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Empirical algorithms to estimate water column pH

in the Southern Ocean
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J. L. Sarmiento7, and R. Wanninkhof8

1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, 2Monterey Bay

Aquarium Research Institute, Moss Landing, California, USA, 3Pacific Marine Environmental Laboratory, National Oceanic

and Atmospheric Administration, Seattle, Washington, USA, 4School of Oceanography, University of Washington, Seattle,

Washington, USA, 5Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA,
6Department of Geosciences, University of Arizona, Tucson, Arizona, USA, 7Program in Atmospheric and Oceanic Sciences,

Princeton University, Princeton, New Jersey, USA, 8Atlantic Oceanographic and Meteorological Laboratory, National
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Abstract Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of

commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the

Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN)

and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are

applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical

profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These

algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from

floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH onweekly

resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

1. Background

As atmospheric carbon dioxide (CO2) continues to increase due to fossil fuel burning, cement production,

and land use changes [Tans, 2009; Rhein et al., 2013], only ~42± 4% of this excess carbon stays in the atmo-

sphere, while the remaining ~58± 15% is absorbed by the ocean and by the terrestrial biosphere [Le Quéré

et al., 2015]. Observations and models indicate that the ocean has sequestered approximately 28% of all

anthropogenic CO2 released since the beginning of the industrial era [Le Quéré et al., 2015], which has caused

a corresponding decrease in surface ocean pH of approximately 0.1 [Orr et al., 2005; Dore et al., 2009].

Consequently, there is much demand for high-quality ocean carbon and pH data to elucidate the spatial

and temporal patterns of CO2 uptake and show how these are changing ocean chemistry and ecosystems.

The Southern Ocean plays a major role in the uptake, transport, and long-term storage of heat and CO2

accounting for over 40% of the total ocean carbon sink [Khatiwala et al., 2009; Frölicher et al., 2015]; yet it

remains one of the least-sampled regions of the ocean. The Southern Ocean Carbon and Climate

Observations and Modeling (SOCCOM, http://soccom.princeton.edu) project is shedding light on this impor-

tant region by deploying approximately 200 profiling floats with novel biogeochemical sensors over five

years. Following Argo protocols, each SOCCOM biogeochemical float executes a profile between the surface

and ~2000m (dependent upon ballasting) every 10 days and is equipped with temperature (T), salinity (S),

and pressure (P) sensors as well as at least two of the four following biogeochemical sensors: Deep-Sea

DuraFET pH [Martz et al., 2010; Johnson et al., 2016], ISUS or SUNA nitrate [Johnson et al., 2013], oxygen optode

[Körtzinger et al., 2005], andWET Labs ECO FLbb-AP2 fluorescence and backscatter [WET Labs, 2009] (additional

sensor information is provided in Table S1 in the supporting information). A calibration CTD (conductivity,

temperature, depth) cast with discrete bottle measurements is performed right after each SOCCOM biogeo-

chemical float deployment, and data from these casts are used to correct for any initial sensor offsets.

As described in Juranek et al. [2009, 2011], measurements of oxygen (O2) and/or nitrate (NO3
�) can be used in

conjunction with measurements of T, S, and P to accurately estimate pH and other carbonate system para-

meters, expanding the utility of these floats. This approach is based on the fact that changes in carbonate

system parameters are governed by physics and biology and should therefore be a function of T, S, and either

WILLIAMS ET AL. ALGORITHMS TO ESTIMATE SOUTHERN OCEAN PH 3415

PUBLICATIONS

Geophysical Research Letters

RESEARCH LETTER
10.1002/2016GL068539

Key Points:

• Algorithms are developed for estima-

tion of pH from biogeochemical floats

in the Southern Ocean

• The pH algorithms can also be used to

adjust pH sensor data on biogeo-

chemical floats

• The seasonal cycle in surface pH

ranges from 0.05 to 0.08 for the

study region

Supporting Information:

• Supporting Information S1

Correspondence to:

N. L. Williams,

nancy.williams@oregonstate.edu

Citation:

Williams, N. L., L.W. Juranek, K. S. Johnson,

R. A. Feely, S. C. Riser, L. D. Talley,

J. L. Russell, J. L. Sarmiento, and

R. Wanninkhof (2016), Empirical algorithms

to estimate water column pH in the

Southern Ocean, Geophys. Res. Lett., 43,

3415–3422, doi:10.1002/

2016GL068539.

