low-

cost embedded devices, this study proposes EmotionNet Nano, an efficient deep

convolutional neural network created through a human-machine collaborative design

strategy, where human experience is combined with machine meticulousness and

speed in order to craft a deep neural network design catered toward real-time

embedded usage. To the best of the author’s knowledge, this is the very first deep

neural network architecture for facial expression recognition leveraging machine-driven

design exploration in its design process, and exhibits unique architectural characteristics

such as high architectural heterogeneity and selective long-range connectivity not seen in

previous FEC network architectures. Two different variants of EmotionNet Nano are

presented, each with a different trade-off between architectural and computational

complexity and accuracy. Experimental results using the CK + facial expression

benchmark dataset demonstrate that the proposed EmotionNet Nano networks

achieved accuracy comparable to state-of-the-art FEC networks, while requiring

significantly fewer parameters. Furthermore, we demonstrate that the proposed

EmotionNet Nano networks achieved real-time inference speeds (e.g., >25 FPS and >70

FPS at 15 and 30 W, respectively) and high energy efficiency (e.g., >1.7 images/sec/watt at

15W) on an ARM embedded processor, thus further illustrating the efficacy of EmotionNet

Nano for deployment on embedded devices.
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1. INTRODUCTION

Facial expression classification (FEC) is an area in computer

vision that has benefited significantly from the rapid advances in
machine learning, which has enabled data collections comprising
a diversity of facial expressions captured of different individuals
to be leveraged to learn classifiers for differentiating between
different facial expression types. In particular, deep learning when
applied to FEC has led to significant improvements in accuracy
under complex conditions, such as varying lighting, angle, or
occlusion.

Even though the performance of deep learning-based FEC
systems continue to rise, widespread deployment of such systems
is limited, with one of the biggest hurdles being the high

architectural and computational complexities of the deep
neural networks that drive such systems. This hurdle is
particularly limiting for real-time embedded scenarios, where
low latency operation is required on the low-cost embedded
devices. For example, in the area of assistive technologies for
improving quality of life, the majority of individuals using such
technologies are unwilling to carry large, bulky, and expensive
devices with them during their daily lives, as that would be a big
hindrance that limits their ability to leverage the technologies in a
seamless manner. As such, the assistive devices must leverage
small, low-cost, embedded processors, yet provide low latency to

enable real-time feedback to the user. Another example is in-car
driver monitoring (Jeong and Ko, 2018), where a FEC system
would record the driver and determine their current mental state,
and warn them if their awareness level is deteriorating. In cases
such as these, the difference of a few milliseconds of processing is
paramount for the safety of not only the user, but also other
drivers on the road. In applications for fields such as marketing or
security, real-time processing is important to provide salespeople
or security guards immediate feedback such that an appropriate
response can be made as soon as possible. For those relying on
software assistance for social purposes, information is required at

no delay in order to keep a conversation alive and not cause
discomfort for both parties.

A variety of deep neural network architectures have been
proposed for FEC, ranging from deep convolutional neural
networks (DCNN) to recurrent neural networks (RNN) (Fan
et al., 2016) to long-short termmemory (LSTM) (Sun et al., 2016)
and have been explored, but those introduced in literature have
generally required significant architectural complexity and
computational power in order to detect and interpret the
nuances of human facial expressions. As an alternative to deep
learning, strategies leveraging other machine learning strategies
such as Support Vector Machines (SVM) (Michel and El

Kaliouby, 2003) and hand-crafted features such as Local
Binary Patterns (LBP) (Shan et al., 2005; Happy et al., 2012),
dense optical flow (Bargal et al., 2016), Histogram of Oriented
Gradients (HOG) (Kumar et al., 2016), or Facial Action Coding
System (Ekman and Friesen, 1978) have also been explored in
literature, but generally have been shown to achieve lower
accuracy when compared to deep learning-based approaches,
which can better learn the subtle differences that exist between
human facial expressions.

