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Abstract

Virtual labs allow researchers to design high-throughput and macro-level experiments that are not feasible in traditional

in-person physical lab settings. Despite the increasing popularity of online research, researchers still face many technical

and logistical barriers when designing and deploying virtual lab experiments. While several platforms exist to facilitate

the development of virtual lab experiments, they typically present researchers with a stark trade-off between usability and

functionality. We introduce Empirica: a modular virtual lab that offers a solution to the usability–functionality trade-off by

employing a “flexible defaults” design strategy. This strategy enables us to maintain complete “build anything” flexibility

while offering a development platform that is accessible to novice programmers. Empirica’s architecture is designed to

allow for parameterizable experimental designs, reusable protocols, and rapid development. These features will increase the

accessibility of virtual lab experiments, remove barriers to innovation in experiment design, and enable rapid progress in the

understanding of human behavior.
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Laboratory experiments are the gold standard for the study

of human behavior because they allow careful examination

of the complex processes driving information processing,

decision-making, and collaboration. Shortly after the World

Wide Web had been invented, researchers began to employ

“virtual lab” experiments, in which the traditional model

of an experiment conducted in a physical lab is translated

into an online environment (Musch & Reips, 2000; Horton,

Rand, & Zeckhauser, 2011; Mason & Suri, 2012; Reips,

2012; Paolacci, Chandler, & Ipeirotis, 2010). Virtual labs

are appealing on the grounds that, in principle, they relax

some important constraints on traditional lab experiments

that arise from the necessity of physically co-locating

human participants in the same room as the experimenter.

� Abdullah Almaatouq

amaatouq@mit.edu

� Nicolas Paton

npaton@mit.edu

1 Massachusetts Institute of Technology, Cambridge, MA, USA

2 University College London, Bloomsbury, UK

3 University of Pennsylvania, Philadelphia, PA, USA

Most obviously, virtual environments can accommodate

much larger groups of participants than can fit in a

single physical lab. However, as illustrated in Fig. 1,

virtual lab experiments can also run for much longer

intervals of time (e.g., days to months rather than hours)

than is usually feasible in a physical lab and can also

exhibit more complex (e.g., complex network topologies,

multifactor treatments) and more digitally realistic designs.

Finally, virtual experiments can be run faster and more

cheaply than physical lab experiments, allowing researchers

to explore more of the design space for experiments,

with corresponding improvements in the replicability and

robustness of findings.

Unfortunately, the potential of virtual lab experiments

has thus far been limited by the often-substantial up-

front investment in programming and administrative effort

required to launch them, effort that is often not transferable

from one experiment to the next. An important step

towards lowering the barrier to entry for researchers has

therefore been the development of general-purpose virtual

lab platforms (e.g., Qualtrics, jsPsych, nodeGame, oTree,

lab.js). These platforms perform many of the functions

of a virtual lab (e.g., data management, assignment to

conditions, message handling) without the logic specific

to a given experiment. In doing so, however, these
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Fig. 1 Schematic of the design space of lab experiments. Whereas

many real-world social processes and phenomenon involve large

numbers of people interacting in complex ways over long time

intervals (days to years), physical lab experiments are generally

constrained to studying individuals or small groups interacting in

relatively simple ways over short time intervals (e.g., less than 1 h).

The potential of virtual lab experiments is that, in relaxing some of

the constraints associated with in-person experiments, they can expand

the accessible design space for social, behavioral, and economic

experiments

platforms also present researchers with a trade-off between

usability and flexibility. While some platforms provide

graphical user interfaces (GUI) that are accessible to

researchers with little or no programming experience,

they achieve their usability by limiting the experiment

designer to predetermined research paradigms or templates.

In contrast, other platforms provide unlimited “build

anything” functionality but require advanced programming

skills to implement. As a result of this trade-off, many

scientifically interesting virtual laboratory experiments that

are theoretically possible remain prohibitively difficult to

implement in practice.

A platform that maintains both usability and functionality

will support methodological advancement in at least two

high-priority areas. First, a highly usable platform is

necessary for designing and administering high-throughput

experiments in which researchers can run, in effect,

thousands of experimental conditions that systematically

cover the parameter space of a given experimental design.