Received 4 MAR 2016

Accepted 22 MAR 2016

Accepted article online 28 MAR 2016

Published online 7 APR 2016

©2016. American Geophysical Union.

All Rights Reserved.

http://soccom.princeton.edu
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL068539
http://dx.doi.org/10.1002/2016GL068539
http://dx.doi.org/10.1002/2016GL068539
http://dx.doi.org/10.1002/2016GL068539
http://dx.doi.org/10.1002/2016GL068539


O2 or NO3
� and that the thermodynamic relationships between carbonate system parameters can be char-

acterized by T, S, and P [Lueker et al., 2000]. Others have proposed similar algorithms for pairs of carbonate

system parameters that could be used to calculate pH for this region [Bostock et al., 2013; Velo et al., 2013;

Carter et al., 2016]; however, the algorithms presented here are the first to directly estimate pH and show

much smaller errors by limiting their scope to the Southern Ocean. For floats without pH sensors, an algo-

rithm for estimating pH shows the seasonal dynamics of the carbonate system along a float’s trajectory

and increases the spatial resolution of the pH data set. The pH algorithms are also critical for evaluating float

pH sensor performance and adjusting for offsets and drift. The utility of these algorithms is not limited to

floats but can be expanded to estimate pH using shipboard measurements or using data from other auton-

omous platforms such as gliders or moorings that measure T, S, P, NO3
�, or O2, or applied to climate model

simulations. Accurate pH, when combined with estimates of alkalinity, can be used to calculate other carbo-

nate system parameters such as dissolved inorganic carbon (DIC), the partial pressure of carbon dioxide

(pCO2), and the saturation state of aragonite (ΩAr) and calcite (ΩCa).

2. Development of pH Algorithms

We used the method described in Juranek et al. [2009, 2011] to develop two multiple linear regression (MLR)

algorithms for pH for the Pacific sector of the Southern Ocean south of 45°S. To develop these algorithms,

high-quality discrete bottle measurements were used that were collected on GO-SHIP repeat hydrographic

cruises S04P 2011 (67°S) and P16S 2014 (150°W) (Figure 1, black dots). Only direct spectrophotometric mea-

surements of pH are utilized to train the algorithms as compared to pH calculated from other measured car-

bonate system parameters in previous studies of this kind [Juranek et al., 2011; Alin et al., 2012]. The reported

uncertainties in the pH measurements used in this study are 0.003 (S04P 2011) and 0.0013 (P16S 2014),

whereas the uncertainty in pH calculated using measurements of dissolved inorganic carbon (DIC) and total

alkalinity with uncertainties of ±2 and ±3μmol kg�1, respectively, is 0.01. Both of these methods have an

additional uncertainty of up to 0.01 when converting from lab pressure to in situ pressure and frommeasure-

ment temperature of pH of 20 or 25°C to in situ temperatures at 2000 dbar due to uncertainties in the pres-

sure and temperature coefficients for carbonate system calculations. These MLR algorithms capture changes

in pH due to biological activity but do not account for changes in anthropogenic CO2 because such changes

are not accompanied by a change in oxygen or nitrate. Discrete spectrophotometric pH data are also avail-

able for P18S 2007 [Feely et al., 2008]; however, we did not use this data set for pH algorithm development

due to offsets in pH in the deep water possibly due to impurities in the indicator dye used to measure pH

of the P18S 2007 cruise and differences in the anthropogenic CO2 concentrations in the upper water column

and therefore differences in pH for this earlier cruise. Relative to the P16S 2014 and S04P 2011 data sets, the

Figure 1. Map of the trajectories for all SOCCOM and pre-SOCCOM profiling floats in the Pacific sector (colored dots;

generally moving eastward) with the two floats used for this study shown in blue (float 6968) and red (float 9095), the

locations of the discrete bottle measurements (black dots), and the locations of the Antarctic Circumpolar Current (ACC)

fronts (grey dotted lines) from Orsi et al. [1995]. From north to south the fronts are as follows: the Subtropical Front (STF),

the Subantarctic Front (SAF), the Polar Front (PF), the Southern ACC Front (SACCF), and the Southern ACC Boundary (SBDY).

