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Empirical Analysis of CK Metrics
for Object-Oriented Design Complexity:
Implications for Software Defects

Ramanath Subramanyam and M.S. Krishnan

Abstract—To produce high quality object-oriented (OO) applications, a strong emphasis on design aspects, especially during the early
phases of software development, is necessary. Design metrics play an important role in helping developers understand design aspects
of software and, hence, improve software quality and developer productivity. In this paper, we provide empirical evidence supporting
the role of OO design complexity metrics, specifically a subset of the Chidamber and Kemerer suite, in determining software defects.
Our results, based on industry data from software developed in two popular programming languages used in OO development,
indicate that, even after controlling for the size of the software, these metrics are significantly associated with defects. In addition, we
find that the effects of these metrics on defects vary across the samples from two programming languages—C++ and Java. We believe
that these results have significant implications for designing high-quality software products using the OO approach.

Index Terms—Object-oriented design, software metrics validation, object-oriented languages, C++, Java.

1 INTRODUCTION

THE object-oriented (OO) approach to software develop-
ment promises better management of system complex-
ity and a likely improvement in project outcomes such as
quality and project cycle time [8]. Research on metrics for
OO software development is limited and empirical evi-
dence linking the OO methodology and project outcomes is
scarce. Recent work in the field has also addressed the need
for research to better understand the determinants of
software quality and other project outcomes such as
productivity and cycle-time in OO software development
[4], [21]. Of these outcomes, the importance of detection and
removal of defects prior to customer delivery has received
increased attention due to its potential role in influencing
customer satisfaction [27] and the overall negative economic
implications of shipping defective software products [32].
Hence, researchers have proposed several approaches to
reduce defects in software (for e.g., see [1], [33], [39]).
Suggested solutions include improvement of clarity in
software design, effective use of process and product
metrics, achievement of consistency and maturity in the
development process, training of software development
teams on tracking in-process defects, and promotion of
practices such as peer reviews and causal defect analyses.

Empirical evidence in support of the effectiveness of the
above approaches has also been presented [33], [34]. For
example, Krishnan et al. empirically show that higher up-

front investment in design helps in controlling costs as well
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as in improving quality [34]. It has also been shown that a
number of software size-related metrics such as lines-of-
code and McCabe’s cyclomatic complexity are associated
with defects and maintenance changes in a software system
[1], [33]. Similarly, prior research has also shown that
measures of testing effectiveness and test coverage can
significantly explain defects [39]. However, most of these
studies are primarily based on data from software devel-
oped using traditional software development methods and
our understanding of the applicability of these approaches
and metrics in OO development settings is limited.

Design complexity has been conjectured to play a strong
role in the quality of the resulting software system in
OO development environments [8]. Prior research on
software metrics for OO systems suggests that structural
properties of software components influence the cognitive
complexity for the individuals (e.g., developers, testers)
involved in their development [12]. This cognitive complex-
ity is likely to affect other aspects of these components, such
as fault-proneness and maintainability [12]. Design com-
plexity in traditional development methods involved the
modeling of information flow in the application. Hence,
graph-theoretic measures [36] and information-content
driven measures [30] were used for representing design
complexity. In the OO environment, certain integral design
concepts such as inheritance, coupling, and cohesion' have
been argued to significantly affect complexity. Hence,
OO design complexity measures proposed in literature
have captured these design concepts [19], [20].

One of the first suites of OO design measures was
proposed by Chidamber and Kemerer [19], [20] (hence-
forth, CK). The authors of this suite of metrics claim that

1. Inheritance represents the degree of reuse of methods and attributes
via the inheritance hierarchy. Coupling is a measure of interdependencies
among the objects, while cohesion is the degree of conceptual consistency
within an object.

Published by the IEEE Computer Society
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these measures can aid users in understanding design
complexity, in detecting design flaws and in predicting
certain project outcomes and external software qualities
such as software defects, testing, and maintenance effort.
Use of the CK set of metrics and other complementary
measures are gradually growing in industry acceptance.
This is reflected in the increasing number of industrial
software tools, such as Rational Rose®), that enable
automated computation of these metrics. Even though this
metric suite is widely cited in literature [4], [21], [24], [25],
[35], empirical validations of these metrics in real world
software development settings are limited. This research
studies the relationship between a subset of CK metrics
and the quality of OO software measured in terms of
defects, specifically those reported by customers and those
identified during customer acceptance testing.

This paper presents new evidence in support of the
association between a subset of CK metrics and defects. The
contributions of this research are manifold. First, our study
presents the effect of CK metrics on defects after controlling
for software size. Some of the prior research did not account
for this size effect as noted by El Emam et al. [25]. Second,
we validate the association between a subset of CK metrics
and defects in two current language environments, namely,
C++ and Java. Authors of prior papers in this topic have
raised the need for such a validation across different
language settings [4] and, to our knowledge, none of the
published papers have compared the results across these
widely adopted languages. Third, on the methodological
front, we use weighted linear regression to study the
interaction effect of some of these measures on software
defects. Again, to our knowledge, the interaction effect of
these measures has not been studied in the past.

The organization of the rest of the paper is as follows: In
the next section, we discuss prior literature on OO metrics
and briefly define the CK suite of metrics. In Section 3, we
present the conceptual model and the research hypotheses.
Section 4 describes the research site and the data collection
process and Section 5 presents the empirical model and
data analyses methods. We discuss the results of the study
in Section 6 and, in the final section, conclude with
directions for future research.

2 PRIOR LITERATURE

2.1 Development of Metrics for
OO Design Complexity

Promises and challenges in OO methodology have received
the attention of both researchers and practitioners. Initial
research in this domain primarily focused on understand-
ing software systems in terms of objects and their proper-
ties. For example, Wand and Weber [40] have proposed a
well-supported, domain-independent modeling frame-
work, based on Bunge’s ontology, for a clear understanding
of an information system [15], [16]. In this framework, they
define a set of core concepts that represent a view of world
as composed of objects and properties. In the mapping of
this framework to software systems, objects and properties
are used to describe the structure and behavior of an
information system. Chidamber and Kemerer proposed the
first set of OO design complexity metrics using Bunge’s

ontology as the theoretical basis [19]. They extended the
work of Wand and Weber and defined specific measures of
complexity in OO design, capturing the concepts of
inheritance, coupling and cohesion.

