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Abstract

& There are two competing theories of facial expression

recognition. Some researchers have suggested that it is an

example of ‘‘categorical perception.’’ In this view, expression

categories are considered to be discrete entities with sharp

boundaries, and discrimination of nearby pairs of expressive

faces is enhanced near those boundaries. Other researchers,

however, suggest that facial expression perception is more

graded and that facial expressions are best thought of as points

in a continuous, low-dimensional space, where, for instance,

‘‘surprise’’ expressions lie between ‘‘happiness’’ and ‘‘fear’’

expressions due to their perceptual similarity. In this article,

we show that a simple yet biologically plausible neural network

model, trained to classify facial expressions into six basic

emotions, predicts data used to support both of these

theories. Without any parameter tuning, the model matches

a variety of psychological data on categorization, similarity,

reaction times, discrimination, and recognition difficulty, both

qualitatively and quantitatively. We thus explain many of the

seemingly complex psychological phenomena related to facial

expression perception as natural consequences of the tasks’

implementations in the brain. &

INTRODUCTION

How do we see emotions in facial expressions? Are they

perceived as discrete entities, like islands jutting out of

the sea, or are they more continuous, reflecting the

structure beneath the surface? We believe that computa-

tional models of the process can shed light on these

questions. Automatic facial expression analysis is an

active area of computer vision research (Lien, Kanade,

Cohn, & Li, 2000; Donato, Bartlett, Hager, Ekman, &

Sejnowski, 1999; Lyons, Budynek, & Akamatsu, 1999;

Rosenblum, Yacoob, & Davis, 1996). However, there has

only been limited work in applying computational mod-

els to the understanding of human facial expression

processing (Calder, Burton, Miller, Young, & Akamatsu,

2001; Lyons, Akamatsu, Kamachi, & Gyoba, 1998). In

particular, the relationship between categorization and

perception is controversial, and a computational model

may help elucidate the connection between them.

Basic Emotions and Discrete Facial Expression
Categories

Although the details of his theory have evolved substan-

tially since the 1960s, Ekman remains the most vocal

proponent of the idea that emotions are discrete entities.

In a recent essay, he outlined his theory of basic emo-

tions and their relationship with facial expressions

(Ekman, 1999). ‘‘Basic’’ emotions are distinct families of

affective states characterized by different signals, physi-

ology, appraisal mechanisms, and antecedent events.

Ekman cites early evidence suggesting that each emotion

is accompanied by distinctive physiological changes that

prepare an organism to respond appropriately. For in-

stance, blood flow to the hands increases during anger,

possibly in preparation for a fight. In addition to physio-

logical changes, according to the theory, each basic

emotion family is also accompanied by a fast appraisal

mechanism that attends to relevant stimuli and a set of

universal antecedent events (e.g., physical or psycholog-

ical harm normally leads to a state of fear, and loss of a

significant other normally leads to a state of sadness).

Finally, and most importantly, Ekman believes that emo-

tions evolved to ‘‘inform conspecifics, without choice or

consideration, about what is occurring: inside the per-

son . . . , what most likely occurred . . . , and what is most

likely to occur next’’ (p. 47). Thus, every basic emotion

family is necessarily accompanied by one (or perhaps a

few for some families) distinctive prototypical signals,

including a set of facial muscle movements and body

movements (e.g., approach or withdrawal). The signals

are not entirely automatic; they may be attenuated,

masked, or faked in certain circumstances. Further-

more, within emotion families, individual differences

and situational context allow for small variations on
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the emotion’s theme. But between families, the physi-

ology, appraisal mechanisms, antecedents, and signals

differ in fundamental ways. Based on these criteria,

Ekman proposes that there are 15 basic emotion fami-

lies: amusement, anger, contempt, contentment, dis-

gust, embarrassment, excitement, fear, guilt, pride in

achievement, relief, sadness/distress, satisfaction, sen-

sory pleasure, and shame. The two crucial components

of the theory, which distinguish it from other theorists’

approaches, are that emotions are fundamentally sepa-

rate from one another and that they evolved to help

organisms deal with fundamental life tasks.

On this view, since emotions are distinct, and each

emotion family is accompanied by a small set of dis-

tinctive signals (facial expressions), we might expect

subjects’ facial expression categorization behavior to

exhibit the characteristics of discrete, clear-cut deci-

sions, not smooth, graded, fuzzy categorization. Evi-

dence that facial expressions are perceived as discrete

entities, then, would be further evidence for the theory

of basic emotions and a deterministic expression/emo-

tion mapping. Indeed, evidence of ‘‘categorical percep-

tion’’ (CP) of facial expressions has recently emerged in

the literature.

In some domains, it appears that sensory systems

adapt to impose discontinuous category boundaries in

continuous stimulus spaces. For instance, in a rainbow,

we perceive bands of discrete colors even though the

light’s wavelength varies smoothly. In psychophysical

experiments, subjects have difficulty discriminating

between two shades of green differing by a small con-

stant wavelength distance, but find it easier to distin-

guish between two stimuli the same distance apart but

closer to the green/yellow boundary. This phenomenon

is called ‘‘categorical perception’’ (Harnad, 1987). It also

occurs in auditory perception of phonemes. When we

listen to utterances varying continuously from a /ba/

sound to a /pa/ sound, we perceive a sudden shift from

/ba/ to /pa/, not a mixture of the two. As with colors, we

can also discriminate pairs of equidistant phonemes

better when they are closer to the perceived /ba/–/pa/

boundary. In general, CP is assessed operationally in

terms of two behavioral measures, categorization judg-

ments and discrimination (same/different) judgments.

Categorization measures typically use a forced-choice

task, for example, selection of the /ba/ category or the

/pa/ category. The stimuli are randomly sampled from

smoothly varying continua such as a step-by-step tran-

sition between /ba/ and /pa/ prototypes. Even though

subjects are not told that the data come from such

continua, they nevertheless label all stimuli on one side

of some boundary as /ba/, and all stimuli on the other

side as /pa/, suggesting a sharp category boundary. For

the second behavioral measure of CP, discrimination,

subjects are asked to make a ‘‘same/different’’ response

to a pair of stimuli that are nearby on the continuum

(simultaneous discrimination), or perform a sequential

(ABX) discrimination task in which stimulus ‘‘A’’ is

shown, stimulus ‘‘B’’ is shown, then either ‘‘A’’ or ‘‘B’’

is shown and subjects are asked which of the first two

stimuli the third matches. For categorically perceived

stimuli, subjects show better discrimination when the

two stimuli are near the category boundary defined by

their labeling behavior, compared with two stimuli

further from the boundary.

In some cases, such as the color example, CP is

thought to be an innate property of the perceptual

system. But in other cases, perceptual discontinuities

at category boundaries are clearly acquired through

learning. For instance, Beale and Keil (1995) created

morph sequences between pairs of famous faces (e.g.,

Clinton–Kennedy) and unfamiliar faces then had sub-

jects discriminate or categorize neighboring pairs of

faces along the morph sequence. They found that

famous face pairs exhibited category effects (increased

discrimination near the boundaries), but unfamiliar face

pairs did not. Their result showed that CP can be

acquired through learning and is not limited to low-level

perceptual stimuli.