Geophysical Research Letters 10.1002/2016GL068539
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P18S 2007 data set is higher by 0.012 in water masses that were recently in contact with the atmosphere,

which is consistent with the observed anthropogenic ocean acidification of 0.002 year�1 in this region

[Williams et al., 2015]. Because anthropogenic pH changes between 2007 and 2015 did not influence pH at

levels around 1500m, we used the deep discrete bottle data from P18S 2007 to evaluate algorithm perfor-

mance in the eastern portion of the basin (supporting information Figure S1). All pH data are reported at

in situ pressures and temperatures on the total scale (pHTotal). The CO2SYS MATLAB program [Lewis and

Wallace, 1998; van Heuven et al., 2011] and the constants of Lueker et al. [2000], Dickson [1990], and Perez

and Fraga [1987] were used for all carbonate system calculations.

The algorithms were created using parameters that are measured on the SOCCOM biogeochemical floats: T,

S, P, O2, and NO3
�. Discrete bottle data south of 45°S and shallower than 2100m were used, but data

shallower than 100m (average depth of the summer mixed layer) were excluded from any fits using O2 as

a predictor variable because of the decoupling of carbon and oxygen in the mixed layer (see section 3).

We added predictor variables to the fits through forward stepwise regression while monitoring the coeffi-

cient of determination, R2, and root-mean-square (RMS) error and checking for collinearity at each step by

confirming that the variance inflation factor for each variable is less than 5 [Kutner et al., 2004]. Because

NO3
� and O2 provide similar information, none of the algorithms included both nitrate and oxygen as pre-

dictor variables. While NO3
� and O2 are comparable predictor variables for pH in this region (refer to support-

ing information Table S2 for R2 and RMS errors), each has its strengths and weaknesses (see section 3). Two

pH algorithms were created, each including T, S, and P and either O2 (pH
Ox) or NO3

� (pHN) as a fourth pre-

dictor variable. We experimented with developing separate algorithms for each of the water masses between

Antarctic Circumpolar Current (ACC) fronts or based on density layers, but these algorithms did not exhibit

significantly improved fit statistics, and the need to switch algorithm based on location decreased their

utility. Including derived quantities such as density or apparent oxygen utilization as predictor variables

did not improve the fits.

3. Results and Discussion

The pHN and pHOx algorithms take the following forms:

pHN
¼ β0 þ β1Sþ β2T þ β3P þ β4N (1)

pHOx
¼ β0 þ β1Sþ β2T þ β3P þ β4O2 (2)

The R2 values for pHN and pHOx are 0.98 and 0.97, and the RMS errors are 0.010 and 0.008, respectively

(see supporting information Table S2 for a summary of algorithm coefficients and statistics.) For the

pHN algorithm (surface to 2100m), salinity explains 69% of the variability in pH, and for the pHOx algorithm

(100m to 2100m), oxygen explains 74% of the variability in pH (determined by the R2 for an algorithm trained

using one single variable); however, the addition of subsequent predictor variables (T, S, and P) decreases the

RMS errors and reduces biases in the spatial distribution of the fit residuals for both algorithms. Of note is that

the seasonal cycle we observe in surface pH in this region is on the order of 0.05 to 0.08, which is more than 5

times larger than the RMS errors of the algorithms. While the algorithms presented here are optimized for the

Pacific sector of the Southern Ocean, these algorithms perform well in the other sectors of the Southern

Ocean (supporting information Figure S2).