A legacy of the traditional lab model is that researchers

typically identify one or a few theoretical factors of

interest, and focus their experiment on the influence of

those factors on some outcome behavior. Selectivity in

conditions to be considered is sensible when only small

numbers of participants are available. However, when many

more participants are available, there is an opportunity to

run many more conditions, and it is no longer necessary

to focus on those that researchers believe a priori to

be the most informative. In principle, researchers can

define a set of dimensions along which the experiment

can vary, and then a process can be used to generate

and sample the set of conditions to be used in the

experiment (Balietti, Klein, & Riedl, 2020a; McClelland,

1997). For example, this approach was taken in the Choice

Prediction Competitions, where human decision-making

was studied by automatically generating over 100 pairs

of gambles following a predefined algorithm (Erev, Ert,

Plonsky, Cohen, & Cohen, 2017; Plonsky et al., 2019).

Recent work took advantage of the larger sample sizes

that can be obtained through virtual labs to scale up

this approach, collecting human decisions for over 10,000

pairs of gambles (Bourgin, Peterson, Reichman, Russell,

& Griffiths, 2019). The resulting data set can be used

to evaluate models of decision-making and is at a scale

where machine learning methods can be used to augment

the insights of human researchers (Agrawal, Peterson, &

Griffiths, 2020). Also, there is still a lot of room to develop

other kinds of experimental designs that are optimized

for the high-throughput environment created by virtual

labs. For example, one can navigate the increasingly large

spaces of possible conditions and stimuli by making use

of adaptive designs that intelligently determine the next

conditions to run (Balietti, Klein, & Riedl, 2020b; Suchow

& Griffiths, 2016; Balandat et al., 2020). In order to make

such experiments feasible, researchers need a platform that

enables “experiment-as-code,” in which experiment design,

experiment administration, and experiment implementation

are separated and treated as code (where each can be

formally recorded and replicated). This process allows

for parameterizable designs, algorithmic administration,

reusable protocols, reduced cost, and rapid development.

A second high priority in social science is the implemen-

tation of macro-level experiments in which the unit of anal-

ysis is a collective entity such as a group (Becker, Brackbill,

& Centola, 2017; Whiting et al., 2020), market (Salganik,

Dodds, & Watts, 2006), or an organization (Valentine et al.,

2017) comprising dozens or even hundreds of interact-

ing individuals. As we move up the unit of analysis from

individuals to groups, new questions emerge that are not

answerable even with a definitive understanding of indi-

vidual behavior (Schelling, 2006). At its most ambitious,

macro-level experimentation offers a new opportunity to run

experiments at the scale of societies. Previously, researchers

who wanted to run experiments involving the interaction of

hundreds of thousands of people only had the opportunity
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to do so in the context of field experiments. While this

approach to experimentation is valuable for providing a nat-

uralistic setting, it has major weaknesses in that such exper-

iments are hard to replicate and typically provide only a sin-

gle sample. Macro-level lab experiments typically require

the design of complex tasks and user interfaces, the ability to

facilitate synchronous real-time interaction between partici-

pants, and the coordination, recruitment, and engagement of

a large number of participants for the duration of the experi-

ment. Implementing large-scale macro experiments remains

challenging in the absence of a virtual laboratory designed

with multi-participant recruitment, assignment, and interac-

tion as a core principle. Furthermore, running experiments

that are both high-throughput and macro-scale requires a

platform that simultaneously offers high usability while also

maintaining a “build anything” functionality.

To promote these methodological goals, Empirica offers

a reusable, modular platform that facilitates rapid devel-

opment through a “flexible default” design. This design

provides a platform that is accessible to individuals with

basic JavaScript skills but allows advanced users to eas-

ily override defaults for increased functionality. Empir-

ica employs design features intended to aid and promote

high-throughput and macro-scale experimentation method-

ologies. For example, the platform explicitly separates

experiment design and administration from implementa-

tion, promoting the development of reliable, replicable, and

extendable research by enabling “experimentation-as-code.”

This modular structure encourages strategies such as mul-

tifactor (Almaatouq, Noriega-Campero, et al., 2020), adap-

tive (Letham, Karrer, Ottoni, & Bakshy, 2019; Balietti et

al., 2020b; Paolacci et al., 2010; Balandat et al., 2020), and

multiphase experimentation designs (Mao, Dworkin, Suri,

& Watts, 2017; Almaatouq, Yin, & Watts, 2020), which dra-

matically expand the range of experimental conditions that

can be studied. Additionally, the platform provides built-in

data synchronization, concurrency control, and reactivity to

natively support multi-participant experiments and support

the investigation of macro-scale research questions. Empir-

ica requires greater technical skill than GUI platforms, a

design choice that responds to the emerging quorum of

computational social scientists with moderate programming

skills. Thus Empirica is designed to be “usable” for the

majority of researchers while maintaining uncompromised

functionality, i.e., the ability to build anything that can be

displayed in a web browser.

