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Abstract In recent years, there has been a growing inter-

est in studying evolutionary algorithms (EAs) for dynamic

optimization problems (DOPs). Among approaches devel-

oped for EAs to deal with DOPs, immigrants schemes have

been proven to be beneficial. Immigrants schemes for EAs

on DOPs aim at maintaining the diversity of the popula-

tion throughout the run via introducing new individuals into

the current population. In this paper, we carefully exam-

ine the mechanism of generating immigrants, which is the

most important issue among immigrants schemes for EAs

in dynamic environments. We divide existing immigrants

schemes into two types, namely the direct immigrants scheme

and the indirect immigrants scheme, according to the way

in which immigrants are generated. Then experiments are

conducted to understand the difference in the behaviors of

different types of immigrants schemes and to compare their

performance in dynamic environments. Furthermore, a new

immigrants scheme is proposed to combine the merits of

two types of immigrants schemes. The experimental results

show that the interactions between the two types of schemes
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reveal positive effect in improving the performance of EAs

in dynamic environments.
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1 Introduction

It is well-known that evolutionary algorithms (EAs) are pow-

erful techniques for solving various kinds of optimization

problems in real-world applications [1,2]. Traditionally,

researchers have been concentrating their attentions on EAs

applied to stationary optimization problems, where prob-

lems are given in advance and maintain fixed during the

evolutionary process. However, in many real-world applica-

tions, we have to deal with dynamic optimization problems

(DOPs) [3]. In DOPs, the environment, including the objec-

tive function, the decision variables, the problem instance,

constraints and so on, may vary over time. When the changes

take place, it may take some time for the EA to adapt to

the new environment. Due to this characteristic of DOPs,

the EAs designed specifically for the stationary optimization

problems, in which the environment will not change at all,

may no longer be efficient.

Recently, developing EAs for DOPs has attracted a grow-

ing interest due to its importance in real-world applications

[3,4]. The simplest strategy to cope with a change of the

environment is to regard every change as the arrival of a

new optimization problem that has to be solved from scratch

[5]. However, this strategy is undesirable because it gener-

ally requires substantial computational efforts. Thus, more

complicated strategies are required to reduce the compu-

tational efforts and maintain a high quality of the output

solutions at the same time. Over the years, several specific
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strategies have been proposed for EAs on DOPs, includ-

ing diversity reinforcing or maintaining schemes [6–11],

memory schemes [12–19], multi-population schemes [20–

22], and their hybridizations [23,24]. Some comprehensive

surveys can be found in the books by Branke [25], Morrison

[26], and Weicker [27]. There is also a frequently updated

online repository [28].

As we have seen, many approaches for EAs on DOPs

concentrate on maintaining or reinforcing the diversity of

EAs, among which, immigrants schemes are the simplest

approaches to implement and have been validated to be effi-

cient [8,24,29,21,30–32]. Immigrants schemes attempt to

maintain the diversity of the population via introducing new

individuals into the current population. In this paper, com-

pared with works in literature, the mechanism of generating

immigrants, which is the most important issue of the immi-

grants schemes, is examined intensively. According to the

way in which immigrants are created, we categorize the exist-

ing immigrants schemes into two types, i.e., the direct immi-

grants scheme and the indirect immigrants scheme. Then,

an experimental study is carried out on several immigrants

schemes to analyze the behaviors of the two types of immi-

grants schemes. Based on the analysis, a new immigrant

scheme is proposed, which tries to combine the merit of

the direct immigrants scheme and the merit of the indirect

immigrants scheme. Experimental results validate the bene-

fit of the proposed immigrants scheme for EAs in dynamic

environments.

The rest of this paper is outlined as follows. Section 2

examines design decisions related to immigrants schemes.

Section 3 describes measures of performance to understand

the behavior of EAs in dynamic environments. Section 4

details some EAs investigated in this paper including the

EA with the newly proposed immigrants scheme. Section 5

briefly reviews existing DOP generators and then presents

the dynamic test environments constructed for the experi-

mental study in this paper. Section 6 presents the experimen-

tal results and analysis. Finally, Sect. 7 concludes this paper

with discussions on relevant future work.

2 Immigrants schemes for EAs in dynamic

environments

When addressing DOPs, traditional EAs cannot adapt well to

the new environment when changes occur once converged.

The application of immigrants schemes has proved to be able

to enhance the performance of EAs in dynamic environments

[8,24,29,21,30–32]. The basic principle of immigrants

schemes is to introduce new individuals into the evolving

population to replace a predefined portion of the population,

and thus, the diversity of the population can be maintained

throughout the run. Immigrants schemes mainly involve four

concerns: how to generate immigrants, how to set the num-

ber of immigrants, how to design replacement strategy, and

how to boost the survival probability of the newly introduced

immigrants [32].

For the first concern, in order to increase the diversity

of the population, the most prominent approach to gener-

ate immigrants seems to create immigrants randomly.

Grefenstette [8] used randomly generated individuals to

replace the worst individuals of the population in each gener-

ation. The random immigrants scheme works on the analogy

of the flux of immigrants that wander in and out of a pop-

ulation between two generations in nature [29]. His study

shows that the random immigrants scheme works well in

environments where there are occasional, large changes in

the location of the optimum.