As of 5 February 2016 there are a total of 33 operational SOCCOM floats (see float status table at http://soccom.

princeton.edu/float_stats.php and Figure 1). We used the data from SOCCOM float 9095 (WMO ID 5904188) and

pre-SOCCOM float 6968 (WMO ID 5903718) for this analysis. When the pHN and pHOx algorithms were applied

to SOCCOM float 9095, which has the full suite of biogeochemical sensors, we were able to evaluate the

performance of the Deep-Sea DuraFET pH sensor and examine differences between the pH algorithms.

By comparing the difference between the sensor-measured pH and the algorithm-predicted pHOx and pHN at

1500m (Figure 2d), a downward drift was observed in measured pH relative to both algorithms over the first

several months of deployment before measured pH leveled off at a stable mean offset of approximately

�0.02. This offset is the result of a shift in the reference potential (equivalent to the standard potential of

an electrochemical cell) of the Deep-Sea DuraFET reference sensor during the first several weeks of exposure

to seawater [Bresnahan et al., 2014; Johnson et al., 2016]. This drift, which results from insufficient equilibration

Geophysical Research Letters 10.1002/2016GL068539
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of the AgCl reference sensor with seawater bromide, is being addressed for future SOCCOM float deploy-

ments by more extensive exposure of the sensors to seawater before deployment. These differences

between measured and algorithm-predicted pH through time between 1400 and 1600m are being used

to adjust pH sensor data from all SOCCOM floats and have become integral to the quality control process

(see supporting information Text S1 for details). Note that the pH sensor on float 9095 has experienced more

instrumental drift since deployment than any other SOCCOM float.

Because the sensor data used to calculate pHN and pHOx in Figure 2 are corrected for initial offsets from the

deployment calibration cast but are not corrected for any possible drift, we can use the difference between

the sensor offset from pHN and the sensor offset from pHOx at 1500m (difference between the red and blue

lines in Figure 2d) to examine for possible drift in the nitrate or oxygen sensors if we assume that the float

temperature, salinity, and pressure sensors are stable through time. The decrease in pHmeas�pHN (red dots,

Figure 2d) over time for float 9095 suggests that the ISUS nitrate sensor is drifting downward, which has been

observed on other profiling floats [Johnson et al., 2013]. Johnson et al. [2013] observed an average downward

drift of 1 to 2μmol L�1 yr�1 in nitrate measured using ISUS sensors on several APEX profiling floats in the

North Pacific, and this drift results in an overestimate in pHN of 0.02 year�1, which is on the order of what

we calculate for float 9095. To correct for this drift in the nitrate sensor, we can apply an MLR algorithm for

nitrate specific to this region (see supporting information Text S1 for details).

After the data have been adjusted for initial offsets and drift [Johnson et al., 2016] (see supporting information

Text S1 for details), we can compare the adjusted pH sensor data with the algorithm estimates for float 9095

(Figures 3a and 3b) to evaluate differences in the pHN and pHOx algorithms. As the adjustment process

involves only data at 1500m, the annual cycle observed with the sensors at the surface is unaffected by

the adjustment. In the surface mixed layer, the pHN algorithm generally outperforms pHOx. Because the time-

scale for CO2 exchange with the atmosphere (months) is much slower than that for oxygen (weeks), the O2:C

Figure 2. (a) Measured pH, (b) algorithm pH
N
, and (c) algorithm pH

Ox
plotted versus time for float 9095 with 0.02 contours.

(d) Measured pHminus pH
N
(red dots), measured pHminus pH

Ox
(blue dots), andmeasured pH for the deployment cast P16S

2014 bottle data minus pH
N
and pH

Ox
(red and blue stars, respectively) all at 1500m, plotted versus time, illustrating the drift

in the pH and nitrate sensors over time. (e) Depth versus time contour plots of raw measured pH minus pH
N
and (f) raw

measured pH minus pH
Ox

(bottom) for float 9095, both with 0.025 contours. The magenta line is the mixed layer depth

[Dong et al., 2008]. Float 9095 was deployed in April 2014 during the P16S GO-SHIP cruise [Talley et al., 2014].

