
International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

447

Abstract—With the rise of the OO paradigm has come the

acceptance that conventional software metrics are not adequate
to measure object-oriented systems. This has inspired a number
of software practitioners and academics to develop new metrics
that are suited to the OO paradigm. The MOOD metrics have
been subjected to much empirical evaluation, with claims made
regarding the usefulness of the metrics to assess external
attributes such as quality and maintainability. We evaluate the
MOOD metrics on a theoretical level and show that any
empirical validation is premature due to the majority of the
MOOD metrics being fundamentally flawed. The metrics either
fail to meet the MOOD team's own criteria or are founded on
an imprecise, and in certain cases inaccurate, view of the OO
paradigm. One of the suite of OO design measure was proposed
by Chidamber and Kemerer. The author of this suite of metrics
claim that these measure can aid users in understanding object
oriented design complexity and in predicting external software
qualities such as software defects, testing, and maintenance
effort. Use of the CK set of metrics and other complexity
measures are gradually growing in industry acceptance. This is
reflected in the increasing number of industrial software tools,
such as Rational Rose, that enable automated computation of
these metrics. Even though this metric suite is widely, empirical
validations of these metrics in real world software development
setting are limited. Various flaws and inconsistencies have been
observed in the suite of six class based metrics. We validate
some solutions to some of these anomalies and clarify some
important aspects of OO design, using Six projects in particular
those aspects that may cause difficulties when attempting to
define accurate and meaningful metrics. These suggestions are
not limited to the MOOD and CK metrics but are intended to
have a wider applicability in the field of OO metrics.

Index Terms—CK Metric, MOOD Metric Suit, Cohesion,
Coupling, Object Oriented.

I. INTRODUCTION
A metric is a standard unit of measure, such as meter or

mile for length, or gram or ton for weight, or more generally,
part of a system of parameters, or systems of measurement, or
a set of ways of quantitatively and periodically measuring,
assessing, controlling or selecting a person, process. A
software metric (noun) is the measurement of a particular
characteristic of a program's performance or efficiency. A
rule for quantifying some characteristic or attribute of a
computer software entity. Metrics can be used for software
entities such as requirements documents, design object
models, or database structure models. Metrics for programs
can be used to support decisions about testing and
maintenance and as a basis for comparing different versions
of programs. Ideally, metrics for the development cost of
software and for the quality of the resultant program are

desirable.
For Software measurements, it is numerical ratings to

measure the complexity and reliability of source code, the
length and quality of the development process and the
performance of the application when completed.

II. NEED TO DEVELOP THE METRICS
As today‘s software applications are more complex and

software failure is more critical, potentially resulting in
economic damage or even threatening the health or lives of
human beings, a means of effectively measuring the quality
of software products is needed. Effective management of the
software development process requires effective
measurement of that process.

III. RELATED WORK
Chidamber and Kemerer, in 1994, developed a set of six

metrics to identify certain design and code traits in OO
software.

MOOD Metrics by Abreu et al introduces that these
attributes can express the quality of internal structure, thus
being strongly correlated with quality characteristics like
analyzability, changeability, stability and testability, which
are important to software developers and maintainers.

Rosenberg, et al evaluated the Quality Assurance of
Object Oriented Assurance and Risk Assessment of Object
Oriented Metrics.

Briand, et al gives framework for cohesion and coupling
measurement in Object Oriented System.

Linda, et al concluded that, as the fundamental building
block of metric is object not algorithm, the approach to S/W
metrics for Object Oriented Program.

Aggarwal et al proposed a set of metrics that are related to
various constructs like class, coupling, cohesion, information
hiding, polymorphism, reusability.

IV. ANALYSIS AND RESULTS
The research was done by surveying the literature on

object oriented metrics which are used for measuring design
and code quality of software code. Many object-oriented
metrics have been used specifically for the purpose of
assessing the design of a software system. MOOD and CK set
of metrics cover every aspect Object Oriented Paradigm.

But many of flaws have been observed in MOOD and CK
set of metrics which are illustrated with the help of examples
and live projects applied on them.

Empirical Analysis of CK & MOOD Metric Suit
Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon and Dr. Parvinder S. Sandhu

International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

448

A. Flaws in CK Metrics Definitions
1) Weighted Methods per Class (WMC)

WMC is a count of sum of complexities of all methods in a
class.