Etcoff and Magee (1992) were the first to raise the

question of whether the perceptual mechanisms respon-

sible for facial expression recognition are actually tuned

to emotion categories, or whether perception is contin-

uous, with category membership ‘‘assigned by higher

conceptual and linguistic systems’’ (p. 229). The authors

created caricatures (line drawings) of the Ekman and

Friesen (1976) photos and 10-step morphs between pairs

of those caricatures. They included happy–sad, angry–

sad, and angry–afraid continua as easily discriminated

category pairs. Surprised–afraid and angry–disgusted

continua were included as less easily discriminated pairs.

Happy–neutral and sad–neutral continua were included

to test for category boundaries along the dimension of

presence or nonpresence of an emotion, and finally,

happy–surprised continua were added to include a

transition between positive emotions. The authors found

that all expressions except surprise were perceived cat-

egorically: In an ABX task, morph pairs straddling the

50% category boundary were significantly better discri-

minated than those closer to the prototypes, and in an

identification task, subjects placed sharp boundaries

between categories, with significantly nonlinear category

membership functions. Etcoff and Magee interpreted

these results as evidence for mandatory category assign-

ment: ‘‘people cannot help but see the face as showing

one or another kind of emotion’’ (p. 229). Their results

therefore pose a serious challenge for advocates of

a continuous space of emotions and rough emotion

expression correspondence.

Etcoff and Magee’s (1992) provocative results led to

further research exploring CP in facial expression rec-

ognition. Some of the potential limitations of their

study were that the stimuli were line drawings, not

image-quality faces, that each subject was only exposed
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to a single continuum, and that the discrimination

results, being from a sequential (ABX) task, might

reflect a short-term memory phenomenon rather than

a perceptual phenomenon. In view of these limitations,

Calder, Young, Perrett, Etcoff, and Rowland (1996)

extended and replicated the earlier experiments with

image-quality morphs. They produced several continua

using the Ekman and Friesen (1976) photos (e.g.,

Ekman and Friesen prototypes and image-quality morph

sequences produced in R. A.’s lab, see Figure 1). The

authors first replicated Etcoff and Magee’s experiments

with new stimuli: image-quality happy–sad, angry–sad,

and angry–afraid sequences, each using a different

actor. A second experiment followed the same proce-

dure except that each subject’s stimuli included morphs

from four different actors. In a third experiment, they

had subjects categorize stimuli from three different

expression continua employing a single actor (‘‘J. J.’’

afraid–happy, happy–angry, and angry–afraid sequen-

ces). Finally, they had subjects perform a simultaneous

discrimination (same/different) task. In the second

experiment, for the happy–sad transitions, the authors

found that artifacts in morphing between a face with

teeth and one without (a ‘‘graying’’ of the teeth as the

morph moves away from the happy prototype) helped

subjects in the discrimination task. However, on the

whole, the results were consistent with CP: sharp

category boundaries and enhanced discrimination near

the boundaries, regardless of whether there was a single

or several continua present in the experiment and

regardless of whether the sequential or simultaneous

discrimination task was used.

In the psychological literature on categorization, CP

effects are usually taken as evidence that (1) object

representations are altered during the course of cat-

egory learning, or (2) that subjects automatically label

stimuli even when they are making a purely perceptual

discrimination (Goldstone, 2000; Goldstone, Lippa, &

Shiffrin, 2001; Pevtzow & Harnad, 1997; Tijsseling &

Harnad, 1997). Findings of CP effects in facial expres-

sion stimuli raise the possibility that perception of facial

expressions is discrete in the same way that category

labeling is. Calder et al.’s experiments strengthened the

argument for CP of facial expressions, but the authors

shy away from Etcoff and Magee’s strong interpretation

that facial expression category assignment is man-

datory. They propose instead that perhaps CP is

‘‘an emergent property of population coding in the

nervous system’’ occurring whenever ‘‘populations of

cells become tuned to distinct categories’’(p. 116). In

this article, we will show precisely how this can occur,

suggesting that Calder et al.’s hypothesis may indeed

be correct.

Continuous Emotion Space and Fuzzy Facial
Expression Categories

Other theorists hold that the relationship between

emotions and facial expressions is not so categorical,

discrete, or deterministic as the theory of basic emotions

and the evidence for CP suggest. The notion that facial

expression perception is discrete is challenged by data

showing that similarity judgments of these expressions

exhibit a graded, continuous structure.

Schlosberg (1952), following up on the work of his

advisor (Woodworth, 1938), found that emotion cate-

gory ratings and subjects’ ‘‘errors’’ (e.g., the likelihood of

their labeling a putatively disgusted expression as con-

tempt) could be predicted fairly accurately by arranging

the emotion categories around an ellipse whose major

Figure 1. (a) Example proto-

typical expressions of six basic

emotions and a neutral face for

actor ‘‘J. J.’’ in Ekman and

Friesen’s POFA (Ekman &

Friesen, 1976). (b) Morphs

from fear to sadness and

happiness to disgust, generated

from the corresponding

prototypes.
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axis was pleasantness versus unpleasantness (exemplified

by happy and sad expressions) and whose minor axis

was attention versus rejection (exemplified by surprise

and disgust expressions).

More recently, Russell (1980) proposed a structural

theory of emotion concepts with two dimensions,

pleasure and arousal. Russell and Bullock (1986) then

proposed that emotion categories are best thought of

as fuzzy sets. A few facial expressions might have a

membership of 1.0 (100%) in one particular category,

and others might have intermediate degrees of mem-

bership in more than one category. On their view, the

facial expression confusion data supporting structural

theories like Schlosberg’s (1952) reflected the overlap

of these fuzzy categories. To test this concept, Russell

and Bullock had subjects rate a variety of facial expres-

sions for how well they exemplify categories like

‘‘excited,’’ ‘‘happy,’’ ‘‘sleepy,’’ ‘‘mad,’’ and so forth. They

found that the categories did indeed overlap, with peak

levels of membership for Ekman’s basic emotion cate-

gories occurring at Ekman’s prototypical expressions. A

similarity structure analysis (multidimensional scaling

[MDS]—see Figure 9 for an example) performed on

the subjects’ ratings produced two dimensions highly

correlated with other subjects’ pleasure and arousal

ratings. When asked to verify (yes or no) membership

of facial expression stimuli in various emotion concept

categories, there was a high level of consensus for

prototypical expressions and less consensus for boun-

dary cases. Asking subjects to choose exemplars for a

set of categories also revealed graded membership

functions for the categories. The data thus showed that

facial expression categories have systematically graded

overlapping membership in various emotion categories.

On the basis of this evidence, Russell and Bullock

proposed that facial expression interpretation first

involves appraising the expression in terms of pleasure

and arousal. Then the interpreter may optionally

choose a label for the expression. Following Schlosberg,

they proposed that finer, more confident judgments

require contextual information.