To mitigate the aforementioned hurdle and improve
widespread adoption of powerful deep learning-driven
approaches for FEC in real-world applications, a key direction
that is worth exploring is the design of highly efficient deep neural

network architectures tailored for the task of real-time embedded
facial expression recognition. A number of strategies for
designing highly efficient architectures have been explored.
One strategy is reducing the depth of the neural network
architecture (Khorrami et al., 2015) to reduce computational
and architectural complexity; more specifically, neural networks
with a depth of just five were leveraged to learn discriminating
facial features. Another strategy is reducing the input resolution
of the neural network architecture, with Shan et al. (Shan et al.,
2005) showing that FEC can be performed even at low image
resolutions of 14 × 19 pixels, which can further reduce the

number of operations required for inference by a large
margin. Despite the improved architectural or computational
efficiencies gained by leveraging such efficient network design
strategies, they typically lead to noticeable reductions in facial
expression classification accuracy and as such alternative
strategies that enable a better balance between accuracy,
architectural complexity, and computational complexity are
highly desired.

More recently, there has been a focus on human-driven design
principles for efficient deep neural network architecture design,
ranging from depth-wize separable convolutions (Chollet, 2017)

to Inception (Szegedy et al., 2015) macroarchitectures to residual
connections (He et al., 2016). Such design principles can
substantially improve FEC performance while reducing
architectural complexity (Pramerdorfer and Kampel, 2016).
However, despite the improvements gained in architectural
efficiency, one challenge with human-driven design principles
is that it is quite time consuming and challenging for humans to
hand-craft efficient neural network architectures that are tailored
for specific applications such as FEC that possesses a strong
balance between a high performance accuracy, fast inference
speed, and low memory footprint, primarily due to the sheer

complexity of neural network behaviors under different
architectural configurations.

In an attempt to address this challenge, neural architecture
search (NAS) strategies have been introduced to automate the
model architecture engineering process by finding the maximally
performing network design from all possible network designs
within a search space. However, given the infinitely large search
space within which the optimal network architecture may exist in,
significant human effort is often required in designing the search
space in a way that reduces it to a feasible size, as well as defining a
search strategy that can run within desired operational

constraints and requirements in a reasonable amount of time.
Therefore, a way to combine both human-driven design
principles and machine-driven design exploration is highly
desired and can lead to efficient architecture designs catered
specifically to FEC.

Motivated by the desire to design deep neural network
architectures catered for real-time embedded facial expression
recognition, in this study we explore the efficacy of leveraging a
human-machine collaborative design strategy that leverages
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human experience and ingenuity with the raw speed and
meticulousness of machine driven design exploration, in order
to find the optimal balance between accuracy and architectural
and computational complexity. The resulting deep neural

network architecture, which we call EmotionNet Nano, is
specifically tailored for real-time embedded facial expression
recognition and created via a two phase design strategy. The
first phase focuses on leveraging residual architecture design
principles to capture the complex nuances of facial
expressions, while the second phase employed machine-driven
design exploration to generate the final tailor-made architecture
design that achieves high architectural and computational
efficiency while maintaining a high performance.

To the best of the author’s knowledge, the proposed
EmotionNet Nano is the very first deep neural network

architecture for facial expression recognition leveraging
machine-driven design exploration in its design process. All
previously introduced FEC network architectures in research
literature have been hand-crafted deep neural network
architectures with highly uniform architectural characteristics.
As a result, the proposed EmotionNet Nano exhibits unique
architectural characteristics such as high architectural
heterogeneity and selective long-range connectivity not seen in
previous FEC network architectures from research literature. We
present two variants of EmotionNet Nano, each with a different
trade-off between accuracy and complexity, and evaluate both

variants on the CK+ (Lucey et al., 2010) benchmark dataset
against state-of-the-art facial expression classification networks.