After reviewing prior solutions, this paper provides a

technical and design overview of Empirica. We then discuss

several case studies in which Empirica was successfully

employed to address ongoing research problems, and

discuss the methodological advantages of Empirica. We

conclude with a discussion of limitations and intended

directions for future development. Throughout this paper,

we will refer to “games” (experimental trials) as the manner

in which “players” (human participants or artificial bots)

interact and provide their data to researchers. This usage is

inspired by the definition of human computation as “games

with a purpose” (von Ahn & Dabbish, 2008), although many

of the tasks would not be recognized as games as such.

Related work

Virtual lab participants

It has long been recognized that the internet presents

researchers with new opportunities to recruit remote par-

ticipants for behavioral, social, and economic experi-

ments (Grootswagers, 2020). For instance, remote participa-

tion allows researchers to solve some of the issues that limit

laboratory research, such as (1) recruiting more diverse sam-

ples of participants than are available on college campuses

or in local communities (Reips, 2000; Berinsky, Huber, &

Lenz, 2012); (2) increasing statistical power by enabling

access to larger samples (Awad et al. 2018; Reips, 2000);

and (3) facilitating longitudinal and other multiphase studies

by eliminating the need for participants to repeatedly travel

to the laboratory (Almaatouq, Yin, & Watts, 2020; Reips,

2000). The flexibility around time and space that is afforded

by remote participation has enabled researchers to design

experiments that would be difficult or even impossible to

run in a physical lab.

Arguably the most common current strategy for

recruiting online participants involves crowdsourcing ser-

vices (Horton et al., 2011; Mason & Suri, 2012). The

main impact of these services has been to dramatically

reduce the cost per participant in lab studies, resulting in

an extraordinary number of publications in the past decade.

Unfortunately, a limitation of the most popular platforms

such as Amazon Mechanical Turk or TurkPrime (Litman,

Robinson, & Abberbock, 2017) is that they were designed

for simple labeling tasks that can typically be completed

independently and with little effort by individual “work-

ers” who vary widely in quality and persistence on the

service (Goodman, Cryder, & Cheema, 2013). Moreover,

Amazon’s terms of use prevent researchers from knowing

whether their participants have participated in similar exper-

iments in the past, raising concerns that many Amazon

“turkers” are becoming “professional” experiment partici-

pants (Chandler, Mueller, & Paolacci, 2014). In response

2160 Behav Res  (2021) 53:2158–2171



to concerns such as these, services such as Prolific1 (Palan

& Schitter, 2018) have adapted the crowd work model

to accommodate the special needs of behavioral research.

For example, Prolific offers researchers more control over

participant sampling and quality as well as recruiting par-

ticipants who are intrinsically motivated to contribute to

scientific studies.

In addition to crowdsourcing services, online experi-

ments have attracted even larger and more diverse popu-

lations of participants who participate voluntarily out of

intrinsic interest to assist in scientific research. For example,

one experiment collected almost 40 million moral decisions

from over a million unique participants in over 200 coun-

tries (Awad et al. 2018). Unfortunately, while the appeal of

“massive samples for free” is obvious, all such experiments

necessarily rely on some combination of gamification, per-

sonalized feedback, and other strategies to make participa-

tion intrinsically rewarding (Hartshorne, Leeuw, Goodman,

Jennings, & O’Donnell, 2019). As a consequence, the model

has proven hard to generalize to arbitrary research questions

of interest.

Existing virtual lab solutions

While early online experiments often required extensive

up-front customized software development, a number of

virtual lab software packages and frameworks have now

been developed that reduce the overhead associated with

building and running experiments. As a result, it is now

easier to implement designs in which dozens of individuals

interact synchronously in groups (Arechar, Gächter, &

Molleman, 2018; Almaatouq, Yin, & Watts, 2020; Whiting,

Blaising, et al., 2019) or via networks (Becker et al., 2017),

potentially comprising a mixture of human and algorithmic

agents (Ishowo-Oloko et al. 2019; Traeger, Sebo, Jung,

Scassellati, & Christakis, 2020; Shirado & Christakis,

2017).