As has been argued by Branke [13], continuous adaption

only makes sense when problems to be studied feature “small

to medium” environmental changes, otherwise to restart the

search from scratch would be the proper choice. Under this

presupposition, random immigrants scheme may not be suit-

able, since random immigrants may actually be of little use

when individuals in the previous environment may still be

quite fit in the new environments. To handle these problems,

the information of the population can be used to help to gen-

erate immigrants. It is hoped that the information guided

immigrants would be more adapted to different kinds of envi-

ronmental changes.

The approaches of utilizing the information of the popula-

tion can be categorized into two types, i.e., direct approaches

and indirect approaches, which produce the direct immi-

grants scheme and the indirect immigrants scheme, respec-

tively. The direct immigrants scheme generates immigrants

based on the current population. Examples are elitism-based

immigrants scheme [30] in which immigrants come from

mutating the elite from previous generation, and a hybrid

immigrants scheme combing the elitism-based, the tradi-

tional random, and the dualism-based immigrants schemes

for GAs to deal with DOPs [31]. The former scheme aims

to improve the performance on GAs in slowly and slightly

changing environments while the latter scheme makes GAs

adapted to more severely changing environments. On the

other hand, the indirect immigrants scheme first builds a

model based on the current population, then generates immi-

grants according to the model. For example, in [24], a mem-

ory was used as the model to generate immigrants. Besides,

in [32], a vector with the allele distribution of the population

was first calculated and then was used to generate immigrants

for GAs to address DOPs with some preliminary results.

As to the number of immigrants, in order to prevent immi-

grants from disrupting the ongoing search progress too much,

the ratio of the number of the immigrants to the population

size, i.e., the replacement rate, is usually set to a small value,

e.g., 0.2 [30,32] or 0.3 [31]. However, the most appropriate
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replacement rate may vary at different stages of evolutionary

process. For example, the replacement rate should be small

when there is no change, while a large replacement rate would

be more preferable when a change occurs, so that the popu-

lation will have higher probability to move to new promising

area. Hence, adapting the replacement rate during the evolu-

tionary process might be a better choice that deserves some

further investigation.

For the third concern, there are two questions: which

individuals should be replaced by the newly introduced

immigrants and when should the replacement take place.

Regarding the first question, two commonly used methods

are to replace random individuals and the worst individuals

of the population, respectively. The former approach aims at

increasing the diversity of the population whereas the search

progress might be disturbed. For example, in the stationary

environment (i.e., between two consecutive changes), fitter

individuals should be kept in order to pass down their useful

genes to the next generation. However, to replace random

individuals in the population with immigrants may drive

away these fitter individuals, and thus disturbs the current

search progress. The latter approach tries to minimize the

interruption of the search progress and meanwhile increase

the diversity of the population via immigrants. Furthermore,

in [33], the individuals are numbered and the worst individual

and its next neighbors are replaced by immigrants, leading

the proposed GA to present a kind of self-organized behavior

called self-organized criticality (SOC), which helps to main-

tain the diversity of the population in dynamic environments.

With regard to when to employ replacement, immigrants are

usually created at each generation and replacement takes

place after that [8,30–32]. In this way, the diversity of the

population can be maintained throughout the whole search

progress.

The survival probability of the immigrants after being

introduced into the current population is another important

issue, yet easily tends to be neglected. For example, when

the population locates in the area near the local optimum, the

best fitness found by the population might be much higher

than the mean fitness of all possible solutions of the search

space. Therefore, the probability that new immigrants have

higher fitness than individuals in the current population is

generally small. However, these immigrants may take poten-

tially useful ingredients with them though they might have

lower fitness, and thus, they should be protected from being

eliminated via selection. Taking binary deceptive function

for example, some low-fitness immigrants may take sche-

mata which help to form global optimum, so these immi-

grants should be reserved. In [33], the immigrants are put in

a subpopulation and the replacement is avoided for individ-

uals between subpopulation and the main population. In this

way, new immigrants are protected from being replaced by

fitter individuals.

3 Measures for understanding the behavior of EAs in

dynamic environments

In order to analyze and compare the performance of EAs

in dynamic fitness landscapes, appropriate measures must be

decided first, such as “collective mean fitness” [34], “optimi-

zation accuracy, stability and reactivity” [35], and “accuracy

and adaptability” [36]. More details about the overview of

existing measures for EAs in dynamic environments can be

found in [34,35].

Generally speaking, researchers view the behavior of EAs

from two different perspectives [37]. Some pay more atten-

tion on extreme behaviors of the system, in particular, the best

that system can do. These measures are preferred by applica-

tion practitioners who wonder the best results their systems

can obtain. Others are concerned for measures which can

characterize the population as a whole, e.g., average, stan-

dard deviations, and distributions. These measures are often

adopted when EAs are understood as representations of evo-

lutionary systems. In this case, EAs are used to model these

systems and hence the behavior of the best individual is not

so important. On the basis of these considerations, measures

in this paper except diversity, i.e., performance and robust-

ness, are all examined in the way of both a best measure

and an average measure. These measures are all based upon

discussions in [37] and are formulated as follows.