Geophysical Research Letters 10.1002/2016GL068539
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stoichiometry decouples during times of intense surface oxygen supersaturation or undersaturation. In sum-

mer, oxygen supersaturation leads to outgassing of oxygen and causes the pHOx algorithm to underestimate

surface pH. In late winter, when respiration dominates leading to surface oxygen undersaturation and ingas-

sing of oxygen, the pHOx algorithm overestimates surface pH. The pHOx algorithm also has increased errors in

areas of active deep water formation, where oxygen and carbon may not have sufficient time to come to

equilibrium with the atmosphere before the water mass is subducted [Jacobs, 2004]. Thus, pHN is preferable

over pHOx for estimating pH near the surface and should be used when high-quality nitrate data are available;

however, the pHN algorithm does exhibit increased prediction error in surface waters between the

Subantarctic Front (SAF) and the Polar Front (PF) in the main jet of the ACC due to the significant water mass

mixing and transformation occurring at these fronts and limited training data from this dynamic region. After

the nitrate sensor is adjusted for drift (see supporting information Text S1), the pHOx and pHN algorithms

perform equally well below the depth of the winter mixed layer (≈500m).

Float 9095, which remained north of the main jet of the ACC throughout the study period, has a seasonal

cycle in surface pH of approximately 0.08 (Figure 3d). This is similar in magnitude to the surface seasonal cycle

observed at Southern Ocean Time Series [Shadwick et al., 2015], which is just south of Tasmania and is also

located between the Subtropical Front (STF) and SAF, and at Bermuda Atlantic Time Series [Bates et al., 2012]

in the northern Atlantic subtropical gyre. It is larger, however, than the 0.03 to 0.04 surface seasonal cycle

observed at Station ALOHA in the North Pacific subtropical gyre [Dore et al., 2009], at European Station for

Time series in the Ocean Canary Islands in the northeastern subtropical Atlantic [Santana-Casiano et al., 2007;

González-Dávila et al., 2010], and at Station P (Ocean Station Papa) in the subarctic Pacific [Emerson et al.,

2011]. The surface pH on float 9095 (Figure 3) is lowest in the winter months when primary production is low

and the deep winter mixed layer entrains older, more CO2-enriched waters from below. In the spring, when

the mixed layer shallows, primary production removes CO2, increasing surface pH through summer and dom-

inating over the decrease in pH that would be expected from seasonal warming. As the mixed layer deepens in

fall, this high pH surface signal ismixed away and the surface pH drops. The float 9095 surface record (Figure 3d)

shows that the pHN algorithm better estimates the seasonal cycle in surface pH than the pHOx algorithm, due to

the differences described in the previous paragraph.

We then applied the pHN algorithm to pre-SOCCOM biogeochemical Argo float 6968, which was deployed in

March 2012 at 50°S south of New Zealand and does not have a pH sensor but has over three years crossed

multiple fronts. Estimated pHN along the trajectory for float 6968 (Figure 4a) shows the general decreasing

Figure 3. (a) Algorithm-predicted pH
N

minus adjusted float-measured pH and (b) algorithm-predicted pH
Ox

minus

adjusted float-measured pH with 0.01 contours for SOCCOM float 9095. The magenta line is the mixed layer depth

[Dong et al., 2008]. (c) Adjusted float-measured pH with 0.02 contours. (d) Surface pH
Ox

(blue), surface pH
N
(red), and

adjusted float-measured surface pH (yellow) for SOCCOM float 9095. (e) Float-measured sea surface temperature (red dots)

and chlorophyll (green crosses, calculated using factors based on a comparison of sensor values and discrete chlorophyll

samples when the float was launched (E. Boss and N. Haentjens, personal communication, 2016)) for float 9095. Float 9095

was deployed in April 2014 during the P16S GO-SHIP cruise [Talley et al., 2014].

Geophysical Research Letters 10.1002/2016GL068539
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trend in estimated pH from north to south across the ACC. As the float moves from the subtropics south

across the SAF (Figure 4, vertical black line) into the ACC, pH at depth decreases as the predominance of

circumpolar deep water (CDW) increases. In the ACC region the prevailing winds are westerly, which move sur-

face water northward via Ekman transport, and old, carbon-rich CDW outcrops to replace it [Speer et al., 2000].