Virtual lab solutions can be roughly grouped by their

emphasis on usability or functionality. Here we describe

free or open-source tools that allow synchronous, real-

time interaction between participants, leaving aside tools

such as jsPsych (de Leeuw, 2015), lab.js (Henninger,

Shevchenko, Mertens, Kieslich, & Hilbig, 2019), and

Pushkin (Hartshorne et al., 2019) that do not explicitly

support multi-participant interactions as well as commer-

cial platforms such as Testable, Inquisit, Labvanced (Fin-

1www.prolific.co

ger, Goeke, Diekamp, Standvoß, & König, 2017, and

Gorilla (Anwyl-Irvine, Massonnié, Flitton, Kirkham, &

Evershed, 2020).

Platforms such as WEXTOR (Reips & Neuhaus,

2002), Breadboard (McKnight & Christakis, 2016), and

LIONESS (Giamattei, Molleman, Seyed Yahosseini, &

Gächter, 2019) provide excellent options for individuals

with little-to-no coding experience. These platforms allow

researchers to design their experiments either directly with

a graphical user interface (GUI) or via a simple, proprietary

scripting language. However, while these structures enable

researchers to quickly develop experiments within predeter-

mined paradigms, they constrain the range of possible inter-

face designs. These platforms do not allow the researcher to

design “anything that can run in a web browser.”

On the other hand, many excellent tools including oTree

(Chen, Schonger, & Wickens, 2016), nodeGame (Balietti,

2017), Dallinger,2 and TurkServer (Mao et al., 2012)

offer high flexibility in experiment design. However, this

flexibility comes at the expense of decreased usability, as

these tools require significant time and skill to employ. They

are flexible precisely because they are very general, which

means additional labor is required to achieve any complete

design.

Empirica

The Empirica platform3 is a free, open-source, general-

purpose virtual lab platform for developing and conduct-

ing synchronous and interactive human-participant experi-

ments. The platform implements an application program-

ming interface (API) that allows an experiment designer

to devote their effort to implementing participant-facing

views and experiment-specific logic. In the background,

Empirica handles the necessary but generic tasks of coor-

dinating browser–server interactions, batching participants,

launching games, and storing and retrieving data.

Experiments are deployed from a GUI web interface that

allows the researcher to watch the experiment progress in

real time. With no installation required on the participant’s

part, experiments can run on any web browser including

desktop computers, laptops, smartphones, and tablets (See

Appendix).

Empirica is designed using a “flexible default” strategy:

the platform provides a default structure and settings that

2docs.dallinger.io
3empirica.ly
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enable novice JavaScript users to design an experiment

by modifying pre-populated templates; at the same time,

unlimited customization is possible for advanced users. The

goal of this design is to develop a platform that is accessible

to researchers with modest programming experience—the

target user is the typical computational social science

researcher—while maintaining a “build anything” level of

flexibility.

Empirica has an active and growing community of

contributors, including professional developers, method-

focused researchers, question-driven social scientists, and

outcome-oriented professionals. Although Empirica is

under steady development, it has already been used to build

(at least) 31 experiments by more than 18 different research

teams across 12 different institutions, generating at least 12

manuscripts between 2019 and 2020 (Feng, Carstensdottir,

El-Nasr, & Marsella, 2019; Pescetelli, Rutherford, Kao, &

Rahwan, 2019; Becker, Porter, & Centola, 2019; Becker,

Guilbeault, & Smith, 2019; Almaatouq, Noriega-Campero,

et al., 2020; Houhton 2020a, b; Becker, Almaatouq, &

Horvat, 2020; Almaatouq, Yin, & Watts, 2020; Noriega

et al. 2020; Feng 2020; Guilbeault, Woolley, & Becker,

2020; Jahani et al. 2020).

System design

Empirica’s architecture was designed from the start to

enable real-time multi-participant interactions, although

single-player experiments are easy to create as well.

The API is purposefully concise, using a combination of

data synchronization primitives and callbacks (i.e., event

hooks) triggered in different parts of the experiment.

The core functionality is abstracted by the platform: data

synchronization, concurrency control, reactivity, network

communication, experiment sequencing, persistent storage,

timer management, and other low-level functions are

provided automatically by Empirica. As a result, researchers

can focus on designing the logic of their participants’

experience (see Fig. 2 for an overview).