2. MATERIALS AND METHODS

In this study, we present EmotionNet Nano, a highly efficient
deep convolutional neural network architecture design for the

task of real-time facial emotion classification for embedded
scenarios. EmotionNet Nano was designed using a human-
machine collaborative strategy in order to leverage both
human experience as well as the meticulousness of machines.
The human-machine collaborative design strategy leveraged to
create the proposed EmotionNet Nano network architecture
design is comprised of two main design stages: 1) principled
network design prototyping, and 2) machine-driven design
exploration.

2.1. Principled Network Design Prototyping
In the first design stage, an initial network design prototype, φ,

was designed using human-driven design principles in order to
guide the subsequent machine-driven exploration design stage. In
this study, the initial network design prototype of EmotionNet
Nano leveraged residual architecture design principles (He et al.,
2016), as it was previously demonstrated to achieve strong
performance on a variety of recognition tasks. More
specifically, the presence of residual connections within a deep
neural network architecture have been shown to provide a good
solution to both the vanishing gradient and curse of
dimensionality problems. Residual connections also enable
networks to learn faster and easier, with little additional cost

to architectural or computational complexity. Additionally, as the
network architecture depth increases, each consecutive layer
should perform no worse than its previous layer due to the
identity mapping option. As a result, residual network

architecture designs have been shown to work well for the
problem of FEC (Khorrami et al., 2015; Hasani and Mahoor,
2017; Zhou et al., 2019). In this study, the final aspects of the
initial network design prototype, φ, consists of an average pooling
operation followed by a fully connected softmax activation layer
to produce the final expression classification results. The final
macroarchitecture and microarchitecture designs of the
individual modules and convolutional layers of the proposed
EmotionNet Nano were left to the machine-driven design
exploration stage to design in an automatic manner. To ensure
a compact and efficient real-time model catered toward

embedded devices, this second stage was guided by human-
specified design requirements and constraints targeting
embedded devices possessing limited computational and
memory capabilities.

2.2. Machine Driven Design Exploration
Following the initial human-driven network design prototyping
stage, a machine-driven design exploration stage was employed to
determine the macroarchitecture and microarchitecture designs
at the individual module level to produce the final EmotionNet
Nano. In order to determine the optimal network architecture

based on a set of human defined constraints, generative synthesis
(Wong et al., 2018) was leveraged for the purpose of machine-
driven design exploration. Defined in Eq. 1, we can formulate
generative synthesis as a constrained optimization problem,
where the goal is to find a generator G that, given a set of
seeds S, can generate networks {N s|s ∈ S} that maximize a
universal performance function U while also satisfying
constraints defined in an indicator function 1r(·),

G � max
G

U(G(s)) subject to 1r(G(s)) � 1,∀s ∈ S (1)

As such, given a human-defined indicator function 1r(·) and an
initial network design prototype φ, generative synthesis is guided

toward learning generative machines that generate networks
within the human-specified constraints. The aforementioned
constrained optimization problem in Eq. 1 is solved via an
iterative optimization process, where progressively better
generator solutions Ĝ, as measured based on U , are found
while meeting the constraints defined in the aforementioned
indicator function 1r(·). The interesting aspect about
leveraging an iterative strategy to solve the unconstrained
optimization problem is that different generators are found
along the way during the optimization process, with the ability
to generate deep neural network architectures with different

trade-offs between architectural and computational complexity
and accuracy.

An important factor in leveraging generative synthesis for
machine-driven design exploration is to define the operational
constraints and requirements based on the desired task and
scenario in a quantitative manner via the indicator function
1r(·). In this study, in order to learn a compact yet highly
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efficient facial expression classification network architecture, the
indicator function 1r(·) was set up such that: 1) accuracy ≥92% on
CK+ (Lucey et al., 2010), and 2) network architecture complexity ≤
1M parameters. These constraint values were chosen to explore
how compact a network architecture for facial expression
classification can be while still maintaining sufficient
classification accuracy for use in real-time embedded scenarios.
As such, we use the accuracy of Feng & Ren (Feng and Ren, 2018)

as the reference baseline for determining the accuracy constraint in
the indicator function.