This and additional recent research (Schiano, Ehrlich,

Sheridan, & Beck, 2000; Katsikitis, 1997; Carroll &

Russell, 1996; Russell, 1980; Russell, Lewicka, & Niit,

1989) suggests that there is a continuous, multidimen-

sional perceptual space underlying facial expression

perception in which some expression categories are

more similar to each other than others.

Young et al.’s (1997) ‘‘Megamix’’ Experiments

Young et al. (1997) set out to further test the predic-

tions of multidimensional and categorical accounts of

facial expression perception and recognition. They

pointed out that 2-D structural theories like Schlos-

berg’s or Russell’s predict that some morph transitions

between expression pairs should pass near other

categories. For instance, if the 2-D representation in

Figure 9a adequately characterizes our perception of

emotional facial expression stimuli, the midpoint of a

morph between happiness and fear should be perceived

as a surprised expression. Categorical views of emo-

tional facial expressions, on the other hand, do not

necessarily predict confusion along morph transitions;

one would expect either sharp transitions between all

pairs of categories or perhaps indeterminate regions

between categories where no emotion is perceived.

Furthermore, if the categorical view is correct, we might

expect CP, in which subjects find it difficult to discrim-

inate between members of the category and easy to

discriminate pairs of stimuli near category boundaries,

as found in previous studies (Calder et al., 1996; Etcoff

& Magee, 1992). To test these contrasting predictions

with an exhaustive set of expression transitions, Young

et al. constructed image-quality morph sequences

between all pairs of the emotional expression proto-

types shown in Figure 1a. (Figure 1b shows example

morph sequences produced in R. A.’s lab.)

In Experiment 1, the authors had subjects identify the

emotion category in 10%, 30%, 50%, 70%, and 90%

morphs between all pairs of the six prototypical expres-

sions in Figure 1a. The stimuli were presented in

random order, and subjects were asked to perform a

six-way forced-choice identification. Experiment 2 was

identical except that morphs between the emotional

expressions and the neutral prototype were added to

the pool, and ‘‘neutral’’ was one of the subjects’ choices

in a seven-way forced-choice procedure. The results of

Experiment 2 for 6 of the 21 possible transitions are

reprinted in Figure 2. In both experiments, along every

morph transition, subjects’ modal response to the stim-

uli abruptly shifted from one emotion to the other with

no indeterminate regions or between. Consistent with

categorical theories of facial expressions, the subjects’

modal response was always one of the endpoints of the

morph sequence, never a nearby category. Subjects’

response times (RTs), however, were more consistent

with a multidimensional or weak category account of

facial expression perception: As distance from the pro-

totypes increased, RTs increased significantly, presum-

ably reflecting increased uncertainty about category

membership near category boundaries.

In Experiment 3, Young et al. explored the extent to

which subjects could discriminate pairs of stimuli along

the six transitions: happiness–surprise, surprise–fear,

fear–sadness, sadness–disgust, disgust–anger, anger–

happiness. They had subjects do both a sequential

discrimination task (ABX) and a simultaneous discrim-

ination task (same–different). Only the data from

the sequential experiments are now available, but the

authors report a very strong correlation between the two

types of data (r= .82). The sequential data are reprinted

in Figure 3. The main finding of the experiment was

that subjects had significantly better discrimination
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performance near the category boundaries than near the

expression prototypes, a necessary condition to claim

CP. Experiment 3 therefore best supports the categorical

view of facial expression perception.

Finally, in Experiment 4, Young et al. set out to

determine whether subjects could determine what

expression is ‘‘mixed-in’’ to a faint morph. Again, a

strong categorical view of facial expressions would pre-

dict that subjects should not be able to discern what

expression a given morph sequence is moving toward

until the sequence gets near the category boundary.

However, according to continuous theories, subjects

should be able to determine what prototype a sequence

is moving toward fairly early in the sequence. In the

experiment, subjects were asked to decide, given a

morph or prototype stimulus, the most apparent emo-

tion, the second-most apparent emotion, and the third-

most apparent emotion, using a button box with a

button for each of the six emotion categories. After

correcting for intrinsic confusability of the emotion

categories, the authors found that subjects were sig-

nificantly above chance at detecting the mixed-in emo-

tion at the 30% level. As opposed to the identification

and discrimination data from Experiments 1–3, this

result best supports continuous, dimensional accounts

of facial expression perception.

In summary, Young et al.’s experiments, rather than

settling the issue of categorical versus continuous the-

ories of facial expression perception, found evidence

supporting both types of theory. The authors argue

that a 2-D account of facial expression perception is

unable to account for all of the data, but they also

argue that the strong mandatory categorization view is

likewise deficient.

Figure 2. Selected results of

Young et al.’s (1997) Experi-

ment 2. (a) Human responses

(% identification in a seven-way

forced-choice task) to six

morph sequences: happy–

surprised, surprised–afraid,

afraid–sad, sad–disgusted,

disgusted–angry, and angry–

happy. Every transition exhib-

ited a sharp category boundary.

(b) Modeling subjects’ choice as

a random variable distributed

according to the pattern of

activation at the network’s out-

put layer, which entails aver-

aging across the 13 networks’

outputs. The model has a cor-

relation (over all 15 transitions)

of r = .942 with the human

subjects. (c) RTs for the same

transitions in (a). RTs increased

significantly with distance from

the prototype. (M = sad; only 6

out of 21 possible transitions

are shown). (d) Predictions of

network ‘‘uncertainty’’ model

for the same morph transitions.
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Until now, despite several years of research on auto-

matic recognition of facial expressions, no computation-

al model has been shown to simultaneously explain all

of these seemingly contradictory data. In the next sec-

tion, we review the recent progress in computational

modeling of facial expression recognition, then intro-

duce a new model that does succeed in explaining the

available data.

Computational Modeling of Facial Expression
Recognition

Padgett and colleagues were the first to apply computa-

tional models toward an understanding of facial expres-

sion perception (Cottrell, Dailey, Padgett, & Adolphs,

2000; Padgett, Cottrell, & Adolphs, 1996; Padgett &

Cottrell, 1998). Their system employed linear filtering

of regions around the eyes and mouth followed by a

multilayer perception for classification into emotion

categories. The system achieved good recognition per-

formance and was able to explain some of the results on

CP of facial expressions with linear ‘‘dissolve’’ sequen-

ces. However, the system was unable to account for the

sharp category boundaries humans place along image-

quality morph transitions, because the linear filters’

responses varied too quickly in the presence of the

nonlinear changes in morph transitions. It also would

have been incapable of predicting recently observed

evidence of holistic effects in facial expression recogni-

tion (Calder, Young, Keane, & Dean, 2000).

Lyons et al. (1998) created a database of Japanese

female models portraying facial expressions of happi-

ness, surprise, fear, anger, sadness, and disgust. They

then had subjects rate the degree to which each face

portrayed each basic emotion on a 1–5 scale, and used

Euclidean distance between the resulting ‘‘semantic

rating’’ vectors for each face pair as a measure of

dissimilarity. They then used a system inspired by the

Dynamic Link Architecture (Lades et al., 1993) to explain

the human similarity matrix. Similarities obtained from

their Gabor wavelet-based representation of faces were

highly correlated with similarities obtained from the

human data, and nonmetric multidimensional scaling

(MDS) revealed similar underlying 2-D configurations

of the stimuli. The authors suggest in conclusion that

the high-level circumplex constructs proposed by

authors like Schlosberg and Russell may in part reflect

similarity at low levels in the visual system.