To initiate development, Empirica provides an experi-

ment scaffold generator that initializes an empty (but fully

functioning) experiment and a simple project organization

that encourages modular thinking. To design an experi-

ment, researchers separately configure the client (front end),

which defines everything that participants experience in

their web browser, thus defining the experimental treatment

or stimulus, and the server (back end), which consists of

callbacks defining the logic of an experimental trial. The

front end consists of a sequence of five modules: consent,

intro (e.g., instructions, quiz), lobby, game, and outro (e.g.,

survey). The lobby4 serves the purpose of starting a new

experimental trial when specific criteria are met (e.g., a cer-

tain number of participants are simultaneously connected)

and it is automatically generated and managed by Empir-

ica according to parameters set in the GUI. The researcher

need only modify the intro, outro, and game design via

JavaScript. The back end consists of callbacks defining

game initialization, start and end behavior for rounds and

stages, and event handlers for changes in data states.

Empirica structures the game (experimental trial) as

players (humans or artificial participants) interacting in

an environment defined by one or more rounds (to allow

for “repeated” play); each round consists of one or more

stages (discrete time steps), and each stage allows players to

interact continuously in real time. Empirica provides a timer

function that can automatically advance the game from

stage to stage, or researchers can define logic that advances

games based on participant behavior or other conditions.

As Empirica requires some level of programming

experience for experiment development, the platform

accommodates the possibility that different individuals

may be responsible for designing, programming, and

administering experiments. To support this division of labor,

Empirica provides a high-level interface for the selection of

experimental conditions and the administration of live trials.

From this interface, experiment administrators can assign

players to trials, manage participants, and monitor the status

of games. Experiment designers can configure games to

have different factors and treatments, and export or import

machine-readable YAML5 files that fully specify entire

experiment protocols (i.e., the data generation process)

and support replication via experiment-as-code. Experiment

configuration files can also be generated programmatically

by researchers wishing to employ procedural generation

and adaptive experimentation methods to effectively and

efficiently explore the parameter space.

The ultimate test of an experiment’s design is that

it is able to evaluate its target theory. In addition to

creating artificial players to use as part of an experiment,

Empirica’s “bot” API also allows users to perform full

4Because participants usually do not arrive at precisely the same

time, and also because different participants require more or less time

to read the instructions and pass the quiz, Empirica implements a

virtual “lobby” feature. While waiting in the lobby, participants receive

information about how much time they have been waiting and how

many other players are still needed for the experiment to start.
5YAML Ain’t Markup Language (YAML) is a data serialization

language designed to be human-friendly and work well with modern

programming languages (Ben-Kiki, Evans, & Ingerson, 2009).
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Fig. 2 Empirica provides a scaffolding for researchers to design and administer experiments via three components: (1) Server-side callbacks use

JavaScript to define the running of a game through the client-side and server-side API; (2) the client-side interface uses JavaScript to define the

player experience; and (3) the GUI admin interface enables configuration and monitoring of experiments (see Appendix). These components are

all run and connected by the Empirica core engine

integration tests of their experiment. By simulating the

complete experiment under all treatments with simulated

participants, the experiment designer can ensure that their

as-implemented design matches their expectation.

Implementation

Empirica is built using common web development tools. It

is based on the Meteor6 application development framework

and employs JavaScript on both the front end (browser)

and the back end (server). Meteor implements tooling for

data reactivity around the MongoDB database, WebSockets,

and RPC (remote procedure calls). Meteor also has strong

authentication, which secures the integrated admin interface

(see Appendix). Experiment designers will not need to

be familiar with Meteor to use the Empirica platform.

Only those who wish to contribute to the development of

Empirica and contribute to the codebase will need to use

Meteor.

6www.meteor.com

The front end is built with the UI framework React,7

which supports the system’s reactive data model. Automatic

data reactivity implemented by Empirica alleviates the need

for the experiment designer to be concerned with data

synchronization between players. React has a vibrant and

growing ecosystem, with many resources from libraries

to online courses to a large talent pool of experienced

developers, and is used widely in production in a variety

of combinations with different frameworks (Fedosejev,

2015; Wieruch, 2017). For Empirica, React is also

desirable because it encourages a modular, reusable design

philosophy. Empirica extends these front-end libraries

by providing experimenter-oriented UI components such

as breadcrumbs showing experiment progression, player

profile displays, and user input components (e.g., Sliders,

text-based Chat, Random Dot Kinematogram). These

defaults reduce the burden on experiment designers while

maintaining complete customizability. It is important to note

that it is up to the experiment developer to follow the best

7reactjs.org
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practices of UI development that are appropriate for their

experiment. For instance, behavioral researchers interested

in timing-dependent procedures should be cautious when

developing their UIs and should test the accuracy and

precision of the experimental interface (Garaizar & Reips,

2019). Similarly, browser compatibility will depend on

which React packages are being used in the particular

experiment.