First, performance is the standard measure of how well

the system can do. Simply and intuitively, fitness function is

used as a measure of performance in this paper. The overall

Best Performance and the overall Average Performance of

an algorithm on a DOP are defined as

FBOG =
1

G

G
∑

i=1

⎛

⎝

1

N

N
∑

j=1

FBOGi j

⎞

⎠ (1)

and

FAvg =
1

G

G
∑

i=1

⎛

⎝

1

N

N
∑

j=1

FAvgi j

⎞

⎠ (2)

respectively, where G is the total number of generations for

a run, N is the total number of runs, and FBOGi j
and FAvgi j

are the best-of-generation fitness and the average fitness of

the population of generation i of run j , respectively.

Second, robustness is to some extent complicated, since it

has many different notions and hence its definition depends

on a particular problem. Jen [38] stated that “robustness is

an approach to feature persistence in systems that compels

us to focus on perturbations, and assemblages of perturba-

tions, to the system different from those considered in the

design of the system, or from those encountered in its prior

history”. Hence it is necessary to specify both the feature and

the perturbation of interest before discussing robustness. In

123



6 Memetic Comp. (2009) 1:3–24

the field of dynamic optimization, an important feature is the

performance of the system, which is defined as the fitness in

this paper. Moreover, the perturbations in dynamic optimiza-

tion include system influence and control influence [39], of

which the former is considered in this paper. System influ-

ence is the response of the dynamic system to the changes

over time of itself, and the control influence is the response

of the dynamic system at current time to the decisions made

by the solver in the past. Based on these considerations, the

Best Robustness of generation i and the Average Robustness

of generation i are defined as

RBesti =
1

N

N
∑

j=1

RBesti j
(3)

and

RAvgi
=

1

N

N
∑

j=1

RAvgi j
(4)

respectively, where RBesti j
and RAvgi j

are the Best Robustness

and Average Robustness of generation i of run j , respectively,

which are defined as

RBesti j
=

⎧

⎪

⎨

⎪

⎩

1, if
FBOGi j

FBOGi−1 j
> 1

FBOGi j

FBOGi−1 j
, otherwise

(5)

and

RAvgi j
=

⎧

⎪

⎨

⎪

⎩

1, if
FAvgi j

FAvgi−1 j
> 1

FAvgi j

FAvgi−1 j
, otherwise

, (6)

respectively. From the equations defining robustness above,

we can see that higher robustness level indicates more per-

sistent fitness level.

Finally, diversity is a measure of how different of individ-

uals of the population are. It indicates how much of the search

space the EA is now exploring. In this paper, the diversity of

generation i is defined as

Divi =
1

N

N
∑

j=1

Divi j (7)

where Divi j is the diversity of generation i of run j , and for

binary encoding, Divi j can be calculated as

Divi j =
1

ln(n − 1)

n
∑

p=1

n
∑

q �=p

HD(p, q) (8)

where l is the encoding length, n is the population size, and

HD(p, q) is the Hamming distance between the pth and qth

individuals in the population.

Table 1 Pseudo-code for SGA

4 Description of algorithms investigated

All algorithms to be investigated derive from the standard

genetic algorithm (SGA). SGA progresses via selecting and

recombining a population of candidate solutions. The popu-

lation is initialized randomly. In each generation, parents are

selected based on their fitness, and based on these parents,

offsprings are created via crossover and mutation. This pro-

cedure is iteratively repeated until a certain stop criterion is

satisfied, e.g., the max predefined number of generations tmax

is reached. Table 1 shows the pseudo-code for SGA, where

pc and pm are the probability of crossover and mutation,

respectively.

4.1 Genetic algorithms with direct immigrants scheme

As discussed in Sect. 2, the direct immigrants scheme gen-

erates immigrants based on the current population. The sim-

plest way is to use individuals in the current population as

the base to generate immigrants. In this paper, the GA with

elitism-based immigrants (denoted EIGA) in [30] and the

GA with individual information-based hybrid immigrants

(denoted IIHIGA) in [31] are re-investigated. EIGA aims

at improving the performance of GAs in slightly or slowly

changing environments while IIHIGA tries to make GAs

more adapted in more severely changing environments. The

pseudo-code of them is shown in Table 2.

Within EIGA, for each generation t , after normal genetic

operations, the elite E(t − 1) from previous generation is

used as the base to create immigrants. By mutating E(t − 1)

bitwise with a probability pm
ei , a set of rei × n individuals

are iteratively generated, where n is the population size and

rei is the replacement rate. Then the worst individuals in the

current population are replaced with these newly introduced

immigrants. On the other hand, within IIHIGA, for each gen-

eration t , apart from elitism-based immigrants generated in

the same way as in EIGA, rri × n random immigrants and

rdi ×n dualism-based immigrants are also generated, where n

is the population size and rri and rdi are the ratios of the num-

ber of random immigrants and dualism-based immigrants to

the population size respectively. Dualism-based immigrants
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Table 2 Pseudo-code for GAs with elitism-based immigrants (EIGA)