However, the CK suite of metrics did not account for
potential complexity that arises from certain other OO design
factors such as encapsulation and polymorphism. Subse-
quent researchers proposed extensions and modification to
the initial set of CK metrics highlighting these gaps. For
example, Abreu proposed extensions to measure encapsula-
tion via metrics such as the Method Hiding Factor (MHEF)
and the Attribute Hiding Factor (AHF), which denote the
information hiding aspects of a class? [13], [14]. The same
author also proposed a measure of polymorphism, the
Polymorphism Factor (PF), which denotes the ability of OO
objects to take different forms based on their usage context.
Similarly, Li and Henry proposed more fine-grained exten-
sions of the CK coupling measure via measures like Message
Passing Coupling (MPC) and Data Abstraction Coupling
(DAC) [35].

A clear understanding of the definitions of these
complexity metrics and a promise of their relevance in
improving the outcomes of software development projects
led to a body of research primarily focusing on the
validation of these metrics. As shown in Table 1, in this
limited stream of research, CK metrics have received
considerable attention. These metrics are being increasingly
adopted by practitioners [21] and are also being incorpo-
rated into industrial software development tools such as
Rational Rose® and Together®). The object-oriented metrics
proposed by Chidamber and Kemerer [19] and later refined
by the same authors [20] can be summarized as follows:®

1. Weighted Methods per Class (WMC): This is a
weighted sum of all the methods defined in a class.*
2. Coupling Between Object classes (CBO): It is a count of
the number of other classes to which a given class is

coupled and, hence, denotes the dependency of one

class on other classes in the design.’

3. Depth of the Inheritance Tree (DIT): It is the length of
the longest path from a given class to the root class
in the inheritance hierarchy.

4. Number of Children (NOC): This is a count of the
number of immediate child classes that have
inherited from a given class.

2. A class is a set of objects that share a common structure and behavior [8].

3. For detailed descriptions and intuitive viewpoints related to these
metrics, please refer to [19], [20].

4. In their initial paper, Chidamber and Kemerer suggest assigning
weights to the methods based on the degree of difficulty involved in
implementing them [19]. Since the choice of the weighting factor can
significantly influence the value of this metric, it has remained a matter of
debate among researchers. Some researchers in the past have used size-like
measures, such as cyclomatic complexity of methods in their weighting
scheme [24], [35]. Other researchers, including the authors of this metric,
have used a weighting factor of unity in their papers on validation of
OO metrics [4], [20], [21]. In this study, we also use a weighting factor of
unity.

5. As per the refinement of the original authors, inheritance-based
coupling is included in the CBO metric [20]. Further, only explicit
invocations (and not implicit invocations) of the constructors of other
classes have been counted toward the CBO measure for a particular class.
This is consistent with the viewpoint stated in the papers by the original
authors [20].
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TABLE 1
Summary of Empirical Literature on CK Metrics

Study Dependent CK Size Summary of Results
variable Metrics | controlled
tested for?
1993 Maintenance | All metrics Yes Two commercial systems were
Li and Henry code change in the CK studied. Five of the six metrics
suite” (except CBO) helped predict
maintenance effort.
1996 Fault proneness | All metrics No Eight student projects were studied.
Basili et al. (presence/ in the CK WMC was correlated with defects
absence of a suite while LCOM was not correlated with
fault in a class) defects. CBO, DIT, NOC and RFC
were correlated with defects.
1998 Maintenance Class No Two of the four systems studied were
Binkley and code change coupling, developed using OO methods.
Schach NOC Coupling measures were correlated
with maintenance code changes due to
field faults, but not NOC.
1998 Productivity, | All metrics Yes Three financial services applications
Chidamber et al. Rework and in the CK were studied. High CBO and low
design effort suite LCOM were associated with lower
productivity, greater rework, and
greater design effort.
1999 Fault proneness | CBO, RFC, No An industrial case study was
Briand et al. LCOM performed and the three CK metrics
were found to be associated with fault
proneness of classes.
1999 Fault proneness WMC, No Three real time systems were
Tang et al. RFC analyzed for testing and maintenance
defects. Higher WMC and RFC were
found to be associated with fault-
proneness.
2000 Fault proneness | All metrics No Eight student projects were studied.
Briand et al. in the CK Classes with higher WMC, CBO,
suite DIT, and RFC were more fault-prone,
while classes with more children
(NOC) were less fault-prone. LCOM
was not associated with defects.
2000 Defect density | DIT, NOC No A medium-sized telecommunication
Cartwright and (Testing and system was studied. Both DIT and
Shepperd Post-release NOC were found to influence defect
defects per line density.
of code)
2001b Fault proneness | All metrics Yes A large telecommunication
El Emam et al. in the CK application was studied. Size was
suite® found to confound the effect of all
metrics on fault proneness.

# The authors use cyclomatic complexity of each method as a weighting factor for the WMC metric.

5. Response for a Class (RFC): This is the count of the
methods that can be potentially invoked in response
to a message received by an object of a particular
class.

6. Lack of Cohesion of Methods (LCOM): A count of the
number of method-pairs whose similarity® is zero
minus the count of method pairs whose similarity is
not zero.

2.2 Empirical Literature on CK Metrics

The body of empirical literature linking CK metrics to
project outcomes is growing. A brief summary of some key
research in this literature is presented in Table 1. In a study
of two commercial systems, Li and Henry [35] explored the

6. Similarity refers to the sharing of member variables by the methods.

link between several OO design metrics (including metrics
from the CK suite) and the extent of code change, which
they used as a surrogate measure for maintenance effort.
Similarly, based on an investigation of several coupling
measures (including CBO) and the NOC metric of the
CK suite in two university software applications, Binkley
and Schach [7] found that the coupling measure was
associated with maintenance changes made in classes due
to field failures.

Based on a study of eight medium-sized systems
developed by students, Basili et al. [4] found that several
of the CK metrics were associated with fault proneness of
classes. In a commercial setting, Chidamber et al. [21]
observed that higher values of the coupling and the
cohesion metrics in the CK suite were associated with
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reduced productivity and increased rework/design effort.
Analyzing a medium-sized telecommunication system,
Cartwright and Shepperd [17] studied the inheritance
measures from the CK suite (DIT, NOC) and found that
both these measures were associated with defect density of
classes.