Empirica’s back end is implemented in node.js8—a

framework for developing high-performance, concurrent

programs (Tilkov & Vinoski, 2010). Callbacks are the

foundation of the server-side API. Callbacks are hooks

where the experiment developer can add custom behavior.

These callbacks are triggered by events of an experiment

run (e.g., onRoundStart, onRoundEnd, onGameEnd,

etc.). The developer is given access to the data related to

each event involving players and games and can thus define

logic in JavaScript that will inspect and modify this data as

experiments are running.

This design allows Empirica to reduce the technical

burden on experiment designers by providing a data

interface that is tailored to the needs of behavioral lab

experiments. The developer has no need to interact with

the database directly. Rather, Empirica provides simple

accessors (get, set, append, log) that facilitate data

monitoring and updating. These accessor methods are

available on both the front end and the back end. All data are

scoped to an experiment-relevant construct such as game,

player, round, or stage. Data can also be scoped to the

intersection of two constructs, e.g., a player and a game

object: player.round and player.stage, which contain the

data for a player at a given round or stage. The accessor

methods are reactive, meaning that data is automatically

saved and propagated to all players. Empirica’s front end

and back end are connected over WebSocket (a computer

communications protocol), where a heartbeat (or ping)

continuously monitors the connection and allows the server

to determine if the client is still responsive. On the

player side, on disconnection, the client will passively

attempt to reconnect with a session identifier stored in the

browser’s local storage. From the experiment developers’

point of view, they can configure the experiment to:

(1) continue without the missing player; (2) cancel the

entire experimental trial; (3) pause the experimental trial

(currently being implemented for future release); or (4)

implement a custom behavior (e.g., a combination of 1–3).

Another ease-of-use feature is that an Empirica exper-

iment is initialized with a one-line command in the ter-

minal (Windows, macOS, Linux) to populate an empty

project scaffold. A simple file structure separates front-

end (client) code from back-end (server) code to simplify

8nodejs.org

the development process. Because Empirica is built using

the widely adopted Meteor framework, a completed experi-

ment can also be deployed with a single command to either

an in-house server or to a software-as-a-service platform

such as Meteor Galaxy. Additionally, Empirica provides

its own simple open-source tool to facilitate deploying

Empirica experiments to the cloud for production.9 This

facilitates iterative development cycles in which researchers

can rapidly revise and redeploy experiment designs.

Empirica is designed to operate with online labor markets

such as Prolific or other participant recruitment sources

(e.g., volunteers, in-person participants, classrooms).

Case studies

Throughout its development, Empirica has been used in the

design of cutting-edge experimental research. Below, we

illustrate Empirica’s power and flexibility in four examples,

each of which highlights a different functionality.

Exploring the parameter space: dynamic social
networks and collective intelligence

The “Guess the Correlation” (Almaatouq, Noriega-

Campero, et al., 2020)10 game was developed to study

how individual decisions shape social network structure

ultimately determining group accuracy (Fig. 3).

In this game, participants were tasked with estimating

statistical correlations from a visual plot of two variables

(such as height and weight). For each image, participants

first guessed individually and could then update their

guesses while seeing other participants guesses and updates

in real time. Between rounds, participants could see

feedback on each other’s accuracy and could add/drop

people from the social network that determined whose

answers were shown.

In this game, participants were tasked with estimating

statistical correlations from a visual plot of two variables

(such as height and weight). For each image, participants

first guessed individually and could then update their

guesses while seeing other participants guesses and updates

in real time. Between rounds, participants could see

feedback on each other’s accuracy and could add/drop

people from the social network that determined whose

answers were shown.

The final publication reported seven experimental

conditions with three varied levels of social interaction

and four levels of performance feedback, and found that

9github.com/empiricaly/meteor-deploy
10The source code for the “Guess the Correlation” experiment can be

found at https://github.com/amaatouq/guess-the-correlation
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Fig. 3 This screenshot of the “Guess the Correlation Game” shows the

view that participants use to update their social network in the dynamic

network condition with full feedback (i.e., as opposed to no feed-

back or only self-feedback). In all of the experimental condition, the

maximum number of outgoing connections was set to 3 and the group

size is set to 12. The interface uses reactive and performant front-end

components

a variety of subtle changes could dramatically influence

macro-scale group outcomes. The results show that even

subtle changes in the environment can lead to dramatically

different macro-scale group outcomes despite any micro-

scale changes in individual experience.