and hybrid individual information-based immigrants (IIHIGA)

are generated from mutating the dual of the elite E(t − 1)

bitwise with a probability pm
di . The dual of an individual is

the one that is symmetric to it with respect to the central point

of the search space. Specifically, given a binary-encoded

individual x = (x1, . . . , xl) ∈ I = {0, 1}l of length l, its

dual x
d is defined as

x
d = dual(x) = (xd

1 , . . . , xd
l ) ∈ I, (9)

where xd
i = 1 − xi (i = 1, . . . , l). Then these three types

of immigrants are used to replace the worst individuals in

the current population. In IIHIGA, the replacement rate ri =

rei + rri + rdi , and the ratios of the number of three kinds

of immigrants to the population size are adaptively adjusted

based on their relative performance within the range of

[rmin, ri − 2rmin], where rmin is the minimum ratio of the

number of one type of immigrants to the population size. If

the three immigrants schemes tie, no changes of ratios occur,

otherwise, for the worst two immigrants schemes, rxi (i.e.,

rri , rei , or rdi ) will be reduced by rxi − max{rmin, rxi − α},

where α is a constant value, and the ratio for the winner immi-

grants scheme will be increased to make the replacement rate

ri fixed.

4.2 Genetic algorithms with indirect immigrants scheme

As examples of the indirect immigrants scheme, the GA with

environmental information-based immigrants (EIIGA) and

the GA with environmental information-based hybrid immi-

grants (EIHIGA) in [32] are investigated in this paper. The

Table 3 Pseudo-code for GAs with environmental information-based

immigrants (EIIGA) and hybrid environmental information-based

immigrants (EIHIGA)

goal of EIIGA is to enhance the performance of GAs in slowly

or slightly changing environments while EIHIGA attempts to

improve the performance of GAs in more severely changing

environments. The pseudo-code of them is shown in Table 3.

Within EIIGA, the allele distribution in the population

is calculated at first and then acts as the base to generate

immigrants. For generation t , after normal genetic opera-

tions, the allele distribution vector DP (t) is extracted from

current population and for binary encoding, the frequency of

ones over the population in a gene locus can be regarded as the

allele distribution for that locus. Then a set of reii ×n individ-

uals are generated by sampling DP (t), where n is the popu-

lation size and reii is the replacement rate. A new individual

S = {s1, . . . , sl} is created from DP (t) = {d P
1 , . . . , d P

l }

(l is the encoding length) as follows:

si =

{

1, if rand[0.0, 1.0] < d P
i

0, otherwise.
(10)

The generated individuals then act as immigrants and replace

the worst individuals in the current population.

Within EIHIGA, in addition to reii ×n immigrants created

via sampling the allele distribution vector DP (t) of the popu-

lation, rceii ×n immigrants are also created via sampling the

complementary allele distribution vector D
c
P (t) of DP (t) in

the same way as shown in equation (10), where rceii is the

ratio of the number of complementary environmental infor-

mation-based immigrants to the population size and D
c
P (t) =

1 − DP (t). These two sets of immigrants will then replace
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the worst individuals in the current population. In EIHIGA,

the replacement rate ri = reii + rceii , and reii and rceii are

adaptively adjusted based on the performance of correspond-

ing immigrants schemes within the range [rmin, ri − rmin],

where rmin is the minimum ratio of the number of immigrants

of one type to the population size. If one immigrants scheme

performs worse than the other, its relative ratio rxi (i.e., reii or

rceii ) will be reduced by rxi −max{rmin, rxi −α}, where α is

a constant value, meanwhile the winner immigrants scheme

will increase its ratio accordingly to ensure that ri is fixed. If

the two immigrants schemes tie, no changes to ratios occur.

As another example of the indirect immigrants scheme, mem-

ory-based immigrants scheme for GAs [24] mainly aims at

addressing DOPs in cyclic environments and is not in the

scope of study of this paper.

4.3 Genetic algorithms with both direct and indirect

immigrants schemes

In the field of automation, robotics, mechanics, and manu-

facturing, many researchers have been engaging in studying

the tradeoff of performance and robustness over the years

[40–44]. Under definitions in this paper, we believe the

performance and the robustness are still to some extent

conflicting with each other. Specifically, algorithms reveal

better performance on DOPs lose more robustness. Intuitively

speaking, EAs with direct immigrants schemes might beat

those with indirect immigrants schemes with respect to the

performance while be beaten by them with respect to the

robustness.

On the other hand, direct immigrants schemes investi-

gated in this paper can be regarded as using the individual

information to generate immigrants, and indirect immigrants

schemes investigated in this paper can be viewed as utilizing

the environmental information (i.e., the allele distribution is

treated as the representation of the environment) to create

immigrants. Since the evolution of a population can be rec-

ognized as the process of the interaction between the environ-

ment and individuals, we propose a new immigrants scheme

for EAs in dynamic environments, which hybrids immigrants

generated based on two kinds of immigrants schemes.