∑
=

=
n

i
iCWMC

0

 (4.1)

Where n = No. of methods in one class
Ci = Complexity of every class
WMC break an elementary rule of measurement theory

that a measure should be concerned with a single attribute .
This is also not clear whether the inherited method is to be
counted in base class (which defines it), in derived classes or
in both.
2) Response For a Class (RFC)

It is number of methods in the set of all methods that can be
invoked in response to a message sent to an object of a class.
It includes all methods accessible within the class hierarchy.
It looks at the combination of the complexity of a class
through the number of methods and the amount of
communication with other classes.

}{}{ iRiallMRS = (4.2)
where{ Ri} = set of methods called by method i and
{ M } = set of all methods in the class.
The response set of a class is a set of methods that can

potentially be executed in response to a message received by
an object of that class. But here the point to be noted is that
because of practical considerations, Chidamber and
Kermerer recommended only one level of nesting during the
collection of data for calculating RFC. This gives incomplete
and ambiguous approach as in real programming practice
there exists “Deeply nested call-backs” that are not
considered here.
3) Depth of Inheritance Tree (DIT)

It is defined as the maximum length from the node to the
root of the tree and measured by the number of ancestral
classes. But the definition should measures the maximum
ancestor classes from the class-node to the root of the
inheritance tree.

NOC Metric Number of children (NOC): of a class is the
number of immediate sub-classes subordinated to a class in
the class hierarchy. The definition of NOC metric gives the
distorted view of the system as it counts only the immediate
sub-classes instead of all the descendants of the class as
illustrated by the figure 1.

Where Both A and B classes have NOC value of two, but
there are nine classes that inherits the properties of class A
and a total of seven classes inherit class B’s properties. So the
NOC value of a class should reflect all the subclasses that
share the properties of that class.

∑+
=

i

iNOC
subclassesimmediateofNumberclassNOC

)(
___)((4.3)

Figure 1. Example showing the distorted view of NOC metric

4) Coupling Between Object Classes (CBO)
According to this metric “Coupling Between Object

Classes” (CBO) for a class is a count of the number of other
classes to which it is coupled. Theoretical basis of CBO
relates to the notion that an object is coupled to another object
if one of them acts on the other, i .e. methods of one use
methods or instance variables of another.

As Coupling between Object classes increases, reusability
decreases and it becomes harder to modify and test the
software system. But for most authors coupling is reuse,
which raises ambiguity. So there is the need to find out the
coupling level that implies the goodness of design
5) Lack of Cohesion in Methods (LCOM)

Consider a Class C1 with n methods M1 , M2 ..., Mn . Let
{Ij } = set of instance variables used by method Mi .There are
n such sets {I1},{I2}... {In}. Let P = { (Ii ,Ij) | Ii ∩ Ij = ∅ }
and Q = { (Ii ,Ij) | Ii ∩ Ij ≠ Ø }. If all n sets {I1},{I2}... {In}
are Ø then let P = Ø [4]. Lack of Cohesion in Methods
(LCOM) of a class can be defined as:

OTHERWISELCOM
QPifQPLCOM

0
,

=

〉−=

(4.4)

The high value of LCOM indicates that the methods in the

class are not really related to each other and vice versa.
According to above definition of LCOM the high value of
LCOM implies low similarity and low cohesion, but a value
of LCOM = 0 doesn’t implies the reverse .

Consider the example in figure 11 (a) the value of LCOM
is 8 (as | P | =9 and | Q | = 1). Whereas in figure 2 (b) the value
of LCOM is also 8 (as | P | =18 and | Q | = 10), but figure 2 (a)
example is more cohesive than figure 2 (b) example. So the
above said definition of CK metric for LCOM is not able to
distinguish the more cohesive class from the less ones. This is
simple violation of the basic axiom of measurement theory,
which tells that a measure should be able to distinguish two
dissimilar entities. So this deficiency offends the purpose of
metric.

International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

449

Figure 2. Examples of (a) less cohesive (b) densely cohesive class

B. Flaws in MOOD Metrics Definitions
1) Metric1: Method Inheritance Factor

Definition of the MIF is inconsistent with the 0-1 scale.
Consider the following system with the hierarchical structure:
A->B->C.