Real-time interaction at scale: A large-scale game
of high-speed “Clue”

The “Detective Game” (Houghton, 2020a)11 examined the

effect of belief interaction on social contagion. In the game,

teams of 20 players worked together to solve a mystery

by exchanging clues. To coordinate recruitment and ensure

proper randomization, the experimenter planned to recruit

up to 320 participants to participate in each block of

games.

However, this number of simultaneous participants is

two orders of magnitude larger than in typical behavioral

experiments, and the participants needed to interact in

real time. The interface showed players when peers

updated their beliefs and when they added clues around

11The source code for the “Detective Game” experiment can be found

at https://github.com/JamesPHoughton/detective game demo

to their “detective’s notebook,” as shown in Fig. 4. The

experimenter needed a platform with short load times, high-

performance display libraries, and imperceptible latency at

scale. At the same time, their code needed to be readable

enough for academic transparency.

The experimenter used Empirica’s “flexible default”

design and modular API to quickly evaluate a number

of open-source display libraries, selecting from the mul-

tiplicity of modern web tools those which best supported

the experiment. They then used Empirica’s “bot” API to

simulate player’s actions in the game, testing that the back-

end could provide the low-latency coordination between

client and server crucial to the game’s performance. The

experiment confirmed theoretical predictions that belief

interaction could lead to social polarization.

Two-phase experiment design: Distributed human
computation problems

The “Room Assignment” game (Almaatouq, Yin, & Watts,

2020)12 explored how factors such as task complexity

12The source code for the “Room Assignment” experiment can be

found at https://github.com/amaatouq/room-assignment
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Fig. 4 This screenshot of the “Detective Game” shows the view that participants use to categorize mystery clues as either Promising Leads (which

are shared with their social network neighbors) or Dead Ends (which are not). The interface uses reactive and performant front-end components

and group composition allow a collaborating team to

outperform its individual members. The task consisted of a

“constraint satisfaction and optimization” problem in which

N “students” were to be assigned to M “dorm rooms”,

subject to constraints and preferences (Fig. 5).

Unlike many group experiments, this study required

the same group of participants to perform the task twice.

In the first round, participants needed to perform the

task individually so that their individual skill level, social

perceptiveness, and cognitive style could be measured.

Then, in the second round, participants would be assigned

to collaborate in teams using Empirica’s included chatroom

plugin chat, a standard Empirica plugin13. This simple

design enabled researchers to measure task performance

for independent and interacting groups while controlling

communication, group composition, and task complexity.

The experimenters used Empirica’s careful participant

data management and flexible randomization architecture

to reliably match the same subject pool across the two

phases of this experiment and to coordinate the large block-

randomized design. While this may have been possible

with other platforms, Empirica’s admin interface made these

considerations as simple as making selections from a drop-

down list.

13The Chat component is available at https://github.com/empiricaly/

chat

Rapid-turnaround replication: Echo chambers
and belief accuracy

The “Estimation Challenge” experiment (Becker, Porter, &

Centola, 2019)14 tested how politically biased echo cham-

bers shape belief accuracy and polarization. Participants

answered factual questions (such as “How has the num-

ber of unauthorized immigrants living in the US changed

in the past 10 years?”) before and after observing answers

given by other participants. The experimenters found that

collective intelligence can increase accuracy and decreased

polarization despite popular arguments to the contrary.

This experiment was implemented using a custom

platform in partnership with a third-party developer and

generated an ad hoc social network to determine how

information flowed among participants. After submitting

these results for publication, the reviewers expressed

concern that the experiment design did not fully capture

the effects of a politicized environment. The experimenters

were given 60 days to revise and resubmit their paper.

Revising the original interface in the time available or

rehiring the original developer would have required skills

or monetary resources not available to the project. Using

Empirica, they were able to replicate the initial experiment

with a modified user interface to address the questions

posed by reviewers, as seen in Fig. 6. The new interface

14The source code for the “Estimation Challenge” experiment can be

found at https://github.com/joshua-a-becker/politics-challenge
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Fig. 5 This screenshot shows the “Room Assignment” task. The real-time interaction, the ability to assign students to rooms in parallel, and

text-based chat employs default features and interaction components provided by Empirica

was designed, constructed, and tested in approximately 2

weeks. This experiment required negligible alteration from

the prepopulated Empirica scaffolding beyond customizing

the visual design and introductory steps, demonstrating the

capability of flexible defaults.