The network architecture of the proposed EmotionNet Nano
is shown in Figure 1. A number of notable characteristics of the
proposed EmotionNet Nano network architecture design are
worth discussing as they give insights into architectural
mechanisms that strike a strong balance between complexity
and accuracy.

2.3. Architectural Heterogeneity
A notable characteristic about the architecture that allows the

network to achieve high efficiency even with a low number of
parameters is the macroarchitecture and microarchitecture
heterogeneity. Unlike hand-crafted architecture designs, the
macroarchitecture and microarchitecture designs within the
EmotionNet Nano network architecture as generated via
machine-driven design exploration differ greatly from layer to
layer. For instance, there are a mix of convolution layers with
varying shapes and different number of channels per layer
depending on the needs of the network. As shown in
Figure 1, there are a greater number of channels needed as
the sizes of feature maps decrease.

The benefit of high microarchitecture and macroarchitecture
heterogeneity in the EmotionNet Nano network architecture is
that it enables different parts of the network architecture to be
tailored to achieve a very strong balance between architectural
and computational complexity while maintaining model
expressiveness in capturing necessary features. The
architectural diversity in EmotionNet Nano demonstrates the
advantage of leveraging a human-collaborative design strategy as
it would be difficult for a human designer, or other design

exploration methods to customize a network architecture to
the same level of architectural granularity.

2.4. Selective Long-Range Connectivity
Another notable characteristic of the EmotionNet Nano network
architecture is that it exhibits selective long range connectivity
throughout the network architecture. The use of long range
connectivity in a very selective manner enables a strong

balance between model expressiveness and ease of training,
and computational complexity. Most interesting and notable is
the presence of two densely connected 1 × 1 convolution layers
that take in outputs from multiple 3 × 3 convolution layers as
input, with its output connected farther down at later layers. Such
a 1 × 1 convolution layer design provides dimensionality
reduction while retaining salient features of the channels
through channel mixing, thus further improving architectural
and computational efficiency while maintaining strong model
expressiveness.

2.5. Dataset
To evaluate the efficacy of the proposed EmotionNet Nano, we
examine the network complexity, computational cost and
classification accuracy against other facial expression
classification networks on the CK+ (Lucey et al., 2010) dataset,
which is the most extensively used laboratory-controlled FEC
benchmark dataset (Pantic et al., 2005; Li and Deng, 2018).

The Extended Cohn-Kanade (CK+) (Lucey et al., 2010) dataset
contains 593 video sequences from a total of 123 different
subjects, ranging from 18 to 50 years of age with a variety of
genders and heritage. Each video shows a facial shift from the

neutral expression to a targeted peak expression, recorded at 30
frames per second (FPS) with a resolution of either 640 × 490 or
640 × 480 pixels. Out of these videos, 327 are labeled with one of
seven expression classes, anger, contempt, disgust, fear,
happiness, sadness, and surprise. The CK + database is widely
regarded as the most extensively used laboratory-controlled FEC
database available, and is used in the majority of facial expression
classification methods (Li and Deng, 2018; Pantic et al., 2005).
Figure 2 shows that the CK + dataset has good diversity for each

FIGURE 1 | EmotionNet Nano Architecture. The network architecture exhibits high macroarchitecture and microarchitecture heterogeneity, customized toward

capturing deep facial features. Furthermore, the network architecture exhibits selective long-range connectivity throughout the network architecture. The number of

channels per layer are based on EmotionNet Nano-B.
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expression type, which is important from an evaluation
perspective. However, as the CK + dataset does not provide
specific training, validation, and test set splits, a mixture of
splitting techniques can be observed in literature. For
experimental consistency, we adopt the most common dataset
creation strategy where the last three frames of each sequence is
extracted and labeled with the video label (Li and Deng, 2018). In
this study, we performed subject-independent 10-fold cross

validation on the resulting 981 facial expression images.