Class A {public void x(); public void y();}
Class B extends A { //no methods defined}
Class C extends B {//no methods defined}
B and C both inherit the two methods defined in class A

and define no further methods. This is the maximum possible
method inheritance in this sytem (i.e. all methods that can be
inherited have been inherited, by all classes that are ble to
inherit them). Intuitively, it seems that the MIF value fro this
system should be 100%, but in fact it is 66.6%

6,2)(,2)(,2)(
4,2)(,2)(,0)(
====

====
TotalCMaBMaAMa

TotalCMiBMiAMi

(4.5)

This can be further illustrated. If class C in the above
example had a new method added it should not change the
MIF value fro the system. This is consistent with our
intuitive understanding of the method inheritance. If fact we
find that it does, with Ma(C) 3 MIF becomes 4/7 0.57 (57%).
2) Metric2: Attribute Inheritance factor

The metric Ai (Ci) is meaningless in the sense that the
concept of the inheritance concerns the behavior defined in a
method, an attribute does not have behavior, and thus cannot
be overridden or inherited. It is certainly possible for a class
B to define an attribute named x even if its parent class A
already has an attribute (of the same type) named x but the
attribute B.x does not override A.x. The methods of A that
refer to x will use A.x and the methods of B that refer to x will
use B.x. If B.x is counted as an ‘overriding’ attribute, rather
than a new attribute when calculating Ad(B) then A.x would
not be counted as an inherited attribute when calculating
Ai(B). This would further result in an inaccurate value being
returned for Aa(B).

Inherited Factors Solution: The definitions of the MIF and
AIF need to be amended to remove this inconsistency.
However, even if this can be done the main problem with the
MIF and AIF metrics is that they not really telling us
anything of the interest, especially if it is accepted that all
private methods and attributes are inherited. It may be more
interesting to develop a metric that measures inheritance at a
class level, rather than separate metrics to capture method
and attribute inheritance. After all, it is classes that are
extended; methods and attributes just come as part of the

package.
A class Inheritance factor (CIF) metric could be defined as

the total count of all ancestors for all classes divided by the
maximum possible inheritance for the system. Inheritance is
one-way. If class A extends class B then it is possible for
class B to also extend class A. This means that the maximum
inheritance level for a system with n classes will be
0+1…(n-1). Therefore, a more formal definition for a class
inheritance factor metric would be:

2/)1(*

)(
1

−
=

∑
=

TCTC

CAC
CIF

TC

i
i

(4.6)

Where TC-Total Classes. This value will be 100% when the
classes are all arranged in a linear hierarchy. It will be 0%
when there is no inheritance.
3) Metric3: Method Hiding Factor

It is recommended that MHF should not be lower than a
particular (as yet undefined) value but suggest that there is no
upper limit, thus implying that it is ‘good’ for all methods in a
class to be hidden (private). However, the number of private
methods in a class doesn’t tell us anything about the degree of
information hiding in a class. It may tell us that a particular
method (or methods) has been broken down into a number of
smaller methods to avoid duplication or for clarity of
understanding. Such methods would only need to be visible
to the containing class. But whether or not a method is
broken down this way the containing class’s implementation
is still hidden. In the following example both classes have
equal ‘information hiding’ levels:

In class A all of method m0’s behavior is contained in the
body of m0. In class B the behavior has been separated into
three smaller methods which are called by m0. Both classes
have identical interfaces and their respective
implementations are equally well hidden from client classes.
A count of the number of private methods in a class is not a
particularity useful metric, and certainly does not contribute
anything to our knowledge of a class’s encapsulation level.
4) Metric4: Attribute Hiding Factor

This is a clearly defined metric with no apparent
inconsistencies. Its use is in determining the level of visibility
of a class’s data.
5) Metric5: Polymorphism factor

It is possible, indeed highly likely, that a sub-system will
consist of a set of classes that extends a framework. This may
be a set of library classes or a framework of low(er) level
system classes. When measuring the sub-system it should be
only the Classes that belong to the sub-system that are
measured; classes outside of its boundaries (which is where
the framework or library classes will lie) should not be
considered. In such cases the denominator for the POF
measure may be less than the numerator, resulting in a value
greater than 1. An example will make this clear. Sub-system
“S” produces a value for POF which is outside the range 0-1 a
shown in figure below

International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

450

Figure 3: Example for POF metric

)14/5(4/5)004/()221(
"",

0)0)(*2)((
0)0)(*2)((
4)2)(*2)((

2)(,2)(,1)(

>=++++
=

===
===
===

===

and
SsubsystemforPOFTherefore

PDCRMn
QDCQMn
PDCPMn

RMoQMoPMo

(4.6)

Taking this concept one step further, it is possible for an

entire system to be built using an existing framework. This is
especially likely in languages that are shipped with large
class libraries, such as Java or Smalltalk. In such cases the
whole system could produce POF>1.

The definition of POF can only be applied to complete
hierarchies. Therefore, a formula needs to be proposed which
should be applied to sub-systems. The formula for the same
was proposed by Mayer et al.