Discussion

Ethical considerations

As with any human-subjects research, virtual lab experi-

ments are subject to ethical considerations. These include

(but are not limited to) pay rates for participants (Whiting,

Hugh, & Bernstein, 2019), data privacy protection (Birn-

baum, 2004), and the potential psychological impact of

stimulus design. While most of these decisions will be

made by the researchers implementing an experiment using

Empirica, we have adopted a proactive strategy that employs

default settings designed to encourage ethical experiment

design. As one example, the initial scaffolding generated

by Empirica includes a template for providing informed

consent, considered a bare minimum for ethical research

practice. The scaffolding also includes a sample exit survey

which models inclusive language; e.g., the field for gen-

der is included as a free-text option. To encourage privacy

protection, Empirica by default omits external identifiers

when exporting data to prevent leaking of personal infor-

mation such as e-mail addresses or Amazon Turk account

identifiers.

Limitations and future developments

As with other leading computational tools, Empirica is not a

static entity, but a continually developing project. This paper

reflects the first version of the Empirica platform, which lays

the groundwork for an ecosystem of tools to be built over

time. Due to its design, modules that are part of the current

platform can be switched out and improved independently

without rearchitecting the system. Indeed it is precisely because

Empirica (or for that matter, any experiment platform) cannot

be expected to offer optimal functionality indefinitely that this

modular design was chosen.

The usability–functionality trade-off faced by existing

experiment platforms is endemic to tightly integrated

“end-to-end” solutions developed for a particular class

of problems. By moving toward an ecosystem approach,

Empirica has a chance to resolve this trade-off. As

such, future development of Empirica will include the

development of a set of open standards that defines what this

encapsulation (service/component) is, how to communicate

with it, and how to find and use it.

The use of the “ecosystem” as a design principle presents

several opportunities for operational efficiency.

• An ecosystem will allow the reuse of software assets,

in turn lowering development costs, decreasing devel-

opment time, reducing risk, and leveraging existing

platform investments and strengths.

• The individual components of the ecosystem will

be loosely coupled to reduce vendor/provider lock-
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Fig. 6 This screenshot shows the second stage of the first round of the revised “Politics Challenge” estimation task. The illustrated breadcrumb

feature employs customized default UI elements provided from Empirica, and the timer was employed without modification

in and create a flexible infrastructure. As a result,

the individual components of the ecosystem will be

modular in the sense that each can be modified or

replaced without needing to modify or replace any other

component because the interface to the component

remains the same. The resulting functional components

will be available for end users (i.e., researchers) to

amalgamate (or mashup) into situational, creative, and

novel experiments in ways that the original developers

may not originally envision.

• The functional scope of these components will allow for

the possibility to directly define experiment requirements

as a collection of these functional components, rather

than translating experiment requirements into lower-

level software development requirements. As a result,

the ecosystem will abstract away many of the logisti-

cal concerns of running experiments, analogous to how

cloud computing has abstracted away from the manage-

ment of technical resources for many companies.

By distancing ourselves from a monolithic approach, and

adopting a truly modular architecture with careful design of

the low-level abstractions of experiments, we hope Empirica

will decouple flexibility from ease-of-use and open the door

to an economy of software built around conducting new

kinds of virtual labs experiments.

Conclusions

Empirica provides a complete virtual lab for designing

and running online lab experiments taking the form of

anything that can be viewed in a web browser. The

primary philosophy guiding the development of Empirica

is the use of “flexible defaults,” which is core to our

goal of providing a “do anything” platform that remains

accessible to a typical computational social scientist. In

its present form, Empirica enables rapid development of

virtual lab experiments, and the researcher need only

provide a recruitment mechanism to send participants

to the page at the appropriate time. Future versions

of Empirica will abstract the core functionality into an

ecosystem that allows the development and integration of

multiple tools including automated recruitment. This future

version will also maintain as a “tool” the current Empirica

API, continuing to enable the rapid development of

experiments.

Appendix: Empirica Admin Interface

View of the admin interface provided by Empirica. Panel

(A) shows the experiment “monitoring” view. Panel (B)

shows the experiment “configuration” view.
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