On similar lines, initial validation studies on CK metrics
by Briand et al. [11], [12] and Tang et al. [38] indicated that
several design metrics from the CK suite were positively
associated with fault proneness of classes. Noting that
several of these prior studies had not controlled for class
sizes, El Emam et al. [25] examined a large C++ tele-
communication application and provided evidence for the
argument that the size of the software may confound the
effect of most OO design metrics on defects. Their results
indicate that, after controlling for the size of the software,
the residual effects of most CK metrics (except for coupling
and inheritance metrics) on defect proneness are not
significant. Since this finding is contrary to our under-
standing from prior studies of the role of size as a mediating
factor in detecting defects or other project outcomes [21],
[35], it needs further validation. In addition, since very few
studies have analyzed the role of these metrics in multiple
languages, we need further analyses to understand poten-
tial language specific differences.

2.3 Metrics Analyzed in This Study

Though the original suite of CK design metrics has six
metrics [19], [20], we use only three of these in our
model, WMC, CBO, and DIT. The lack of applicability of
other metrics in the CK suite to our model and the
potential difficulty in computing these measures led us to
exclude them.

The NOC metric represents the impact a certain class
may have on child classes, which inherit methods from it.
Since the focus of our research is on understanding the
determinants of defects occurring in a given class and not
on defects in its child classes, there was no strong rationale
supporting the significant role of the NOC metric of a given
class in determining defects. Hence, we did not include this
metric in our model and analyses even though we collected
this metric. This choice is also in line with the theory and
findings of certain prior defect models in the literature [38].

The RFC metric requires knowledge of all the individual
messages’ initiated by a given class. More specifically, this
metric calls for the computation of all methods potentially
executed in response to a message received by an object of a
given class. Given the size of the software system
investigated in our study, the complete details on all the
individual messages initiated by objects of all the classes
were not accessible to us.® Hence, we could not include this
metric in our model. However, since this metric has also
been found to be highly correlated with the WMC and the
CBO metric in earlier studies [21], both of which we have
included in our study, the shortcomings arising from
exclusion of the RFC metric may be limited.

7. Message passing is the means of communication between objects in
OO programs [8].

8. The proprietary configuration management system and the presence
of certain proprietary language calls in the system code also prevented us
from using an automated tool for metric collection.

Some valid arguments have been raised by past
researchers regarding an ambiguity in the definition of the
LCOM metric [4]. It has been identified that the original
definition of this metric truncates all values below zero, and
this truncation limits the metric’s ability to fully capture the
lack of cohesion. It is possible that the truncation of values
below zero in this metric may reduce the variability of this
metric and limit its usefulness in explaining productivity or
defects [4]. For this reason, we omitted the LCOM metric.

3 MobDEL AND HYPOTHESES

The primary focus of our research is on understanding the
role of some of the measures defined in the CK metric suite
in explaining object-oriented software defects at a class
level. Although a large number of defect models have been
proposed for traditional software development methodol-
ogies, our understanding of defects in object-oriented
software is limited. These models have identified size as
an important variable affecting defects [2], [26], [28]. The
argument for including size in these defect models relates to
the ability of software developers to comprehend and
control the various phases and roles in developing a large
software system. Because it challenges the ability of a
developer to understand software through normal cognitive
processes, the size of a software system alone could enhance
the difficulty in comprehending a system’s functionality.
We believe that these determinants of size-related complex-
ity extend to object-oriented software and necessitate an
explicit control for size in studying defects. One of the few
prior studies addressing defects in object-oriented software
has also discussed the potential confounding effect of size
on the relationship between design metrics and defect-
proneness [25]. Hence, we explicitly account for the role of
size in our study and hypothesize that larger classes are
associated with higher number of defects.

Hypothesis 1 (H1). Larger classes will be associated with a
higher number of defects, all else being equal.

In traditional (non-OO) design, the separation between
data and procedures often makes it difficult for developers
to comprehend the functionality of the system, especially
when the system is large. In OO software design, cohesion’
is argued to be an important benefit, which is expected to
alleviate this difficulty in comprehension of functionality
[8]. We believe that increasing the number of methods in a
class may decrease its cohesion, thus increasing the like-
lihood of defects occurring in the class.'® Further, the
addition of more methods to a given class may also increase

9. Cohesion represents the degree of connectivity among the attributes
and methods of a single class or object [8].

10. Some researchers consider WMC to be another indicator of size [11].
In our study, we have included both WMC and size separately since the
number of methods is also an indicator of cohesion [8] while size may have
no relation to cohesion. Further, it could be expected that given two classes
each with 100 lines of code, there could be a greater difficulty in
maintaining a class with 20 methods as opposed to maintaining a class
with five methods. We also acknowledge the possibility that inclusion of
certain special methods such as constructors and destructors in complexity
measures could artificially bias certain complexity measures such as
cohesiveness (see [18]). However, these biases are not addressed in this
study as we restrict the definitions of metrics to those of the original authors
of these metrics [20], [21].
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the difficulty in managing the inheritance relationship
between that class and its child classes, thus raising the
likelihood of occurrence of class-level defects.

Hypothesis 2 (H2). Classes with higher values of WMC will be
associated with a higher number of defects, all else being equal.

A strong coupling between classes in an OO design can
also increase the complexity of the system by introducing
multiple kinds of interdependencies among the classes.
Primarily, two kinds of dependencies are introduced by the
existence of strongly connected classes. The first kind of
dependency arises from the simple sharing of services
across the classes. Increasing class coupling could make it
difficult for designers and developers to maintain and
manage the multiple interfaces required for sharing of
services across classes.

A second kind of dependency between classes arises
from the inheritance hierarchy of classes in the design.
When a child class invokes a method from its parent class,
the reuse of software is certainly an advantage. However,
the higher the number of inherited methods and variables,
the greater the difficulty for developers in comprehending
and understanding the functionality of the inheriting class.
Since the CBO metric captures both kinds of dependencies
by considering any invocation of a method or instance
variable of another class as a coupling, we hypothesize that
classes with higher CBO values will be associated with a
higher number of defects.

Hypothesis 3 (H3). Classes with higher CBO wvalues are
associated with a higher number of defects, all else being equal.