The new formula for the POF metric is:

∑

∑

=

=
TC

i
I

TC

i
i

CMOV

CMOV

1

1

)(

)(

(4.7)

The numerator is unchanged. The denominator is the sum

of all Mov(Ci) where Mov(Ci) is the count of all methods that
can potentially be overridden by class Ci.

This will consist of all the methods in the parent class or
classes excluding private methods and class-wide (static)
methods. The new definition remove the anomaly described
above and means that it is now down scalable to sub-systems.
This definition still contains the discontinuity concerning
systems with no inheritance identified by Harrison.
6) Metric6: Coupling Factor

This metric is intended to count all client-supplier
relationships in a system. The important point here is that the
relationship between any two classes in a system is not
constrained to just one or the other of these relationship types.
As an example consider the two classes, Component and
container, from the Java java.awt library package.
Component is the super class of all graphical components and
container is one of its subclasses. Thus the two classes are in
an inheritance relationship: Container is-a Component.

However, each class also contains an attribute of the other
class type, i.e. Component has an attribute of type Container
and Container has an (array) attribute of type Component.
Container’s use of a set of Components has nothing to do
with the fact that Component is its super class, indeed if the
hierarchy was redesigned to alter this fact it would not alter a
container’s need to maintain references to all the components
that reside in it.,

The question that the MOOD team does not adequately
answer is whether a client supplier relationship under these
conditions is counted. There is probably no ‘correct’ way of
dealing with this situation is terms of the COF metric but a
decision needs to be made one way or the other and it needs
to be explicit in the metric’s definition.

C. Results
The metrics chosen for analysis can be divided into 7

categories viz. size, coupling, cohesion, inheritance,
information hiding, polymorphism and reuse metrics. Figure
4 to Figure 11 shows the Bar Chart of Metrics. Table 1 and
Table 2 shows the Comparison of values of Projects before
and after removing Inconsistencies from CK and MOOD set
of metrics.

Figure 4. Bar Chart for WMC values before and after removing

inconsistencies

Figure 5. Bar Chart for DIT values before and after removing inconsistencies

International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

451

Figure 6. Bar Chart for NOC values before and after removing

inconsistencies

Figure 7. Bar Chart for CBO values before and after removing

inconsistencies

Figure 8. Bar Chart for RFC values before and after removing

inconsistencies

Figure 9. Bar Chart for LCOM values before and after removing

inconsistencies

Figure 10. Bar Chart for CF values before and after removing

inconsistencies

Figure 11. Bar Chart for PF values before and after removing inconsistencies

V. DISCUSSION
Following are the observations made from applying the

metrics on projects
1) RFC measures the complexity of the software by

counting the no. of methods in the class and also capture
the information about the coupling of the class to other
classes

2) CBO value is generally less in sample data ,hence classes
are easy to understand ,reuse and maintain

3) LCOM values are zero because the no. of pairs of
methods having access to common attributes is more
than the no. of pairs of method having no attributes. It
implies that classes are cohesive

4) The DIT and NOC values are medium in all projects.
This shows that inheritance is used in all the classes in
the optimum level

5) The MIF value is null for the project 1 &4.it is observed
that there are very less methods in a super class. They
contain only abstract methods which are overridden in
subclass.

6) MIF and AIF measures can provide overall system view
about amount of information hiding incorporated by
software designers

7) MHF has nil values indicating that methods are declared
public by developers

8) PF value is null for all projects. This shows that more

International Journal of Innovation, Management and Technology, Vol. 1, No. 5, December 2010
ISSN: 2010-0248

452

overloading is used in project1 as compared to other
projects.

REFERENCES
[1] F.B. Abreu and R. Carapuca, ”Candidate Metrics for Object- Oriented

Software within a Taxonomy Framework,”]. System and Software, vol.
26, no. l, pp. 87-96, Jan. 1994.

[2] L. Briand, S. Morasca, and V. Basili, De$ning and Vdidating High-
Level Design Metrics, Techtucal Report CS-TR-3301, Univ. of
Maryland, Dept. of Computer Science, College Park, Md., 1994.

[3] L. Briand, S. Morasca, and V. Basili, ”Property Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22, no. 1,
p. 68-86, Jan. 1996.

[4] I.Brooks, “Object-Oriented Metrics Collection and Evaluation with a
Software Process,” Proc. OOPSLA ’93 Workshop Processes and
Metrics for Object-Oriented Software Development, Washington, D.C.,
1993.

[5] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.
476493, June 1994.

[6] S.R. Chidamber and C.F. Kemerer, ”Authors Reply,” lEEE Trans.
Software Eng., vol. 21, no. 3, p. 265, Mar. 1995.