In a recent work, Calder et al. (2001) applied a

different computational model to the task of under-

standing human facial expression perception and rec-

ognition. The idea of their system, originally proposed

by Craw and Cameron (1991), is to first encode the

positions of facial features relative to the average face

then warp each face to the average shape (thus pre-

serving texture but removing between-subject face

shape variations). The shape information (the positions

of the facial features prior to warping) and the shape-

free information (the pixel values after warping) can

each be submitted to a separate principal components

analysis (PCA) for linear dimensionality reduction, pro-

ducing separate low-dimensional descriptions of the

face’s shape and texture. Models based on this

approach have been successful in explaining psycholog-

ical effects in face recognition (Hancock, Burton, &

Bruce, 1996, 1998). However, warping the features in

an expressive face to the average face shape would

seem to destroy some of the information crucial to

recognition of that expression, so prior to Calder

et al.’s work, it was an open question as to whether

such a system could support effective classification of

facial expressions. The authors applied the Craw and

Cameron PCA method to Ekman and Friesen’s (1976)

Pictures of Facial Affect (POFA) then used linear dis-

criminant analysis to classify the faces into happy, sad,

afraid, angry, surprised, and disgusted categories. The

authors found that a representation incorporating both

the shape information (feature location PCA) and the

shape-free information (warped pixel PCA) best sup-

ported facial expression classification (83% accuracy

Figure 3. Results of Young

et al.’s (1997) Experiment 3 for

the sequential (ABX) discrimi-

nation task. Each point repre-

sents the percentage of time

subjects correctly discriminated

between two neighboring

morph stimuli. The x-axis labels

denote which pair of stimuli

were being compared (e.g.,

70/90 along the transition from

sadness to disgust denotes a

comparison of a 70% disgust /

30% sadness morph with a 90%

disgust /10% sadness morph).

Discrimination was significantly

better near the prototypes than

near the category boundaries.
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using leave-one-image-out classification for the Ekman

and Friesen database). The authors went on to compare

their system with human data from psychological exper-

iments. They found that their system behaved similarly

to humans in a seven-way forced-choice task and that

the principal component representation could be used

to predict human ratings of pleasure and arousal (the

two dimensions of Russell’s circumplex).

Taken together, results with the above three compu-

tational models of facial expression recognition begin to

hint that subjects’ performance in psychological experi-

ments can be explained as a simple consequence of

category learning and the statistical properties of the

stimuli themselves. Although Calder et al.’s system

exhibits a surprising amount of similarity to human

performance in a forced-choice experiment, it has

not been brought to bear in the debate on multi-

dimensional versus CP of facial expressions. In the

present article, we show that a new, more biologically

plausible computational model not only exhibits more

similarity to human forced-choice performance, but

also provides a detailed computational account of data

supporting both categorical and multidimensional the-

ories of facial expression recognition and perception.

Our simulations consist of constructing and training a

simple neural network model (Figure 4); the system

uses the same stimuli employed in many psychological

experiments, performs many of the same tasks, and

can be measured in similar ways as human subjects.

The model consists of three levels of processing:

perceptual analysis, object representation, and catego-

rization. The next section describes the model in

some detail.

The Model

The system is a feed-forward network consisting of three

layers common to most object recognition models

(Riesenhuber & Poggio, 2000). Its input is a 240 by

292 manually aligned, grayscale face image from Ekman

and Friesen’s POFA (Ekman & Friesen, 1976). This data

set contains photos of 14 actors portraying expressions

that are reliably classified as happy, sad, afraid, angry,

surprised, or disgusted by naive observers (70% agree-

ment was the threshold for inclusion in the data set,

and the overall agreement is 91.6%). The expressions

made by one of those actors, ‘‘J. J.,’’ are shown in

Figure 1a. The strong agreement across human sub-

jects, together with the use of these photos in a wide

variety of psychological experiments exploring emo-

tional expression perception, makes POFA an ideal

training set for our model.

The first layer of the model is a set of neurons whose

response properties are similar to those of complex cells

in the visual cortex. The so-called Gabor filter (Daug-

man, 1985) is a standard way to model complex cells in

visual recognition systems (Lades et al., 1993). Figure 5

shows the spatial ‘‘receptive fields’’ of several filters. The

units essentially perform nonlinear edge detection at

five scales and eight orientations. As a feature detector,

the Gabor filter has the advantage of moderate trans-

lation invariance over pixel-based representations. This

means that features can ‘‘move’’ in the receptive field

without dramatically affecting the detector’s response,

making the first layer of our model robust to small image

changes. With a 29 by 35 grid and 40 filters at each grid

location, we obtain 40,600 model neurons in this layer,

which we term the ‘‘perceptual’’ layer.

In order to extract a small set of informative features

from this high-dimensional data, we use the equivalent

of an ‘‘image compression’’ network (Cottrell, Munro, &

Zipser, 1989). This is a back propagation network that is

trained to simply reproduce its input on its output

through a narrow channel of hidden units. In order to

solve this problem, the hidden units must extract regu-

larities from the data. Since they are fully connected to

the inputs, they usually extract global representations

we have termed ‘‘holons’’ in previous work (Cottrell &

Metcalfe, 1991). We note that this is a biologically

plausible means of dimensionality reduction in the sense

that it is unsupervised and can be learned by simple

networks employing Hebbian learning rules (Sanger,

1989). As a shortcut, we compute this network’s weights

Figure 5. Example Gabor

filters. The real (cosine shaped)

component is shown relative to

the size of the face at all five

scales and five of the eight

orientations used.

Figure 4. Model schematic.
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directly via the equivalent statistical technique of PCA.

We chose 50 principal components (hidden units) for

this layer based on previous experiments showing this

leads to good generalization on POFA. It is important to

note that the number of components (the only free

parameter in our system) was not tuned to human data.

The resulting low-dimensional object-level representa-

tion is specific to the facial expression and identity

variations in its input, as is the population of so-called

face cells in the inferior temporal cortex (Perrett, Hieta-

nen, Oram, & Benson, 1992). We term this layer of

processing the ‘‘gestalt’’ level.

Although PCA is one of the simplest and most

efficient methods for coding a set of stimuli, other

methods would probably also work. For the current

model, it is only important that (1) the code be

sensitive to the dimensions of variance in faces, to

facilitate learning of expressions, and that (2) the code

be low dimensional, to facilitate generalization to novel

faces. In a more general object recognition system, a

single PCA for all kinds of objects would probably not

be appropriate, because the resulting code would not

be sparse (a single image normally activates a large

number of holistic ‘‘units’’ in a PCA representation, but

object-sensitive cells in the visual system appear to

respond much more selectively; Logothetis & Shein-

berg, 1996). To obtain a good code for a large number

of different objects, then, nonnegative matrix factoriza-

tion (Lee & Seung, 1999) or an independent compo-

nent mixture model (Lee, Lewicki, & Sejnowski, 2000)

might be more appropriate. For the current problem,

though, PCA suffices.