In their original work on OO metrics, Chidamber and
Kemerer have argued that the number of levels above a
class in the class hierarchy may, to a great extent, determine
the predictability of the class’s behavior [20]. They claim
that the behavior of classes deep in the hierarchy could
depend on the behavior of their own methods and on the
behavior of methods inherited from their immediate parent
and all ancestor classes. Hence, the deeper a class is placed
in the hierarchy, the greater the difficulty in predicting the
behavior of the class. We believe that this uncertainty about
the behavior of a class may lead to several challenges in
testing all the class interfaces and maintaining the class.
Hence, we hypothesize that classes with high DIT values
will be associated with a higher number of defects.

Hypothesis 4 (H4). Classes with high DIT values are associated
with a higher number of defects, all else being equal.

3.1 CBO and DIT Interaction

We believe that the effect of coupling between objects on
defects may actually depend upon the level of the class in
the hierarchy, ie. the DIT of a class. As noted in the
hypotheses relating coupling to defects, the second kind of
dependency between classes, stemming from inheritance-
related coupling, might be moderated by the level of
inheritance depth. In other words, the dependency between
classes could be higher for classes deep in the hierarchy, i.e.,
with high values of DIT. Since a class deep in the hierarchy
can potentially invoke methods from many of its ancestors,

a relatively high CBO value at this level may add to the
difficulty in comprehension and management of its attri-
butes and behavior. Complexity arising from the moderat-
ing effect of inheritance depth could also increase the
likelihood of defects occurring in a class. Hence, we
hypothesize that the effect of CBO on defects may be
further augmented for classes deep in the hierarchy.

Hypothesis 5 (H5). Classes with higher CBO in conjunction
with high DIT values are associated with a higher number of
defects, all else being equal.

The dependent variable for our analysis is the defect count
for a class. Prior researchers have proposed binary
classification of defect data and have used logistic regres-
sion models to measure the impact of complexity on defect-
proneness [4], [11], [24]. One possible consequence of using
a binary classification scheme for defect data is that a class
with one defect cannot be distinguished from a class with
ten defects. As a result, the true variance of defects in the
data sample may not be captured in the empirical analysis.
Using defect count as a dependent variable could alleviate
this effect. A second consequence of using such a classifica-
tion scheme, especially in models where there are poten-
tially correlated factors such as SIZE, WMC, and CBO, is
that there could be an underestimation of the effect of some of
these factors on defects. The reasoning is as follows: Let us
suppose that CBO and SIZE are highly correlated in a
sample and that both these factors are correlated with
defects. If two classes, one with [1 defect, 1 CBO and
10 LOC] and another with [10 defects, 20 CBO and
200 LOC], are both classified as simply having a defect (or
not), it is very likely that the effect of CBO on defects is
underestimated. The variations of CBO (from one to 20) and
SIZE (from 10 to 200 lines of code) would be associated with
no variation in defects. In some data samples, such an
underestimation could result in certain metrics becoming
statistically insignificant in the defect model, while in
reality they might have played a role in defects. Due to
such constraints, we use the actual defect count as the
dependent variable in our analyses. The functional form of
our model is given below.

DEFECTS = f(SIZE, WMC, CBO, DIT, CBO*DIT)...
(1)

4 REeSEARCH SITE AND DATA COLLECTION

Our research site is an industry leading software develop-
ment laboratory that develops diverse commercial applica-
tions. The data collected for our analyses are from a
relatively large B2C e-commerce application suite devel-
oped using C++ and Java as primary implementation
languages. The application suite was built using client/
server architecture and was designed to work on multiple
operating platforms such as AIX and Windows NT. The
rationale in distributing the functionality between C++ and
Java classes in the system was to maximize reuse of classes
that were already available from previous development
efforts in the organization. The C++ classes covered the
following functionality in the application suite: order and
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billing management, user access control management,
product data persistent storage, communications and
messaging control, encryption, and security control. The
Java classes covered the following functionality: persistent
storage, currency exchange, storefront persistent data
storage, user and product data management, sales tracking
and order management. Prior to our data collection, the
application suite was in the field for a period of 80 days. The
level of abstraction and sizes of classes were relatively
uniform across both C++ and Java classes. For instance,
both C++ and Java classes involved functionality such as
persistent storage, management of data structures, and
order management. However, they did differ in terms of
certain specific functionality such as memory allocation and
networking, which were predominantly split between C++
and Java classes, respectively.

We collected metrics data on 706 classes in total,
including 405 C++ classes and 301 Java classes, all from
the same application suite, which minimizes potential
systematic project-specific biases that may arise if the classes
belong to different projects or systems. Even though
information on which project personnel were involved in
which classes was not available to us, based on discussions
with project leads and managers, we gathered that the
average OO-related experience of all the developers in-
volved in this project exceeded two years. Moreover, the
levels of programming experience of developers involved
in the C++ and Java classes were relatively similar. The
OO programming experience of personnel involved in
C++ classes varied from 23 months to eight years, while
the experience levels of the programmers of Java classes
varied from 21 months to seven years. Each programmer
was associated with more than one class.

Due to intellectual property protection issues, the fully
functional system was not available to us and we could not
store the software code in persistent media. However, we
had viewing access to the source code and configuration
management system. We also had access to design docu-
ments through the configuration management system for
the duration of the study, which allowed us to capture
metrics data manually. The UML design notation was used
during design. Complexity measures were computed from
design documents and source code. Of the complexity
metrics, WMC and DIT were computed from design
documents as well as code. The CBO metric was computed
entirely from code and the size (LOC) measure was
gathered from the functionality provided by the source
code and configuration management tools.

For our dependent variable, the defect count, which
includes field defects from customers and those detected
during customer acceptance testing, we collected defect
information at a class level by tracing the origin of each
defect from defect resolution logs that were under the
control of the configuration management system. This class-
level defect count was later verified for correctness with the
project leads and the release manager. The definitions of
variables used in our analysis are given in Table 2.

The summary statistics for the above measures for C++
classes and Java classes are shown in Table 3 and Table 4,
respectively. The correlation matrix for the Size, WMC, and
CBO measures are presented in Table 5.