[7] L.Briand , W.Daly and J. Wust, Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software
Engineering, 3 65-117, 1998.

[8] L.Briand , W.Daly and J. Wust, A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on
software Engineering, 25, 91 121,1999.

[9] L.Briand , W.Daly and J. Wust, Exploring the relationships between
design measures and software quality. Journal of Systems and Software,
5 245-273, 2000.

[10] S.R.Chidamber and C.F.Kamerer, A metrics Suite for Object-Oriented
Design. IEEE Trans. Software Engineering, vol. SE-20, no.6, 476-493,
1994.

[11] N.Fenton et al, Software Metrics: A Rigorous and practical approach.
International Thomson Computer Press, 1996.

[12] R.Harrison, S.J.Counsell, and R.V.Nithi, An Evaluation of MOOD set
of ObjectOriented Software Metrics. IEEE Trans. Software
Engineering, vol.SE-24, no.6, pp. 491-496 June1998.

[13] B.Henderson-sellers, Object-Oriented Metrics, Measures of
Complexity.Prentice Hall, 1996.

[14] Lorenz, Mark & Kidd Jeff, Object-Oriented Software Metrics, Prentice
Hall, 1994.

[15] McCabe and Associates, Using McCabe QA 7.0, 1999, 9861 Broken
Land Parkway 4th Floor Columbia, MD 21046.

[16] McCabe, T. J., “A Complexity Measure”, IEEE Transactions on
Software Engineering, SE-2(4), pages 308-320, December 1976.

[17] Moreau, D. R., “A Programming Environment Evaluation
Methodology for Object-Oriented Systems”, Ph.D. Dissertation,
University of Southwestern Louisiana, 1987.

[18] Moreau, D. R., and Dominick, W. D., “Object-Oriented Graphical
Information Systems: Research Plan and Evaluation”, Journal of
Systems and Software, vol. 10, pp. 23-28, 1989.

[19] Moreau, D. R., and Dominick, W. D., “A Programming Environment
Evaluation Methodology for Object-Oriented Systems: Part I – The
Methodology”, Journal of Object-Oriented Programming, vol. 3, pp.
38-52, 1990.

[20] Rosenberg, L., “Metrics for Object-Oriented Environment”,
EFAITP/AIE Third Annual Software Metrics Conference, 1997.

TABLE I. BEFORE REMOVING INCONSISTENCIES

Source
code 1

Source
code 2

Source
code 3

Source
code 4

Source
code 5

Source
code 6 Mean Median Std dev.

WMC 20 31 35 10 17 28 23.5 24 9.43928
RFC 79 12 16 8 15 18 24.66667 15.5 26.84524
CBO 2 5 1 4 8 9 4.833333 4.5 3.188521
LCOM 2 1 1 4 6 7 3.5 3 2.588436
DIT 2 2 4 3 7 6 4 3.5 2.097618
NOC 2 3 2 4 6 5 3.666667 3.5 1.632993
CF 78 25 29 2 5 3 23.66667 15 29.07691
MIF 0.491 1.5 2.5 0 0.4 0.13 0.836833 0.4455 0.97121
AIF 0.676 1 1.5 0.3 0.5 0.4 0.729333 0.588 0.450647
MHF 0.305 0.897 0.834 0 0 0 0.339333 0.1525 0.424808
AHF 0.375 0.667 0.444 0.16 0.94 0.86 0.574333 0.5555 0.300765
PF 0 0.8 1 0 0.8 0.4 0.5 0.6 0.43359

TABLE II. AFTER REMOVING INCONSISTENCIES

Metric
Source
code 1

Source
code 2

Source
code 3

Source
code 4

Source
code 5

Source
code 6 Mean Median Std dev.

WMC 20 39 40 14 20 30 27.16667 19.33333 10.85204
RFC 85 14 19 15 17 20 28.33333 0.641167 27.85438
CBO 4 6 4 8 13 11 7.666667 0.519323 3.723797
LCOM 0.42 0.1979 0.5777 0.123 0.578 0.889 0.464267 0.245917 0.281274
DIT 4 6 11 3 7 8 6.5 0.564917 2.880972
NOC 6 7 11 4 6 5 6.5 0.466795 2.428992
CF 0.0166 0.333 0.0394 0 0 0 0.064 0.132285 0.132285
MIF MIF and AIF is replaced with CIF AIF
MHF These are clearly defined metrics with no apparent inconsistency AHF
PF 0 0.4 1 0 0.4 0.2 0.333 0.37238 0.37238