2.6. Implementation Details
EmotionNet Nano was trained for 200 epochs using an initial
learning rate of 1e − 3, multiplied by 1e−1, 1e − 2, 1e − 3, and
0.5e − 3 at epochs 81, 121, 161, and 181 respectively. Categorical
cross-entropy loss was used with the Adam (Kingma and Ba,
2014) optimizer. Data augmentation was applied to the inputs,
including rotation, width and height shifts, zoom, and horizontal
flips. Following this initial training, we leveraged a machine-
driven exploration stage to fine tune the network specifically for

the task of FEC. Training was performed using a GeForce RTX
2080 Ti GPU. The Keras (Chollet, 2015) library was leveraged for
this study.

3. RESULTS

3.1. Performance Evaluation
Two variants of EmotionNet Nano were created to examine the
different trade-offs between architectural and computational
complexity and accuracy. In order to demonstrate the efficacy
of the proposed models in a quantitative manner, we compare the
performance of both variants against state-of-the-art facial
expression classification networks introduced in literature,

shown in Table 1. It can be observed that both EmotionNet
Nano-A and Nano-B networks achieve strong classification
accuracy, with EmotionNet Nano-A in particular achieving
comparable accuracy with the highest-performing state-of-the-
art networks that are more than a magnitude larger. While
EmotionNet Nano-B has lower accuracy than the highest-
performing networks, it is still able to achieve comparable
accuracy as (Feng and Ren, 2018) while being three orders of
magnitude smaller with regards to the number of parameters. A
more detailed discussion of the performance comparison will be
provided in the next section; overall, it can be observed that both
EmotionNet Nano variants provide the greatest balance between

accuracy and complexity, making it well-suited for embedded
scenarios.

The distribution of expressions in CK+ is unequal, which
results in an unbalanced dataset both for training and testing. The
effects of this are prevalent when classifying the contempt or fear
expressions, both of which are underrepresented in CK+ (e.g.
there are only 18 examples of contempt, whereas there are 83
examples of surprise). Due to the nature of human facial

FIGURE 2 | Diversity of expressions in the CK + dataset. Example faces for each expression type in CK+ is shown. Contempt not included as relevant subjects did

not give publication consent.

TABLE 1 | Comparison of facial expression classification networks on the CK +

dataset. We report 10-fold cross-validation average accuracy on the CK +

dataset with seven classes (anger, contempt, disgust, fear, happiness, sadness,

and surprise).

Method Params (M) Accuracy (%)

Ouellet (2014) 58 94.4

Feng and Ren (2018) 332 92.3

Wang and Gong (2019) 5.4 97.2

Otberdout et al. (2019) 11 98.4

MobileNetV1 (Howard et al., 2017) 3.23 74.6

EfficientNetB0 (Tan and Le, 2020) 4.06 75.9

ResNet50 (He et al., 2016) 23.6 83.4

EmotionNet Nano-A 0.232 97.6

EmotionNet Nano-B 0.136 92.7
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expressions, similarities between expressions do exist, but the
networks are generally able to learn the high-level distinguishing
features that separate one expression from another. However,
incorrect classifications can still occur, as shown in Figure 3,
where a “disgust” expression is falsely predicted to be “anger.”

3.2. Speed and Energy Efficiency
We also perform a speed and energy efficiency analysis, shown in
Table 2, to demonstrate the efficacy of EmotionNet Nano in real-
time embedded scenarios. Here, an ARM v8.2 64-Bit RISC
embedded processor was used for evaluation. Referring to

Table 2, both EmotionNet Nano variants are able to perform
inference at > 25 FPS and > 70 FPS on the tested embedded
processor at 15 and 30W respectively, which more than
adequately fulfills a real-time system constraint. In terms of
energy efficiency, both EmotionNet Nano variants
demonstrated high power efficiency, with the Nano-B variant
running at 2.43 images/sec/watt on the embedded processor.