5 EMPIRICAL MODEL AND DIAGNOSTICS

We believe that the relationship between design metrics,
size, and defects at the class level is inherently nonlinear for
the following reasons. First, a linear relationship between
size and defects is not common, as suggested by prior
studies [3], [37]. A linear relationship would imply that a
class with 1,000 lines of code is likely to have 10 times the
defects found in a class with 100 lines of code, which in turn
is expected to have 10 times the defects found in a class with
ten lines of code. As found in studies by Shen et al. [37] and
Basili and Perricone [5], such a relationship is rarely
observed in software applications. Second, it is often found
that defects are not uniformly distributed across the
modules in the system and that a few modules may account
for most defects in the system [5]. Third, on similar lines,
the relationship between OO design metrics and defects is
not expected to be linear. For instance, a class coupled to 10
other classes is not expected to have 10 times the defects
found in another class that has a single coupling. These
arguments suggest that the relationship between defects,
size, and metrics are not linear. To verify whether this is the
case, we performed a multivariate linear regression of
defects on size and complexity measures. We found that
large classes behaved differently from other classes and the
error variance for large classes were greater, suggesting the
presence of nonlinearity and heteroskedasticity or unequal
error variances for larger classes [29].1!

The Box-Cox transformation is a useful tool to identify
the appropriate nonlinear specification for a given set of
dependent and independent variables [10]. The Box-Cox
transformation identifies the right specification by trans-
forming the dependent variable. If the original dependent
variable is y, the Box-Cox transformation is as follows:

y= -1/

For a given random sample of data, the maximum
likelihood estimate of A is computed and used to identify
the final transformation needed for the right specification. A
A value close to zero indicates the need for a logarithmic
transformation; a A value of 1 indicates that a simple linear
form of the dependent variable is appropriate and a A value
of -1 indicates that a reciprocal transformation is appro-
priate. Since many classes in our sample had zero defects
and both logarithmic and reciprocal transformations are not
possible at this value, we use 1 + defects as the dependent
variable to be transformed. We applied a Box-Cox trans-
formation to the data and identified that the maximum
likelihood estimate of A\ was close to -1 for both C++ and
Java samples, necessitating a reciprocal transformation.
Hence, the empirical model specification estimated in our
analysis is as follows:

1/(1+ DEFECTS)
= By + Bi(Size) + B(WMC) + 33(CBO) (2)
+ B4(DIT) + B5(CBO % DIT) +¢.

11. However, the directions (signs) of the coefficients of the linear model
were consistent with the nonlinear model arrived at later.
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This variable for each class is a count of the number of other classes to which a
given class is coupled. A class is said to be coupled to another class if it

instantiates a member variable or invokes a member method or constructors of

TABLE 2
Variable Descriptions
Variable Description
DEFECTS The defect count is computed at the class level and includes the aggregate
numbers of field defects and customer acceptance testing defects attributed to
each class.
SIZE It is a count of non-commented non-blank source lines of code in each class®.
WMC This measure is an aggregate count of the number of methods in each class [20].
This count also includes constructors and destructors™ of a class.
CBO
the second class.
DIT

This is the depth of a given class in the inheritance hierarchy. It is a count of the

number of class levels that are above a given class in the class hierarchy.
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# This definition of size is consistent with industry practice. Since the definition of “a line of code” is important for the sake of consistency across
classes, we used the same scripted tool that was integrated into the source code and configuration management system, to gather the lines of code

count for all classes.

## A constructor is a method of a class that is invoked each time an object of a class is created in memory. Typically, initialization functions are
performed in the constructor. The destructor of a class is invoked each time an object of a class is deleted from memory. Usually, class-specific
memory clean-up activities are performed in the destructor method. For detailed explanation of these terms, please refer to [8].

In the above equation, ) is the constant. 8, captures the
effect of size, while 3, 3, and (3, capture the effects of
WMC, CBO, and DIT, respectively. (35 captures the
interaction between CBO and DIT and ¢ represents the
error term. Note that, in the above specification, higher
values of the coefficients imply association with a fewer
number of defects, as a result of the reciprocal transforma-
tion of the defect variable.

5.1 Test for Pooling C++ and Java Classes

Due to inherent differences in these two samples of C++
and Java classes, it is likely that effects of design metrics on
defects may be different across these two samples. The
Chow test is one of the ways to identify any structural
differences in a pooled sample of data [22]. We used this
test to check for any structural differences in parameters of
the model presented in (2) across C++ and Java. In our

TABLE 3
Summary Statistics: C++ Classes

Variable N Mean Std. Dev

Min 1Q 2"™Q 39Q Max

DEFECTS 405 0.89 1.39
SIZE 405 163 228.1
WMC 405  7.07 13.67
CBO 405 2.81 2.23
DIT 405 236 1.22

0 0 0 1 7

2 58 98 181 2953
0 3 7 219
0 2 3 3 25
0 1 3 3 5

TABLE 4
Summary Statistics: Java Classes

Variable N Mean  Std. Dev

Min 1%Q 2"Q 39Q Max

DEFECTS 301 0.22 0.70

SIZE 301 13595 21537
WMC 301 1215 15.84
CBO 301 294 3.45

DIT 301 1.02 1.00

0 0 0 0 5

1 25 59 155 1874
0 3 7 16 132
0 1 2 4 29

0 0 1 1 5
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TABLE 5
Correlations—LOC, WMC, and CBO

C++ classes

Java classes

SIZE WMC CBO SIZE WMC CBO

SIZE 1 - - 1 - -

WMC 0.359 1 - 0.742 1 -
(0.000) (0.000)

CBO 0.161 -0.065 1 0.665 0.474 1
(0.001)  (0.193) (0.000)  (0.000)

Pearson correlations are shown in the table, p-values are in parenthesis.

pooled sample, the Chow test rejected the null hypothesis,
that data can be pooled, at all levels of significance. This
result indicates that the parameter values for C++ and Java
are structurally different and supports the argument that
the effect of OO design metrics on defects may vary across
programming languages. Hence, we estimate the regression
models shown in (3) and (4) for C++ and Java respectively.
For ease of representation, we denote the regression
parameters for the C++ sample as f[cg...0cs and the
regression parameters for the Java sample as Sy ... 055, as
shown below.

1/(1 + DEFECTS)

= Bco + Ber(Size) + Bea(WMC) + Bes(CBO) (3)
+ Bca(DIT) + Bes(CBO * DIT) + ¢,

1/(1 + DEFECTS)

= By + B (Size) + B12(WMC) + B53(CBO) (4)

+ B54(DIT) + B;5(CBO % DIT) + ¢.