The CDW has a relatively low estimated pH, because it has been isolated from the atmosphere for longer than

any other water mass we observe on this float trajectory, and it has a large respiration signal. Discrete

observations from P16S (150°W) and P18S (110°W) show that there is little east-west gradient in water mass

characteristics south of 45°S in this region and that the crossing of the quasi-zonal ACC fronts dominates

trends in float observations.

The estimated surface pH on float 6968 (Figure 4b) is mainly controlled by seasonality in primary productivity

and mixed layer depth; however, the cross-frontal movement of the float convolutes this seasonal pattern.

During most of 2012 and 2013 the float was located north of the main jet of the ACC in the subtropical

Pacific, where in the summer, primary productivity removes CO2 from the surface waters and drives pH

upward, and in the winter, pH drops again as primary productivity slows, the mixed layer deepens, and

respiration causes enrichment of CO2 in the surface waters. As the float moves southward across the SAF

and crosses into the ACC (Figure 4, black vertical line), the surface pH drops significantly due to the increased

influence of the outcropping CDW. The seasonal cycle in surface pH within the ACC is muted relative to the

subtropics due to the strong presence of upwelled CDW at the surface year round. As the float continues to

move southward and crosses the Polar Front (Figure 4, red vertical line) where cold, fresh Antarctic Surface

Water caps the surface of the water column and year-round surface water temperatures are less than 2°C

(Figure 4C), surface pH is again mainly controlled by biological processes and mixed layer depth.

4. Summary

The algorithms presented here can be used to accurately estimate pH throughout the full seasonal cycle in

the Pacific sector of the Southern Ocean where high-quality T, S, P, and oxygen or nitrate data are available

and to adjust pH sensor data on biogeochemical floats. However, the algorithms do not account for the

Figure 4. (a) Estimated pH
N
for pre-SOCCOM float 6968 (deployed just south of New Zealand) with 0.025 contours. The

magenta line is the mixed layer [Dong et al., 2008], the thick black and red vertical lines are the times at which the float

crossed the Subantarctic Front (northern boundary of the ACC characterized by geopotential height anomaly of 0.90 J/kg

[Orsi et al., 1995]) and the Polar Front (characterized by year-round surface water temperatures <2°C), respectively. (b)

Estimated surface pH
N
for pre-SOCCOM float 6968. (c) Float-measured sea surface temperature (red dots) and chlorophyll

(green crosses, calculated using factory calibration) for float 6968.

Geophysical Research Letters 10.1002/2016GL068539
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observed anthropogenic ocean acidification of 0.002 year�1 in this region. Indeed, because the algorithms

were trained using discrete data from between 2011 and 2014, they should not be used to estimate pH

beyond approximately five years on either end of this time period, as this by itself would increase the bias

in estimated pH due to increases in anthropogenic carbon inventories over that time. The algorithms do

not account for changes in processes such as gas exchange that may modify the relationships between pH

and the master variables used in the algorithm. With these caveats in mind, these algorithms can be a valu-

able asset toward understanding the seasonality in pH in this poorly observed region, and theymay also be of

use as initial conditions and validation in ocean carbon system models. The pHN algorithm most accurately

estimates pH in surface waters and is preferable over pHOx when high-quality nitrate data are available.

The pHOx algorithm, however, has been most useful for SOCCOM float pH sensor adjustment because the

pHOx algorithm performs well in deep waters and is not subject to issues with drift that the nitrate sensor cur-

rently experiences. These algorithms have been optimized using summer data for the Pacific sector in waters

shallower than 2100m, and further analysis is required to determine whether separate algorithms should be

developed for each basin. Newly acquired high-quality discrete inorganic carbon data will be incorporated

into updated algorithms in order to expand the seasonal and spatial range of the training data set, which will

further expand the utility of these novel biogeochemical sensors.
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