The outputs of the gestalt layer are finally categorized

into the six ‘‘basic’’ emotions by a simple perceptron

with six outputs, one for each emotion. The network is

set up so that its outputs can be interpreted as proba-

bilities (they are all positive and sum to 1). However, the

system is trained with an ‘‘all-or-none’’ teaching signal.

That is, even though only 92% (say) of the human

subjects used to vet the POFA database may have

responded ‘‘happy’’ to a particular face, the network’s

teaching signal is 1 for the ‘‘happy’’ unit, and 0 for the

other five. Thus, the network does not have available

to it the confusions that subjects make on the data.

We term this layer the ‘‘category’’ level.

While this categorization layer is an extremely simplis-

tic model of human category learning and decision-

making processes, we argue that the particular form of

classifier is unimportant; so long as it is sufficiently

powerful and reliable to place the gestalt-level represen-

tations into emotion categories, we claim that similar

results will obtain with any nonlinear classifier.

We should also point out that the system abstracts

away many important aspects of visual processing in

the brain, such as eye movements, facial expression

dynamics, size, and viewpoint invariance. These com-

plicating factors turn out to be irrelevant for our

purposes; as we shall see, despite the simplifying

assumptions of the model, it nevertheless accounts

for a wide variety of data available from controlled

behavioral experiments. This suggests that it is a good

first-order approximation of processing at the computa-

tional level in the visual system.

The next section reports on the results of several

experiments comparing the model’s predictions to

human data from identical tasks, with special emphasis

on Young et al.’s landmark study of categorical effects in

facial expression perception (Young et al., 1997). We

find (1) that the model and humans find the same

expressions difficult or easy to interpret; (2) that when

presented with morphs between pairs of expressions,

the model and humans place similar sharp category

boundaries between the prototypes; (3) that pairwise

similarity ratings derived from the model’s gestalt-level

representations predict human discrimination ability; (4)

that the model and humans are similarly sensitive to

mixed-in expressions in morph stimuli; and (5) that MDS

analysis produces a similar emotional similarity structure

from the model and human data.

RESULTS

Comparison of Model and Human Performance

The connections in the model’s final layer were trained

to classify images of facial expressions from Ekman and

Friesen’s POFA database (see Figure 1a) (Ekman &

Friesen, 1976), the standard data set used in the vast

majority of psychological research on facial expression

(see Methods for details). The training signal contained

no information aside from the expression most agreed

upon by human observers—that is, even if 90% of

human observers labeled a particular face ‘‘happy’’

and 10% labeled it ‘‘surprised,’’ the network was trained

as if 100% had said ‘‘happy.’’ Again, there is no infor-

mation in the training signal concerning the similarity of

different expression categories. The first measurement

we made was the model’s ability to generalize in classi-

fying the expressions of previously unseen subjects from

the same database. The model’s mean generalization

performance was 90.0%, which is not significantly differ-

ent from human performance on the same stimuli

(91.6%; t = .587, df = 190, p = .279) (Table 1). More-

over, the rank-order correlation between the model’s

average accuracy on each category (happiness, surprise,

fear, etc.), and the level of human agreement on the

same categories was .667 (two-tailed Kendall’s tau,

p = .044; cf. Table 1). For example, both the model

and humans found happy faces easy and fear faces the

most difficult to categorize correctly.1 Since the network

had about as much experience with one category as

another, and was not trained on the human response

accuracies, this correlation between the relative difficul-

ties of each category is an ‘‘emergent’’ property of the
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model. Studies of expression recognition consistently

find that fear is one of the most difficult expressions to

recognize (Katsikitis, 1997; Matsumoto, 1992; Ekman &

Friesen, 1976). Our model suggests that this is simply

because the fear expression is ‘‘inherently’’ difficult to

distinguish from the other five expressions.

How does the network perform the expression rec-

ognition task? An examination of the trained network’s

representation provides some insight. We projected

each unit’s weight vector back into image space in order

to visualize the ‘‘ideal’’ stimulus for each unit in the

network (see Methods for details). The results are

shown in Figure 6, with and without addition of the

average face. In each of the images, each pixel value is

the result of applying a regression formula predicting

the value of the pixel at that location as a linear function

of the 50-element weight vector for the given network

output unit. Dark and bright spots indicate the features

that excite or inhibit a given output unit depending on

the relative gray values in the region of that feature.

Each unit appears to combine evidence for an emotion

based upon the presence or absence of a few local

features. For instance, for fear, the salient criteria appear

to be the eyebrow raise and the eyelid raise, with a

smaller contribution of parted lips. The anger unit

apparently requires a display in which the eyebrows

are not raised. Clearly, the classifier has determined

which feature configurations reliably distinguish each

expression from the others.

Comparison on CP Data

Several studies have reported CP of facial expressions

using morphs between portrayals of the six basic emo-

tions by POFA actor ‘‘J. J.,’’ whose images have been

chosen because his expressions are among the easiest to

recognize in the database (Young et al., 1997; Calder

et al., 1996). Since our model also finds J. J. ‘‘easy’’

(it achieves 100% generalization accuracy on J. J.’s pro-

totypical expressions), we replicated these studies with

13 networks that had not been trained on J. J.2

We first compared the model’s performance with

human data from a six-way forced-choice experiment

(Young et al., 1997), on 10%, 30%,50%, 70%, and 90%

morphs we constructed (see Methods) between all

pairs of J. J.’s prototypical expressions (see Figure 1b

for two such morph sequences). We modeled the

subjects’ identification choices by letting the outputs

of the networks represent the probability mass function

for the human subjects’ responses. This means that we

averaged each of the six outputs of the 13 networks for

each face and compared these numbers to the human

subjects’ response probabilities. Figure 2 compares the

networks’ forced-choice identification performance

with that of humans on the same stimuli. Quantita-

tively, the model’s responses were highly correlated

with the human data (r = .942, p < .001), and

qualitatively, the model maintained the essential fea-

tures of the human data: abrupt shifts in classification

at emotion category boundaries, and few intrusions

(identifications of unrelated expressions) along the

transitions. Using the same criteria for an intrusion

that Young et al. (1997) used, the model predicted 4

intrusions in the 15 morph sequences, compared to 2

out of 15 in the human data. Every one of the

intrusions predicted by the model involved fear, which

Table 1. Error Rates for Networks and Level of Agreement

for Humans

Expression

Network Percentage

Correct

Human Percentage

Correct

Happiness 100.0 98.7

Surprise 100.0 92.4

Disgust 100.0 92.3

Anger 89.1 88.9

Sadness 83.3 89.2

Fear 67.2 87.7

Average 90.0 91.6

Network generalization to unseen faces, compared with human
agreement on the same faces (six-way forced choice). Human data
are provided with the POFA database (Ekman & Friesen, 1976).

Figure 6. Network representa-

tion of each facial expression.