5.2 Model Specification

We estimated the empirical models given in (3) and (4)
using Ordinary Least Squares regression for the C++ and
Java classes. The residuals from both regression models
were correlated with the size of the class, and White’s test
confirmed the presence of heteroskedasticity [41]. Hence,
we used a Weighted Least Squares (WLS) procedure to
mitigate the effect of heteroskedasticity [29]. The square
root of size was used as the weighting factor in our
analysis.'? The final results of the WLS regression for C++
and Java are shown in Table 6 and Table 7, respectively.

5.3 Regression Diagnostics

We also checked for any significant effects from multi-
collinearity and influential observations, either of which
may influence the results of our analysis. We next

12. Our sample indicated that the variance of the error terms in (3) and
(4) was higher for larger classes. Our weighting procedure ensures that
observations with smaller variances receive larger weights in the computa-
tion of regression estimates. Of the various functional forms of size, our
sample indicated that the square root of size was found to be the appropriate
functional form for the weighting factor.

describe the specific tests conducted to verify the presence
of these effects.

Multicollinearity. Chidamber et al. have argued that the
metrics WMC and CBO may be highly correlated [21]. As
noted earlier, it has also been suggested that size may be
correlated with some of the CK metrics [25]. In addition, in
our model, presence of the interaction term (CBO*DIT) as
an explanatory factor can also lead to multicollinearity.
Although it may not be possible to totally avoid multi-
collinearity in any data set, it is important to assess the
degree to which presence of multicollinearity affects the
results. We examined the data for such evidence using
conditions specified in Belsley et al. [6]. The maximum
condition indices for C++ and Java models were well below
the critical value of 20, suggested by Belsley et al. [6]. This
finding indicates the absence of any significant influence of
multicollinearity in our analysis.

Influential Observations. To determine the presence of
influential observations, we computed the Cook’s distance
for each observation [23]. The maximum Cook’s distance
was found to be less than two, indicating absence of
influential observations.

6 DiscusSION OF RESULTS
6.1 Influence of Class Size

The results of the Weighted Least Squares regressions in (3)
and (4) for the C++ and Java classes, depicted in Tables 6
and 7, indicate that the effect of size on defects is negative
and statistically significant (8c; and (5 are negative and
significant). Note that, in our model, this indicates that an
increase in size is associated with a higher number of
defects. This result supports our hypothesis H1. To a
certain extent, this finding is consistent with findings of
El Emam et al. [25] who suggest that size tends to
confound the effect of metrics on defects. However, in
contrast to [25], our sample suggests that the additional
effect of metrics beyond that explained by size is
statistically significant. Even though our results indicate
that larger classes are associated with a higher number of
defects, our results need to be interpreted with caution.
This is because, if we reduce the size of all classes in the
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WLS Estimates for C++ Classes (ggsrl;rEe EI;Root of Size Used as the Weight)#
Variable Parameter Coefficient Standardized p-value for
Coefficient two-sided t-
tests
Intercept Beo 0.6570%** 0.000
SIZE Be - 0.0003** -0.237 0.000
WMC B - 0.0032* -0.098 0.043
CBO Bes 0.0011 0.008 0.928
DIT Bes 0.1180%* 0.454 0.000
CBO*DIT Bes - 0.0210%* -0.431 0.001
Adjusted R? 0.237%%

** 1% significance

* 5% significance

# Please note that the negative sign of the coefficients in Table 6 and Table 7 implies positive influence on defects because of the reciprocal

relationship between defects and the explanatory variables.

TABLE 7
WLS Estimates for Java Classes (Square Root of Size Used as the Weight)

Variable Parameter Coefficient Standardize p-values for
d Coefficient two-sided t-tests

Intercept Bio 0.9620 0.000
SIZE Bn - 0.0005%* - 0.676 0.000
WMC B 0.0015 0.138 0.076
CBO Brs - 0.0009 -0.018 0.891

DIT B -0.0217 - 0.094 0.245
CBO*DIT Bis 0.0079* 0.300 0.048
Adjusted R? 0.189%*

** 1% significance

application, it may influence other design complexity
measures. For example, if the sizes of all classes in the
application are kept below threshold levels, there may be
an increase in complexity metrics such as CBO. This
increase in CBO may lead to a higher number of defects, as
seen in the analysis of C++ classes shown in Table 6.

Our results also indicate that the effect of size varies
across the two programming languages. The standardized
regression coefficients for the size variable across the two
models in our analysis reveal that the coefficient of size for
C++ classes is 0.23, whereas for Java classes it is 0.66. This
difference in the effect of size could be due to several
reasons. First, complexity from a single line of code may
vary across programming languages. Second, it is con-
ceivable that the functionality of the software application
across the two samples may be responsible for the
difference. However, in spite of minor variations in cover-
age of special functions such as memory allocation and
networking by the C++ and Java classes, there are
significant similarities in the level of application abstraction
across the C++ and Java classes, which lead us to believe
that the effect of functional differences could be somewhat

* 5% significance

mitigated. Further, it could be conjectured that program-
mers who were involved in the development of these
classes could be biasing the results. While this is certainly
plausible, we find that there is a similarity in the average
levels of OO experience as well as in the range of
programming experience between the developers of C++
and Java classes. Therefore, we believe it is unlikely that
programmer-specific factors have unduly influenced the
results.

6.2 Influence of Weighted Methods per Class (WMC)
Our regression results for the C++ model, shown in Table 6,
indicate that an increase in the number of methods (WMC)
is associated with an increase in defects (Gco = —0.0032),
thus supporting our hypothesis H2. In contrast to earlier
findings that the residual effect of WMC on defects after
controlling for size is insignificant [25], our results indicate
that, for C++ classes, the residual effect of WMC on defects
after controlling for size and other complexity metrics is still
significant. However, note that (5, is not significant in
Table 7, which indicates that our Java sample does not show
support for hypothesis H2.
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Fig. 1. Interaction Effect for C++ classes.

First, it is possible that inherent differences between
these two languages may affect the influence of WMC on
defects. Second, it is likely that programmer-specific and
application-specific biases across the two language samples
could also have played a role in our results. As noted
earlier, while these biases are expected to be minimal, they
cannot be entirely ruled out. Third, in our sample, the
relative size of methods per class on the average is
significantly lower for Java classes than for C++. The
average size per method (in lines of code) for Java classes is
10.42, whereas in the case of C++ it is 28.29. This aspect,
coupled with the finding that the correlation between WMC
and size was relatively higher for Java classes in our
sample, might also have played a role in our results (Table 5:
correlation between WMC and Size was 0.65 for C++ classes
and 0.74 for Java Classes).