Taking the interaction between individuals and the envi-

ronment into account, we expect our new approach will show

much better performance, or will at least strike a balance

between the performance and the robustness. The proposed

immigrants scheme just simply hybridizes the elitism-based,

the dualism-based, the environmental information-based and

the complementary environmental information-based immi-

grants in each generation. This GA with hybrid immigrants is

denoted as HIGA in this paper and its pseudo-code is shown

in Table 4.

Within HIGA, for each generation t , after normal genetic

operations, rei ×n elitism-based immigrants, rdi ×n dualism-

Table 4 Pseudo-code for GA with hybrid immigrants (HIGA)

Table 5 Summary of immigrants schemes investigated

Classification Denotement and corresponding full name

Direct EIGA [30] (elitism-based immigrants)

IIHIGA [31] (individual information-based

hybrid immigrants)

Indirect EIIGA [32] (environmental information-based

immigrants)

EIHIGA [32] (environmental information-based

hybrid immigrants)

Hybrid HIGA (hybrid immigrants scheme)

based immigrants, reii ×n environmental information-based

immigrants, and rceii ×n complementary information-based

immigrants are generated, where n is the population size and

the replacement rate ri = rei + rdi + reii + rceii . Then the

worst individuals of the population are replaced with these

immigrants. Similar to other immigrants schemes investi-

gated in this paper, the ratios of the number of four kinds

of immigrants to the population size are adaptively adjusted

based on their relative performance within the range of [rmin,

ri −3rmin], where rmin is the minimum ratio of the number of

one type of immigrants to the population size. If four immi-

grants schemes tie, no changes of ratios occur, otherwise, for

the worst three immigrants schemes, rxi (i.e., rei , rdi , reii or

rceii ) will be reduced by rxi − max{rmin, rxi − α}, where α

is a constant value, and the ratio for the winner immigrants

scheme will be increased to make the replacement rate ri

fixed. All in all, algorithms investigated in this paper are

summarized in Table 5.
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5 Dynamic test environments

5.1 Dynamic environments generator

Over the ages, in addition to developing approaches into EAs

to deal with DOPs, many researchers have been applying

their energies to conceiving dynamic test environments to

study the performance of the developed approaches. Gener-

ally speaking, there are three types of generators for dynamic

test environments.

For the first type of dynamic environment generators, the

environment just switches between two or more states of

a problem. For example, many researchers have frequently

used dynamic knapsack problem as the test environment,

where the weight capacity of the knapsack oscillates between

two or more fixed values [10,15,16]. For this type of genera-

tors, environmental dynamics are characterized by the speed

of change measured in EA generations.

The second type of generators construct dynamic envi-

ronments based on a predefined fitness landscape. The base

landscape is usually defined in n-dimensional real space and

is made up of a number of component landscapes, each of

which can change its own morphology independently with

such parameters as peak height, peak slope, and peak loca-

tion. The optimum solution of the landscape is the center of

the peak with the highest height [13,45,46]. For this type of

generators, environmental dynamics are characterized by the

step size of parameter change and the speed of changes in

EA time.

The third type of generator was proposed in [17] and [47],

which can construct dynamic environments from any binary-

encoded stationary function f (x) (x ∈ {0, 1}l) by a bit-

wise exclusive-or (XOR) operator. Suppose the environment

changes periodically every τ generations, the dynamics can

be formulated as follows:

f (x, t) = f (x ⊕ M(k)), (11)

where ⊕ is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 =

1, 0 ⊕ 0 = 0), k = ⌈t/τ⌉ is the index of the period, t is

the current count of generations, and M(k) is the XORing

mask for period k. An XORing mask M(k) can be generated

incrementally as follows:

M(k) = M(k − 1) ⊕ T (k), (12)

where T (k) is an intermediate binary template randomly cre-

ated for period k containing ρ×l ones. At first environmental

period, i.e., k = 1, M(1) is initialized to be a zero vector indi-

cating there is no change in the environment.

With this XOR DOP generator, the speed of the environ-

mental changes is controlled by the parameter τ while the

severity of the environmental changes is controlled by the

parameter ρ ∈ [0.0, 1.0]. Bigger ρ indicates severer changes

while smaller τ means faster changes. It can be seen that the

XOR DOP generator does not change the search space. It

just rotates the candidate solutions by some degree before

each function evaluation. For example, if l = 100, τ = 10

and ρ = 0.5, then after every 10 generations, values of 50

randomly chosen bits of each individual will be flipped (i.e.,

1 → 0 and 0 → 1).

5.2 Generating dynamic test environments for experiments

5.2.1 The OneMax function

The OneMax function is a function for a binary string x of

length L . The goal is to maximize the number of ones in

a string. In this paper, we assume L = 100 and thus, the

function is defined as follows:

maximize f (x) =

100
∑

i=1

xi , (13)

where f (x) is the fitness of a binary string x = (x1, . . . , x100)

∈ I = {0, 1}100.