4. DISCUSSION

In this study, we explore the human-machine collaborative design of a

deep convolutional neural network architecture capable of performing
facial expression classification in real-time on embedded devices. It is
important to note that other extremely fast deep convolutional neural
network architectures exist, such as MicroExpNet (Çuğu et al., 2017),
which is capable of processing 1851 FPS on an Intel i7 CPU, is less
than 1MB in size, and is tested on the CK+ 8 class problem (7 facial
expression classes plus neutral) on which it achieves 84.8% accuracy.
Although a motivating result, a direct comparison cannot be made
with EmotionNet Nano as well as other facial expression classification
networks evaluated in this study due to the different class sizes.

Compared against state-of-the-art facial expression classification

network architectures tested on CK + using the same seven
expression classes (see Figure 1), both variants of the proposed
EmotionNet Nano are at least an order of magnitude smaller yet
provide comparable accuracy to state-of-the-art network
architectures. For example, EmotionNet Nano-A is > 23 ×

smaller than (Wang and Gong, 2019), yet achieves higher
accuracy by 0.4%. Furthermore, while EmotionNet Nano-A
achieves an accuracy that is 0.8% lower than the top-performing
network architecture (Otberdout et al., 2019), it possesses > 47 ×

fewer parameters. In the case of EmotionNet Nano-B, it achieved
higher accuracy (by 0.4%) than (Feng and Ren, 2018) while having
three orders of magnitude fewer parameters. Although EmotionNet

Nano-B had a lower accuracy than (Ouellet, 2014) by 1.7%, it
possesses over 400 times fewer parameters than that model as well.

FIGURE 3 | Example expression predictions of faces in the CK + dataset using EmotionNet Nano-A. Five of the faces are classified correctly, indicated in green,

with an example of a misclassified expression (disgust), shown in red.

TABLE 2 | EmotionNet Nano Speed and Energy Efficiency. All metrics are

computed on an ARM v8.2 64-Bit RISC embedded processor at different

power levels.

15 W 30 W

Model FPS [images/s
watt ] FPS [images/s

watt ]

EmotionNet Nano-A 25.8 1.72 70.1 2.34

EmotionNet Nano-B 32.8 2.19 72.9 2.43
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When compared against well-known deep neural network
architectures such as ResNet50 (He et al., 2016), as well as
recent state-of-the-art efficient deep neural network
architectures such as MobileNetV1 (Howard et al., 2017) and
EfficientNetB0 (Tan and Le, 2020), both EmotionNet Nano
variants achieve accuracies that is significantly higher while
having significantly lower computational complexities (e.g.,
EmotionNet Nano-A achieves > 16% greater accuracy than
EfficientNetB0 while having > 17 × fewer parameters),

showcasing the power of the human-machine collaborative
design strategy that is able to create architectures tailor made
for the task of expression classification.

Looking at the experimental results around inference speed
and energy efficiency on an embedded processor at different
power levels (see Table 2), it can be observed that both variants of
EmotionNet Nano achieved real-time performance and high
energy efficiencies. For example, in the case of EmotionNet
Nano-A, it was able to exceed 25 FPS and 70 FPS at 15W
and 30 W, respectively, with energy efficiencies exceeding 1.7
images/s/watt and 2.34 images/s/watt at 15W and 30 W,

respectively. This demonstrates that the proposed EmotionNet
Nano is well-suited for high-performance facial expression
classification in real-time embedded scenarios. An interesting
observation that is worth noting is the fact that while the
inference speed improvements of EmotionNet Nano-B over
EmotionNet Nano-A exceeds 27% at 15 W, there is only a
speed improvement of 4% at 30 W. As such, it can be seen
that EmotionNet Nano-B is more suitable at low-power scenarios
but at high-power scenarios the use of EmotionNet Nano-A is
more appropriate given the significantly higher accuracy
achieved.