(Top row) Approximation of

the optimal input-level stimulus

for each facial expression

category. (Bottom row) The

same approximations with the

average face subtracted—dark

and bright pixels indicate

salient features.
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is the least reliably classified expression in the POFA

database, for humans and networks (Table 1).

We also compared subjects’ RTs to those of the net-

work, in which we model RT as being proportional to

uncertainty at the category level. That is, if the network

outputs a probability of .9 for happiness, we assume it is

more certain and therefore faster than when it outputs a

probability of .6 for happiness. We thus use the differ-

ence between 1 (the maximum possible output) and the

largest actual output as our model of the reaction time.

As explained earlier, subjects’ RTs exhibit a characteristic

scalloped shape, with slower RTs near category bounda-

ries. The model also exhibits this pattern, as shown in

Figure 2. The reason should be obvious: As a sequence

of stimuli approaches a category boundary, the net-

work’s output for one category necessarily decreases

as the other increases. This results in a longer model RT.

The model showed good correlation with human RTs

(see Methods) (r = .677, p < .001).

The model also provides insight into human discrim-

ination behavior. How can a model that processes one

face at a time discriminate faces? The idea is to imagine

that the model is shown one face at a time and stores its

representation of each face for comparison. We use the

correlation (Pearson’s r) between representations as a

measure of similarity, and then use 1 minus this number

as a measure of discriminability. An interesting aspect of

our model is that it has several independent levels of

processing (see Figure 4), allowing us to determine

which level best accounts for a particular phenomenon.

In this case, we compute the similarity between two

faces at the pixel level (correlation between the raw

images), the perceptual level (correlation between the

Gabor filter responses), the gestalt level (correlation

between the principal components), or the categoriza-

tion level (correlation between the six outputs). We

compared our measure of discriminability with human

performance in Young et al.’s (1997) ABX experiment

(see Methods for details). We found the following

correlations at each processing level. Pixel: r = .35,

p = .06; perceptual: r = .52, p = .003; gestalt: r = .65,

p< .001 (shown in Figure 7b); category: r= .41, p= .02.

Crucially, when the gestalt layer and the categorization

layer were combined in a multiple regression, the cate-

gorization layer’s contribution was insignificant ( p= .3),

showing that the explanatory power of the model rests

with the gestalt layer. According to our model, then,

human subjects’ improved discrimination near category

boundaries in this task is best explained as an effect at

the level of gestalt-based representations, which were

derived in an unsupervised way from Gabor represen-

tations via PCA. This is in sharp contrast to the stand-

ard explanation of this increased sensitivity, which is

that categorization influences perception (Goldstone

et al., 2001; Pevtzow & Harnad, 1997). This suggests

that the facial expression morph sequences have natu-

ral boundaries, possibly because the endpoints are

extremes of certain coordinated muscle group move-

ments. In other domains, such as familiar face classi-

fication (Beale & Keil, 1995), the boundaries must arise

through learning. In such domains, we expect that

discrimination would be best explained in a learned

Figure 7. Discrimination of

morph stimuli. (a) Percent cor-

rect discrimination of pairs of

stimuli in an ABX task (Young

et al., 1997). Each point repre-

sents the percentage of time

subjects correctly discriminated

between two neighboring

morph stimuli. The x-axis labels

to the left and right of each

point show which two stimuli

were being compared; (e.g.,

70/90 along the transition from

sadness to disgust denotes a

comparison of a 70% disgust /

30% sadness morph with a 90%

disgust /10% sadness morph).

Note that better performance

occurs near category bound-

aries than near prototypes

(highlighted by the vertical

lines). (b) The model’s discri-

mination performance at the

gestalt representation level.

The model discrimination

scores are highly correlated

with the human subjects’ scores

(r = .65, p < .001).
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feature layer, as in other models (Goldstone, 2000;

Tijsseling & Harnad, 1997).

The data above show that the model naturally

accounts for categorical behavior of humans making

forced-choice responses to facial expression morph

stimuli. In another experiment, Young et al. (1997)

found that subjects could reliably detect the expres-

sion mixed into a morph even at the 30% level. Can

the model also account for this decidedly noncategor-

ical behavior? In the experiment, subjects were asked

to decide, given a morph or prototype stimulus, the

most apparent emotion, the second-most apparent

emotion, and the third-most apparent emotion (the

scores on prototypes were used to normalize for inher-

ent expression similarity). To compare the human

responses with the model, we used the top three out-

puts of the 13 networks, and used the same analysis as

Young et al. to determine the extent to which the

network could detect the mixed-in expression in the

morph images (see Methods for details). Figure 8 shows

that the model’s average sensitivity to the mixed-in

expression is almost identical to that of human subjects,

even though its behavior seems categorical in forced-

choice experiments.

Comparison of Similarity Structures

We next investigated the similarity structure of the

representations that the model produced. As before,

we calculated the similarity between pairs of faces at

each level of the network by computing the correlation

between their representations. In order to evaluate the

similarity structure qualitatively, we performed MDS

both on the human forced-choice responses published

by Ekman and Friesen (1976) and on the network’s

responses to the same stimuli, at each level of pro-

cessing shown in Figure 4. At the pixel level, we found

that the structure present in the MDS configuration

was based mainly on identity, and as we moved toward

the categorization level, the identity-based structure

began to break down, and expression-related clusters

began to emerge. Unsurprisingly, at the network’s cat-

egorization layer, the configuration was clearly organ-

ized by emotion category (Figure 9). Of more interest,

however, is that the ‘‘ordering’’ of facial expressions

around the human and network MDS configurations

is the same, a result unlikely to have arisen by chance

Figure 9. Multidimensional scaling of human and network responses

reveals similar dimensions of emotion. Each point represents one of

the 96 expressive faces in POFA. (a) 2-D similarity space induced by

MDS from the average six-way forced-choice responses of human

subjects (Ekman & Friesen, 1976) (stress = 0.218). (b) 2-D similarity

space induced by MDS from the average training set responses of

networks at their output layers (stress = 0.201). The arrangement of

emotions around the circle is the same in both cases. Stress at the pixel

level was 0.222, the perceptual level 0.245, and the gestalt level 0.286.

Figure 8. Ability to detect mixed-in expression in morph sequences,

for humans and the model. In the human data (dashed lines), subjects

chose the far prototype (the faint second expression in the morph)

significantly more often than unrelated expressions when that

expression’s mix ratio was 30% or greater, even though they

consistently identified the 70% expression in forced-choice experi-

ments. The model is almost identical to the humans in its ability to

detect the secondary expression in a morph image.
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( p = 1/60 = .017). Given that the network was never

given any similarity information, this is a remarkable

result. It suggests that the human similarity structure

is a simple result of the inherent confusability of the

categories, not necessarily the result of locality in some

underlying psychological emotion space, as dimen-

sional theories (e.g., Russell, 1980; Russell et al.,

1989) might predict.

To measure the similarity between the human and

network category structures quantitatively, we com-

pared the human and model confusion matrices directly.