5.2.2 The Royal Road function

The Royal Road function is a binary problem with only one

optimum and many large plateaus. The function used in this

paper is similar to the Royal Road function introduced in

[48]. It is defined on a 100-bit binary string that consists of

25 contiguous building blocks, each of which is 4-bit long

and contributes ci = 4 (i = 1, . . . , 25) to the total fitness if

and only if every bit is one. Therefore, the fitness of a string x

is the sum of the coefficients ci corresponding to each given

schema si , of which x ∈ si , i.e.:

maximize f (x) =

25
∑

i=1

ciδi (x), (14)

where

δi (x) =

{

1, if x ∈ si

0, otherwise.
(15)

5.2.3 The deceptive function

Deceptive functions are a family of GA-hard functions where

there exists low-order schemata that instead of combining

to form high-order schemata, form schemata resulting in a

solution called deceptive attractor [49], which is sub-optimal

itself or near a sub-optimal solution. A 4-bit fully deceptive

function can be defined as follows:

f (x) =

{

4, if u(x) = 4

3 − u(x), otherwise.
(16)
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where u(x) is the unitation function, which returns the num-

ber of ones in the string x. In this paper, a deceptive func-

tion is constructed consisting of 25 copies of the above 4-bit

fully deceptive function. The fitness is the sum of contrib-

ute of each sub-problem. The maximum fitness is 100 for

the Deceptive function as well as for the OneMax and Royal

Road function in this paper.

5.2.4 Constructing dynamic test environments

Since the three stationary problems above are all binary func-

tions, the XOR DOP generator is used in this paper. Gener-

ally speaking, the difficulty of the three stationary problems

above for EAs is increasing in the order from OneMax to

Royal Road to Deceptive. The fitness landscape of each sta-

tionary problem periodically changes every τ generations

during the run. To study every algorithm’s capability of adapt-

ing to dynamic environment at different searching stages,

τ is set to 10 and 50 respectively. To test each algorithm’s

performance under different degree of changes, ρ is set to

0.1, 0.2, 0.5, and 1.0 respectively for each run of an algo-

rithm on a problem, representing different degree of changes

from slight (ρ = 0.1) to medium (ρ = 0.2, 0.5) to significant

(ρ = 1.0). In total, we systematically generate a series of 8

DOPs, 2 values of τ with 4 values of ρ, from each stationary

test problem.

6 Experimental study on algorithms investigated

Since the behaviors of EIGA, EIIGA, IIHIGA and EIHI-

GA in dynamic environments have already been solely and

thoroughly studied [30–32], we mainly focus on comparing

the behaviors between two types of immigrants schemes and

studying the effect of the interaction between them.

6.1 Experimental design

In the experiments, all algorithms were investigated on DOPs

constructed above. The parameters’ settings for all algo-

rithms are shown in Table 6. Note that population size n =

100 and replacement rate ri = 0.3 hold for all algorithms

such that each algorithm has 130 evaluations per generation.

For each algorithm on a DOP, 30 independent runs were

executed with the same set of random seeds. For each run

of an algorithm on a DOP, 50 environmental changes were

allowed and in order to calculate experimental results accord-

ing to measures of performance aforementioned, the best-

of-generation fitness, the average fitness of the population,

and the diversity of the population were recorded every

generation.

6.2 Experimental analysis regarding comparisons between

two types of immigrants schemes

The experimental results with respect to overall performance

are presented in Table 7. The best results among algorithms in

each environment are shown in bold. The statistical results of

comparing algorithms with respect to performance via non-

parametric Wilcoxon rank sum tests at a 0.05 level of signif-

icance are given in Table 8. In Table 8, the result regarding

algorithm 1 - algorithm 2 is marked as “s+” or “s−” when

algorithm 1 is significantly better than or significantly worse

than algorithm 2, respectively, and “∼” indicates there is

no statistical difference between two algorithms. To better

understand the behaviors of algorithms, the dynamic Best

Performance regarding the best-of-generation fitness against

generations and Average Performance regarding the average

fitness of the population against generations of algorithms on

DOPs for the first 10 environments with τ = 50, ρ = 0.1 and

ρ = 1 are plotted in Figs. 2 and 3, respectively, where the

data were averaged over 30 runs. The dynamic population

diversity of algorithms against generations on DOPs for the

first 10 environments with τ = 50 and ρ = 0.5 is plotted

in Fig. 1, where the data were averaged over 30 runs. From

Tables 7 and 8 and Figs. 1, 2, and 3, we can get some obser-

vations by comparing the performance between two types of

immigrants schemes.

First, regarding the Average Performance, IIHIGA outper-

forms EIHIGA and EIGA outperforms EIIGA on almost all

DOPs. On the other hand, regarding the Best Performance,

IIHIGA outperforms EIHIGA and EIGA outperforms EII-

GA on all dynamic Deceptive problems and most dynamic

OneMax problems, see statistical-test results regarding

EIGA-EIIGA and IIHIGA-EIHIGA in Table 8. This is

because immigrants generated via direct immigrants schemes

are more concentrated in the new promising searching space

than those generated via indirect immigrants schemes. In

some cases, direct immigrants schemes can even generate the

optimal individual for a new environment. Therefore, direct

immigrants schemes can quickly focus the searching force of

EAs on the new optimal area and move the population there.