6.3 Influence of Coupling between Objects (CBO)

and Depth of inheritance (DIT)
The effects of CBO and DIT on defects in our models need
to be interpreted with care because of the presence of an
interaction term between these metrics. In the presence of
such an interaction term, the statistical significance and
values of the first order regression coefficients (5cs, B3, Bca,
and (j4) alone are not sufficient for interpretation. The
significance and value of the interaction coefficients (Gcs
and [55) should also be considered. Further, the presence of
the interaction term suggests a somewhat recursive rela-
tionship, such that the effect of either of the metric cannot
be studied without first fixing the level of the other metric
involved in the interaction. The process of identifying the
effect of two metrics on defects under the presence of
interaction terms is shown in the Appendix. To interpret the
effect of CBO on defects, we take the partial derivative of
the estimated regression equation with respect to CBO
(expression Al in the Appendix). As depicted in (Al), the
marginal effect of a change in CBO on defects depends on

the value of DIT, defects, and regression coefficients (53,
Bcs for C++ and f(y3, By5 for Java).

As shown in Table 6, the coefficient Gc3 is not significant,
whereas 3¢5 is negative and significant (5c; = —0.021). Since
defects and DIT values are always positive, the net effect of
CBO on defects when DIT and other independent variables
are fixed at the mean is positive for the C++ sample. A similar
analysis of the Java sample indicates that the net effect of
CBO on defects having fixed DIT and other independent
variables at the sample mean is negative. This result
indicates support for our hypothesis H3 for C++ classes,
but lacks support for the Java sample.

Likewise, when CBO and the other independent vari-
ables are fixed at the sample mean, we find that the net
effect of increasing DIT is a decrease in defects. This effect is
true for both C++ and Java classes, thereby indicating lack
of support for hypothesis H4. Our findings are in line with
Briand et al. [12], who report that increased DIT was
associated with a lower fault-proneness of classes. How-
ever, the presence of the interaction term indicates that
marginal analysis may help us better understand how
interactions between CBO and DIT influence defects.

6.3.1 Marginal Analysis

Holding defects, size, and the number of methods (WMC)
constant at the sample means and substituting the
estimated parameters for the regression (3) and (4), we
plot the effect of increase in CBO on defects at different
values of inheritance depth. These plots are depicted in
Figs. 1 and 2. As plotted in Fig. 1, our results for the C++
sample indicate that as the depth of a class in the
inheritance hierarchy increases, the positive association
between CBO and defects is stronger and nonlinear. This is
evident in the increasing slope of the curves in Fig. 1, with
an increase in inheritance depth (DIT). For the sample of
Java classes, the plot indicates that as the depth of a class in
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Fig. 2. Interaction Effect for Java classes.

the hierarchy increases, the effect of coupling on defects
decreases. As depicted in Fig. 2, for classes at the root of the
hierarchy (DIT = 0), an increase in CBO is associated with
an increase in the number of defects in the class. This result
is consistent with our finding in the C++ sample. However,
at higher levels of inheritance depth (DIT > 0), our results
show that classes with higher CBO values are associated
with a fewer number of defects."

6.3.2 Discussion of CBO and DIT Interactions
We have three summary results from the analyses of
interactions from our dataset:

1. At the mean level of all other independent variables,
C++ classes with higher CBOs are associated with
higher defects, whereas they are associated with fewer
defects for the Java sample.

2. At the mean level of all other independent variables,
C++ classes as well as Java classes with higher DITs
are associated with higher defects.

3. C++ classes with high DITs as well as high CBOs are
associated with higher defects, whereas Java classes
with high DITs as well as high CBOs are associated
with fewer defects.

Several factors could play a role in these findings. They
could be classified as programming language-specific
factors and other general factors. We next discuss some of
these factors.

Language Related Factors. Discussion of programming
language-specific factors of OO development and the ability
of programming languages such as C++ and Java to support
them can be found in [8], [31], [9].

13. The sample of Java classes used in our analysis is skewed, in that less
than 25 percent of our classes exhibit higher values of DIT. There is a need
to validate our findings in a richer sample of Java classes.

Encapsulation. Certain programming languages may
be better able to support the extent to which
implementation details can be hidden. For instance,
a programming language such as SmalltalkT™ only
permits classes to have private attributes and public
methods, whereas C++ allows attributes and meth-
ods to be declared public, protected or private [8] [9].
Although this choice of inheritance may provide
flexibility to designers, this may also increase the
design complexity and make it difficult for designers
to comprehend the functionality of the system.
Further research is needed to test whether such
variances across languages play a role in defects.
Friend relationships. The existence of friend classes
and friend functions [8] in C++ could influence the
role of inheritance-related coupling on defects. This
is because, as a result of features such as friend
functions and classes, an explicit coupling counted
in the CBO metric may actually lead to a number of
implicit couplings and, thus, increase the likelihood
of defects due to increased complexity. Among
C++ classes studied in this research, friendship was
seen primarily between child classes of two func-
tionally generic classes (of the seven in the entire
application suite). The two generic classes (both
with DIT of 3) concerned had 97 and 56 children,
respectively. Of these, eight child classes of the first
generic class and five children of the second class
were involved in friend relationships owing to their
need to access private attributes of the other classes.
Apart from this, friendship was not used in the
system. This subset of 13 classes, which had an
average CBO of 5 and a DIT of 3, were found to be
responsible for an average of 1.64 defects, compared
to the sample average of 0.8 for C++ classes. Further
research is needed to validate these results in data
samples that have more classes involved in friend
relationships, say, due to design constraints.
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e  Multiple-inheritance. For a given class in the class
hierarchy, a programming language such as
C++ language does not restrict inheritance of
properties to parents and ancestor classes only.
This allows classes to inherit behavior and methods
from more than one class, thereby increasing the
complexity and likelihood of enhancing defects.
Inheritance-related coupling resulting from multi-
ple-inheritance may lead to an increase in defects.
In our C++ data sample, usage of multiple-
inheritance was restricted to 10 child classes of
the two generic classes mentioned earlier (in the
discussion of friend relationships) and another
generic class (of the seven in the application suite).
These 10 classes had an average of one defect
compared to the sample average of 0.8. There is a
need to further validate these findings under other
software settings, which have classes involved in
multiple-inheritance relationships.