For each pair of expressions, we computed the proba-

bility pij that humans or networks respond with emotion

i when the intended emotion is j for all i 6¼ j, that is, the

probability of confusion between two categories. The

correlation between networks and humans on the net-

works’ test sets (the stimuli the networks had never

seen before) was .661 ( p < .001).3 Thus, there is a close

correspondence between human confusion rates and

response distributions at the model’s categorization

level. The system is never instructed to confuse the

categories in a way similar to humans; nevertheless, this

property emerges naturally from the data.

DISCUSSION

In this article, we have introduced a computational

model that mimics some of the important functions of

the visual system. The model is simply a pattern classifier

incorporating a biologically plausible representation of

visual stimuli. We first engineered the system to provide

good classification performance on a small database of

reliably recognizable facial expressions. The free param-

eters of the model, such as the number of principal

components used in dimensionality reduction, were

optimized to maximize the classifier’s generalization

performance. In contrast to most models in mathemat-

ical psychology, which seek to fit a low number of free

parameters to maximize a model’s agreement with

human data, our model is compared to human data

directly without any tuning.

The results of our comparison of the model’s per-

formance with human data were nevertheless remark-

able. We first found that the relative levels of difficulty

for six basic facial expressions of emotion were highly

correlated with the levels at which humans agree on

those same emotions. For example, humans are best at

classifying happy expressions because the smile makes

the task easy. The network model likewise finds it

extremely easy to detect smiles because they are

obvious visual features that discriminate happy expres-

sions from the rest of the faces in its training set. On

the other hand, humans usually find that fear expres-

sions are very difficult to classify. Fear expressions are

often classified as surprise, for instance. The network

model likewise sometimes classifies fear expressions as

surprise. Why are fear expressions so difficult for

humans to classify? Could it be that true displays of

fear are uncommon in our society? Or that portrayals of

fear in the popular culture misguide us as to what

fearful people really look like? Or simply that fear

expressions are perceptually similar to other expres-

sions? Our results suggest that the latter is the case—

culture probably has very little to do with the difficulty

of fear expressions. We have shown that perceptual

similarity alone is sufficient to account for the relative

difficulty of facial expressions.

The agreement between human and network similar-

ity structure analyses (MDS) is also somewhat surprising.

As pointed out earlier, Russell and colleagues have found

that affective adjectives and affective facial expressions

seem to share a common similarity structure. One might

postulate that the underlying psychological space

reflects the physiological similarity of emotional states,

and that when we are asked to classify facial expressions,

we are likely to classify a given face as any of the

emotions close by in that psychophysiological space.

However, we have shown that an emotionless machine,

without any underlying physiology, exhibits a similarity

structure very much like that of the humans. This is even

more remarkable when one considers that the network

was not given any indication of the similarity structure in

the training signal, which was always all-or-none, rather

than, for example, human subject responses, which

would reflect subjects’ confusions. Since we nevertheless

match the human similarity structure, we have shown

that the perceptual similarity of the categories corre-

sponds to the psychological similarity structure of facial

expressions. Why would this be? We suggest that evolu-

tion did not randomly associate facial expressions with

emotional states, but that the expression-to-emotion

mapping evolved in tandem with the need to communi-

cate emotional states effectively.

The final question we set out to explore with this

work is whether facial expressions are represented

continuously or as discrete entities. As explained in

the Introduction, the best evidence for discrete repre-

sentations is that subjects appear to place sharp boun-

daries between facial expression categories and are

better able to discriminate pairs of expressions near

category boundaries, suggesting that our perception of

the faces is influenced by the existence of the catego-

ries. As has been found in other modalities (cf. Ellison

& Massaro, 1997), we find that it is unnecessary to

posit discrete representations to account for the sharp

boundaries and high discrimination scores. The net-

work model places boundaries between categories, as

it must to obtain good classification accuracy, but the

categories are actually fuzzy and overlapping. The

model can be thought of as a biologically plausible,

working implementation of Russell and Bullock’s

(1986) theory of emotional facial expression categories

as fuzzy concepts. Despite the network’s fuzzy, over-

lapping category concepts, the categories appear
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sharp when a rule such as ‘‘respond with the category

most strongly activated by the given facial expression’’

is applied. A more difficult result to explain in terms of

fuzzy categories placed in a continuous multidimen-

sional space is the subjects’ high discrimination scores

near category boundaries. This result seems to call for

an influence of the category boundaries on our per-

ception of the expressions; indeed, that is Young

et al.’s (1997) tentative interpretation. To the contrary,

we have shown that in our model, discrimination

scores best agree with human results at a purely per-

ceptual level, where the category labels have no effect.

With respect to image space, the low-dimensional PCA

representation actually changes faster in boundary

regions than in regions near the prototypes it derived

from. In the context of our model, then, the seemingly

contradictory results in different experiments con-

ducted by Young et al. can be explained as simply

tapping different computational levels of processing in

a visual system organized much like our model.

We have found that our facial expression recognition

model is ‘‘sufficient’’ to explain many aspects of human

performance in behavioral tasks, but we have no proof

of the ‘‘necessity’’ of any of our particular implementa-

tion decisions. In fact, we predict that many similar

systems would obtain similar results. For instance, a

system beginning with derivative-of-Gaussian edge filters

(Marr, 1982) whose responses are combined to produce

smooth responses to translations (like complex cells)

should exhibit the same behavior. Replacing the PCA

dimensionality reduction method with, say, factor anal-

ysis or the Infomax algorithm for independent compo-

nents analysis (Bell & Sejnowski, 1995) should not

dramatically affect the results. Finally, a category level

using Support Vector Machines (Vapnik, 1995) should

likewise produce similar behavior. The point of our

simulations is that the category boundaries, discrimina-

bility, and similarity structures previously seen as being

at odds are in a sense ‘‘present in the data and tasks

themselves,’’ and are easily exposed by any reasonable

computational model.

METHODS

Network Details

The first step of processing in the model is to filter the

image with a rigid 29 by 35 grid of overlapping 2-D Gabor

filters (Daugman, 1985) in quadrature pairs at five scales

and eight orientations (some example filters are shown

in Figure 5). The quadrature pairs are used to compute a

phase insensitive energy response at each point in the

grid. These linear energy responses, or ‘‘Gabor magni-

tudes,’’ are often used as a simplifying model of the

spatial responses of complex cells in the early visual

system (Lades et al., 1993). Though the model loses

some information about precise feature localization

when phase information is thrown away, the overlapping

receptive fields compensate for this loss (Hinton,

McClelland, & Rumelhart, 1986). Each Gabor magnitude

is z-scored (linearly transformed to have mean 0 and

variance 1 over the training data) so that each filter

contributes equally in the next representation layer.

The second step of processing in the model is

to perform linear dimensionality reduction on the

40,600-element Gabor representation via a PCA of the

training set. The actual computation is facilitated by

Turk and Pentland’s (1991) algebraic trick for ‘‘eigenfa-

ces.’’ This produces a 50-element representation typi-

cally accounting for approximately 80% of the variance

in the training set’s Gabor data.