4.1. Implications and Concerns
The existence of an efficient facial expression classification
network of running in real-time on embedded devices can
have an enormous impact in many fields, including safety,
marketing, and assistive technologies. In terms of safety, driver
monitoring or improved surveillance systems are both areas that
benefit from higher computational efficiency, as it lowers the
latency between event notifications as well as reduces the

probability that a signal will be missed. With a real-time facial
expression classification system in the marketing domain,
companies will gain access to enhanced real-time feedback
when demonstrating or promoting a product, either in front
of live audiences or even in a storefront. The largest impact
however, is likely in the assistive technology sector, due to the
increased accessibility that this efficiency provides. The majority
of individuals do not have access to powerful computing devices,
nor are they likely to be willing to carry a large and expensive

system with them as it would be considered an inconvenience to
daily living.

As shown in this study, EmotionNet Nano can achieve
accurate real-time performance on embedded devices at a low
power budget, granting the user access to a facial expression
classification system on their smartphone or similar edge device
with embedded processors without rapid depletion of their
battery. This can be extremely beneficial toward tasks such as
depression detection, empathetic tutoring, or ambient interfaces,
and can also help individuals who suffer from Autistic Spectrum
Disorder better infer emotional states from facial expressions

during social interaction in the form of augmented reality (see
Figure 4 for a visual illustration of how EmotionNet Nano can be
used to aid in conveying emotional state via an augmented reality
overlay).

Although EmotionNet Nano has many positive implications,
there exist concerns that must be considered before deployment.
The first concern is privacy, as individuals may dislike being on
camera, even if no data storage is taking place. Privacy concerns,
especially ones centered around filming without consent, are
likely to arise if these systems start to be used in public areas.
The combination of facial expression classification together with

facial recognition could result in unwanted targeted advertising,
even though this could be seen as a positive outcome for some.
Additionally, wrong classifications could result in unintended
implications. When assisting a user in an ambient interface or
expression interpretation task, a misclassified expression could
result in a negative experience with major consequences. For
example, predicting “sad” or “angry” expressions as “happy”
could influence the user to behave in the wrong manner.
These concerns and issues are all worth further exploration

FIGURE 4 | Assistive technology for Autistic Spectrum Disorder. Example of how EmotionNet Nano can be leveraged to assist individuals with Autistic Spectrum

Disorder to better infer emotional states from facial expressions during social interactions in the form of augmented reality.
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and investigation to ensure that such systems are used in a
responsible manner.

5. CONCLUSION

In this study, we introduced EmotionNet Nano, a highly
efficient deep convolutional neural network design tailored
for facial expression classification in real-time embedded
scenarios by leveraging a human-machine collaborative
design strategy. By leveraging a combination of human-
driven design principles and machine-driven design

exploration, the EmotionNet Nano architecture design
possesses several interesting characteristics (e.g., architecture
heterogeneity and selective long-range connectivity) that makes
it tailored for real-time embedded usage. Two variants of the
proposed EmotionNet Nano network architecture design were
presented, both of which achieve a strong balance between
architecture complexity and accuracy while illustrating
performance trade-offs at that scale. Using the CK + dataset,
we show that the proposed EmotionNet Nano can achieve
comparable accuracy to state-of-the-art facial expression
classification networks (at 97.6%) while possessing a

significantly more efficient architecture design (possessing
just 232 K parameters). Furthermore, we demonstrated that
EmotionNet Nano can achieve real-time inference speed on
an embedded processor at different power levels, thus further
illustrating its suitability for real-time embedded scenarios.

Future work involves incorporating temporal information into
the proposed EmotionNet Nano design when classifying video
sequences. Facial expressions are highly dynamic and transient in
nature (Hasani and Mahoor, 2017), meaning that information
about the previous expression is valuable when predicting the

current expression. Therefore, the retention of temporal
information can lead to increased performance, at the expense
of computational complexity. Investigating this trade-off between
computational complexity and improved performance when

leveraging temporal information in combination with
machine-driven designs would be worthwhile.
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