General Factors. In addition to the above language-
specific factors, several nonlanguage factors may also be the
cause of the differences in results of C++ and Java samples.
First, differences across the application functionality be-
tween the C++ and Java samples could have played a role in
the results. On the one hand, as noted earlier, there are
several functional similarities between the two data samples
in our study. For instance, both samples had classes with
similar functionality such as persistent storage, manage-
ment of data structures, and order management. On the
other hand, despite these similarities at a higher level,
specific functional differences such as memory manage-
ment functionality in C++ and networking functionality in
Java classes could have influenced these results. Further
research on complexity metrics using data samples where
the same functionality is embedded in both language
samples (possibly under experimental settings) may help
validate our findings.

Second, personnel-specific influences could also have
played a role in our results across the two samples. As
discussed earlier, the profile of personnel capability and
experience in the two samples used in our analysis are
similar. However, experience in years is a narrow definition
of capability. Future research needs to explicitly account for
more relevant personnel factors while studying the role of
design complexity metrics on defects. Third, our results
from the Java sample were skewed. As shown in Table 2,
more than 75 percent of our classes exhibit DIT values of
one or zero."* Consequently, our results need to be
interpreted with caution. Further research is needed to
validate our findings on CBO and DIT for Java classes in a
richer sample covering a larger range of DIT and other
measures. Finally, our results may be influenced by other
complexity dimensions not captured in the CK complexity
metrics. These dimensions include differences in the usage

14. We performed a sensitivity analysis for our sample using a subset of
Java classes that had DIT values of two or above. Our results indicated 1)
very high levels of collinearity (condition index greater than 20, [6])
between the interaction term and DIT and 2) statistical nonsignificance of all
regression coefficients, except for size, possibly due to the collinearity noted
earlier.

of special methods across the two languages.” Such
differences may have played a role in our results. Future
studies could explicitly include complexity measures that
are not captured in our analyses.

7 CONCLUSIONS

Our study enhances prior empirical literature on OO metrics
by providing a new set of results validating the association
between a subset of CK metrics and defects detected during
acceptance testing and those reported by customers. One of
our main findings is that, after controlling for size, we find
that some of the measures in the CK suite of OO design
complexity metrics significantly explain variance in defects.

Prior studies have also noted that, in order for OO metrics
to be useful, there is an evident need for validity of these
metrics across various programming languages [4], [20].
This study attempts to fill this gap by empirically validating
the CK suite of OO design metrics for two popular
programming languages in use today, C++ and Java. The
effects of certain OO design complexity metrics, such as
number of methods (WMC), coupling between objects
(CBO), and inheritance depth (DIT), on defects were found
to differ across the C++ and Java samples in our study.

We analyze defect counts as indicators of quality of the
OO system, allowing for more variability in the depen-
dent variable. Our approach also permits us to account
for complexity effects from the interaction between two
CK metrics that may play an additional role in explaining
defects. To our knowledge, there is little prior research on
the effects of interaction between the design metrics on
defects. We validate the same CK metrics using data sets
collected from software developed in two different
languages suitable for object oriented software develop-
ment, namely C++ and Java. Our results also indicate that
the programming language might play a role in the
relationship between OO design metrics and defects. The
effects of such OO design metrics as number of methods
(WMC), coupling between objects (CBO), and inheritance
depth (DIT), on defects were found to differ across the
C++ and Java samples in our study.

Like most other research in this stream, our study has
several limitations. Our analyses cover only a subset of the
CK suite of metrics. This research needs to be further
extended to other CK measures such as LCOM and RFC. In
addition, the focus of our analysis is on defects in a class.
Future research may treat the effect of these complexity
metrics on other measures of performance, such as the
effort and time required to develop a class. Also, note that
the design metrics used in our analysis address only the
static aspects of OO design complexity. Further research can
extend such an analysis to dynamic complexity measures
such as polymorphism [13], [14]. As noted earlier, the
sample of Java classes used in our analysis is skewed, in

15. Special methods include access methods, delegation methods,
constructors, and destructors [18]. For our sample, we performed additional
sensitivity analyses excluding constructor and destructor invocations, and
found that the magnitude of the coefficients were comparable and the
direction (sign) of the coefficients of our models were consistent. This could
be due to the fact that constructor invocations of other classes were
accompanied by method calls in almost all cases and the resulting lack of
change in the CBO count.
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that only a few classes exhibit higher values of DIT. There is
a need to validate our findings in a richer sample of Java
classes. Finally, the data used in our study is from a single
project. Future research may want to consider validation
across projects and explicitly control for other people-
related factors, such as personnel capability and program-
mer experience in OO design, which may influence defects.

APPENDIX
To study the effect of CBO on defects, we take the partial
derivative of expressions (3) and (4) and get,
9(1/1 + defects)
d(CBO)
— (1 +defects)?|Bs + B5(DIT)] . ..

= By + 55(DIT) = DTecls)

d(CBO) (A1)

The interpretation of the coefficient for CBO is possible
when the above partial derivative is computed at the mean
value of defects and DIT.'® By substituting the mean values
of defects and DIT, we obtain the following coefficients for
the two samples:

O(defects)
“ocpo) 1T
for the C++ sample and
O(defects)
2(CBO) = —0.011

for the Java sample.

This implies that for an increase in coupling by one unit,
defects are expected to increase by a factor of 0.173 for the
C++ sample and decrease by a factor of 0.011 for the Java
sample.

Likewise, we compute the effect of DIT on defects as:

9(1/1 + defects)
O(DIT)
— (1 + defects)*[Bs + B5(CBO)] ...

v+ s (Cp0) = Pllefects _

o(DIT) (A2)

By substituting the mean values of defects and CBO,
we get:

O(defects)

“oorry M
for the C++ sample and

O(defects)

“o(pir) 02

for the Java sample.

In other words, if we fix CBO and all other explanatory
variables at the mean of the sample, increasing the depth of
inheritance has a negative influence on defects. These
influences vary with different levels of CBO and are also
likely to change directions at certain levels.'”

16. Note that defects and DIT are always nonnegative.

17. Changes of directions of coefficients indirectly suggest that there are
some optimal levels at which the influences of the metrics could change
from being advantageous to being detrimental.
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