The 50-element vector p output by PCA can then

be classified by a simple statistical model. We locally

z-score (scale to mean 0, variance 1) each input element

then use a single-layer neural network (a generalized

linear model) containing six outputs, one for each of the

six ‘‘basic’’ emotions happiness, sadness, fear, anger,

surprise, and disgust. Each of the six units in the

network computes a weighted sum oi =
P

jwijpj of

the 50-element input vector, then the ‘‘softmax’’ func-

tion yi = eoi/
P

je
oj is applied to the units’ linear

activations to obtain a vector of positive values whose

sum is 1.0. The network is trained with the relative

entropy error function so that its outputs correspond to

the posterior probabilities of the emotion categories

given the inputs (Bishop, 1995).

Network Training

We train the expression recognition system using leave-

one-out cross-validation and early stopping. A given

network is trained to minimize output error on all the

images of 12 of the 14 actors in POFA, using stochastic

gradient descent, momentum, weight decay, and the

relative entropy error function (Bishop, 1995). A thir-

teenth actor’s images are used as a ‘‘hold out’’ set to

determine when to stop training: Training is stopped

when the error on the hold out set is minimized. After

training is stopped, we evaluate the network’s general-

ization performance on the remaining (fourteenth)

actor. We performed training runs with every possible

combination of generalization and hold out sets, for a

total of 182 (14 by 13) individual networks.

Network Weight Visualization

The idea is to project each unit’s weight vector back into

image space in order to visualize what the network is

sensitive to in an image. But this is not a well-defined

task; though PCA is an easily inverted orthonormal

transformation, the Gabor magnitude representation,

besides being subsampled, throws away important

phase information. As a workaround, we assume that

each pixel’s value is an approximately linear function of
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the 50-component gestalt-level (Gabor + PCA) repre-

sentation. We chose one of the 192 trained networks,

and for each pixel location, we used regression to find

the linear function of the 50-element gestalt-level repre-

sentation best predicting the pixel’s value over the net-

work’s training set. Then to visualize, say, the classifier’s

representation of happiness, we apply the regression

function directly to happiness unit’s weights. An image

was constructed from each of the six units’ weight

vectors using the regression functions learned from that

network’s training set.

Generation of Morphs

We generated morphs from the original stimuli (Ekman

& Friesen, 1976) using the Morph program, version

2.5, from Gryphon Software, as described elsewhere

( Jansari, Tranel, & Adolphs, 2000). Briefly, for each of

the 15 pairs of expression prototypes, corresponding

features between the two images were manually

specified. The images were then tessellated and line-

arly transformed both with respect to pixel position

(a smooth warping) and pixel grayscale value

(a smooth fade in luminance). The 10%, 30%, 50%,

70%, and 90% blends (see Figure 1b for examples)

were retained for each transformation.

Multidimensional Scaling

MDS seeks to embed a set of stimuli in a low-dimen-

sional space in such a way that the distances between

points in the low-dimensional space are as faithful as

possible to ratings of their similarity (Borg & Lingoes,

1987). We performed MDS on the human responses

(Ekman & Friesen, 1976) and on the network’s

responses to the same stimuli, at each level of pro-

cessing in the network. Each analysis requires a dis-

tance (dissimilarity) matrix enumerating how dissimilar

each pair of stimuli is. For the human data, we formed

a six-element vector containing the probability with

which humans gave the labels happy, sad, afraid, angry,

surprised, and disgusted, for each of the 96 nonneutral

photographs in POFA. We obtained a 96 by 96 element

similarity matrix from these data by computing the

correlation rij between each pair of six-element vec-

tors. Finally, we converted the resulting similarity

matrix into a distance (dissimilarity) matrix with the

transform dij = (1 " rij)/2 to obtain values in the

range 0–1. For the network, we measure the similarity

between two stimuli i and j as the correlation rij
between the representations of the two stimuli at each

level of the network, corresponding to similarity at

different levels of processing: the pixel level (70,080-

element image pixel value vectors), the perceptual

level (40,600-element Gabor response patterns), the

gestalt level (50-element Gabor/PCA patterns), and

the network’s output (six-element category level). We

ran a classical nonmetric MDS algorithm, SSA-1, due to

Guttman and Lingoes (Borg & Lingoes, 1987), on each

of the four resulting distance matrices described above

and then plotted the stimuli according to their posi-

tion in the resulting 2-D configuration.

Model RTs

We assume a network’s RT is directly proportional to the

‘‘uncertainty of its maximal output.’’ That is, we define

a network’s model RT for stimulus i to be ti
model =

1 " maxj yij (the time scale is arbitrary). Here yij is the

network’s output for emotion j on stimulus i. This is

similar to the standard approach of equating RT with a

network’s output error (Seidenberg & McClelland,

1989), except that for morph stimuli, there is no

predetermined ‘‘correct’’ response. For comparison,

the human data available are tij
human, the mean RT of

subjects responding with emotion j to stimulus i. To

compare the model to the humans, given these data,

we treated each network as an individual subject, and

for each morph stimulus, recorded the network’s

response emotion j and model reaction time ti
model

then averaged ti
model over all networks making the

same response to the stimulus. The quantitative com-

parison is the linear fit between network predictions

and human RTs for all stimuli and response pairs for

which both human and network data were available.

Young et al.’s criterion for reporting tij
human was that at

least 25% of the human subjects responded with

emotion j to stimulus i, and for some of these cases,

none of the networks responded with emotion j to

stimulus i, so the missing human and network data

were disregarded.

Model Discrimination Scores

We assume discrimination is more difficult the more

similar two stimuli are at some level of processing. We

use the same measure of similarity as in the MDS

procedure: The correlation rij between the network’s

representation of stimuli i and j (either at the pixel,

perceptual, gestalt, or output level). To convert similar-

ity scores to discrimination scores, we used the trans-

form dij = 1 " rij. This was measured for each of the 30

pairs of J. J. images for which human data were available.

The discrimination scores were then averaged over the

13 networks that had not been trained on J. J. and

compared to the human data.

Mixed-in Expression Detection

To measure the ability of the model to detect the

secondary expression mixed into a morph stimulus, we

followed Young et al.’s (1997) methods. For each

network’s output on a given stimulus, we scored the

first, second, and third highest outputs of the networks
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as a 3, 2, and 1, respectively, and assigned the score 0 to

the three remaining outputs. For each morph and

prototype stimulus, we averaged these score vectors

across all 13 networks. Now for each of the 30 possible

combinations of near prototype (i) and far prototype

( j ), using the 90%, 70%, and 50% morphs moving from

expression i to expression j, we subtracted the score

vector for prototype i from the score for each of the

three morphs. This eliminates the effect of the intrinsic

similarity between J. J.’s prototype expressions. Now,

averaging these score vectors across all 30 sequences,

we obtain the data plotted in Figure 8.
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Notes

1. For comparison, the order of difficulty for the Calder et al.
(2001) PCA model is happiness (98%), fear (97%), surprise
(92%), anger (86%), sadness (72%), and disgust (72%).
2. We used 13 networks for technical reasons (see Methods
for details).
3. The same comparison of our model with the confusion
matrix from the Calder et al. (2001) forced-choice experiment
is slightly better, .686, whereas their PCA model’s correlation
with their subjects’ confusion data is somewhat lower, .496.
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