This can be obtained from Figs. 2 and 3 that after a change of

the environment, algorithms with direct immigrants schemes

recover more quickly and can reach a higher fitness level than

algorithms with indirect immigrants schemes. This result can

be also observed from the dynamic population diversity in

Fig. 1 that after a change of the environment, the diversity of

the population using indirect immigrants schemes is increas-

ing for a moment at first, implying the new promising area

is been searching, and then decreases, indicating some fitter

individuals have already been found. On the other hand, after

a change of the environment, the diversity of the population

using direct immigrants schemes promptly arrives at a high

level and then decreases immediately, which indicates that
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Table 6 Parameters for all algorithms investigated

Common settings Algorithms Other settings

Generational EIGA rei = ri = 0.3, pm
ei = 0.01

Uniform crossover, pc = 0.6 EIIGA reii = ri = 0.3

Bit flip mutation, pm = 0.01 EIHIGA reii = rceii = 0.15 initially

[rmin, ri − rmin] = [0.04, 0.26], α = 0.02

Fitness proportional selection implemented via stochastic

universal sampling algorithm with elitism of size 1 IIHIGA rri = rei = rdi = 0.1 initially

[rmin, ri − 2rmin] = [0.04, 0.22], α = 0.02

pm
ei = pm

di = 0.01

Chromosome length, l = 100 HIGA reii = rceii = rei = rdi = 0.075 initially

Population size, n = 100 [rmin, ri − 3rmin] = [0.04, 0.18], α = 0.02

Replacement rate, ri = 0.3 pm
ei = pm

di = 0.01

Table 7 Experimental results with respect to overall performance

GAs and functions OneMax Royal Road Deceptive

Overall Best Performance

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 90.2 79.4 64.5 55.4 56.8 40.9 26.5 45.8 68.8 60.2 53.8 86.2

EIIGA 85.5 77.7 67.7 60.8 55.3 41.6 29.0 45.5 60.9 55.4 51.4 80.6

EIHIGA 85.1 77.2 68.3 68.2 56.0 41.4 30.1 76.7 56.6 52.7 50.7 57.6

IIHIGA 88.4 77.8 67.9 92.2 54.2 39.0 29.1 82.6 68.2 58.6 54.4 88.4

HIGA 88.3 77.8 68.0 90.0 54.2 39.5 28.9 83.1 67.5 58.2 54.2 88.5

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 98.4 96.0 85.6 65.8 87.8 73.9 50.2 43.6 76.1 74.6 72.7 87.4

EIIGA 95.4 92.1 82.1 67.9 83.5 72.5 51.9 45.7 71.6 68.7 64.2 84.1

EIHIGA 95.3 91.8 82.8 95.9 83.7 72.7 54.0 94.6 65.6 63.3 58.1 62.1

IIHIGA 98.0 95.3 87.2 98.4 87.0 73.6 53.7 96.6 84.5 80.1 75.4 91.1

HIGA 98.0 95.2 86.9 98.0 87.3 73.8 53.8 96.8 83.9 79.3 74.4 90.7

Overall Average Performance

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 87.0 75.7 60.2 50.8 49.6 33.9 20.4 40.8 64.3 54.4 47.2 82.6

EIIGA 78.5 69.7 58.7 51.0 39.4 27.0 16.2 34.0 52.3 44.5 38.8 68.9

EIHIGA 75.8 67.4 57.9 53.3 38.8 25.7 15.8 52.9 45.0 40.3 37.4 42.6

IIHIGA 83.3 72.0 60.0 80.8 44.1 29.4 19.2 72.6 57.9 48.7 43.5 70.6

HIGA 83.1 71.5 59.4 83.6 43.5 29.2 18.5 73.1 56.0 47.4 42.5 67.7

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 96.5 93.8 82.5 62.0 81.6 67.9 45.4 40.0 73.8 71.7 68.7 84.1

EIIGA 90.1 86.2 74.8 59.2 67.6 56.8 38.4 35.2 65.6 61.4 53.8 74.1

EIHIGA 86.9 83.0 73.2 84.0 65.5 54.8 38.3 75.4 56.2 53.0 45.6 46.7

IIHIGA 94.3 91.2 82.0 93.6 77.2 64.2 45.6 87.2 72.9 68.7 64.2 78.9

HIGA 94.7 91.3 81.6 94.6 76.8 63.9 45.0 86.9 70.1 66.0 61.6 75.7

Bold values are significant at α = 0.05 by Wilcoxon rank sum test

some fitter individuals or even the new optimal individuals

are already in the population. Also, it can be clearly seen

that algorithms with indirect immigrants schemes maintain

higher diversity level than algorithms with direct immigrants

schemes. This interesting result indicates that approaches that

try to maintain higher diversity level in the population do

not naturally lead to better performance of EAs in dynamic

environments.
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Table 8 The statistical tests of comparing the performance of algorithms on DOPs

GAs and functions OneMax Royal Road Deceptive

Best Performance

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s+ s+ s− s− s+ s− s− ∼ s+ s+ s+ s+

IIHIGA–EIHIGA s+ s+ s− s+ s− s− s− s+ s+ s+ s+ s+

HIGA–EIGA s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

HIGA–EIIGA s+ ∼ s+ s+ s− s− ∼ s+ s+ s+ s+ s+

HIGA–EIHIGA s+ s+ s− s+ s− s− s− s+ s+ s+ s+ s+

HIGA–IIHIGA ∼ ∼ s+ s− ∼ s+ ∼ s+ s− s− ∼ ∼

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s+ s+ s+ s− s+ s+ s− s− s+ s+ s+ s+

IIHIGA–EIHIGA s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+ s+

HIGA–EIGA s− s− s+ s+ s− ∼ s+ s+ s+ s+ s+ s+

HIGA–EIIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–EIHIGA s+ s+ s+ s+ s+ s+ ∼ s+ s+ s+ s+ s+

HIGA–IIHIGA ∼ s− s− s− s+ s+ ∼ s+ s− s− s− ∼

Average Performance

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+

IIHIGA–EIHIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–EIGA s− s− s− s+ s− s− s− s+ s− s− s− s−

HIGA–EIIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

HIGA–EIHIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–IIHIGA ∼ s− s− s+ s− ∼ s− s+ s− s− s− s−

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

IIHIGA–EIHIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–EIGA s− s− s− s+ s− s− s− s+ s− s− s− s−

HIGA–EIIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–EIHIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HIGA–IIHIGA s+ s+ s− s+ s− s− s− s− s− s− s− s−

Second, indirect immigrants schemes investigated in this

paper seem not suitable for dynamic Deceptive problems.

This can be clearly observed from Table 7 that the differ-

ence of the overall performance is very obvious between

algorithms with direct immigrants schemes and the corre-

sponding algorithms with indirect immigrants schemes. At

the same time, seeing dynamic performance of algorithms

on Deceptive problems in Figs. 2 and 3, algorithms with

indirect immigrants schemes keep much lower fitness level

than the corresponding algorithms with direct immigrants

schemes. Worse off, when ρ = 1 EIHIGA even can not

obtain a satisfying result. This is because immigrants based

on environmental information and its complementation can

easily break global optimal building blocks existing in the

Deceptive functions via crossover.

Third, on dynamic Royal Road problems with respect to

the Best Performance, the situation seems six of one, half

a dozen of the other for algorithms with direct immigrants

schemes and indirect immigrants schemes. Specifically, alg-

orithms with direct immigrants schemes outperform algo-

rithms with indirect immigrants schemes in most cases when

τ = 50 while are beaten mostly when τ = 10, see statis-

tical-test results of the Best Performance on dynamic Royal

Road problems regarding EIGA–EIIGA and IIHIGA–EIHI-

GA in Table 8. Taking into account the landscape features

of the Royal Road problem and the working mechanism

of the two types of immigrants schemes, these results can

be explained as follows. The Royal Road problem in this

paper features schema hierarchies and intermediate stepping

stones. It can be represented as “a tree of increasingly higher-
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Fig. 1 Dynamic population diversity of algorithms on DOPs with

τ = 50 and ρ = 0.5 for the first ten environments

order schemas, with schemas of each order being composable

to produce schemas of the next higher order” [48]. In other

words, there are many plateaus between fit schemata. To jump

out of these plateaus will cost substantial time via bitwise

mutation (which is adopted by direct immigrants schemes in

this paper, i.e., immigrants are generated by bit flip mutation

of some individuals) with probability 1
l
, where l is the chro-

mosome length [50,51]. Nevertheless, the capability to main-

tain higher diversity level of indirect immigrants schemes in

this paper can help the population to jump out of such pla-

teaus. At the early searching stage, the population is domi-

nated by lower-order schemata, and hence, jumping out of

plateaus is more likely to produce higher-order schemata. As

the search goes on, higher-order schemata become dominat-

ing the population. Therefore, jumping out of plateaus can

sometimes yield lower-order schemata. This is why when

τ = 10 algorithms with indirect immigrants schemes per-

form better while when τ = 50 they are surpassed by the

corresponding algorithms with direct immigrants schemes

in performance. This can be also observed from Fig. 2 that

on the Royal Road problem algorithms with indirect immi-

grants schemes keep higher fitness level at first and lower

fitness later on than the corresponding algorithms with direct

immigrants schemes.

To compare the robustness of the two types of immigrants

schemes, the experimental results with respect to overall

robustness are presented in Table 9. The best results among

algorithms in each environment are shown in bold. The statis-

tical results of comparing algorithms with respect to robust-

ness via nonparametric Wilcoxon rank sum tests at a 0.05

level of significance are given in Table 10. In Table 10, the

result regarding algorithm 1–algorithm 2 is marked as “s+”

or “s−” when algorithm 1 is significantly better than or

significantly worse than algorithm 2 regarding Best Robust-

ness and Average Robustness, respectively, and “∼” indicates

there is no statistical difference between two algorithms.

Note that only the robustness at generations when there are

changes are used for calculation since the robustness in this

paper is mainly a measure of how the system responds to

changes of the environment. The dynamic Best Robustness

regarding the Best Robustness against generations and the

dynamic Average Robustness regarding the Average Robust-

ness against generations on DOPs for all the environments

with τ = 50, ρ = 0.1 and ρ = 1 are plotted in Figs. 4 and 5

respectively, where the data were averaged over 30 runs and

only the robustness at generations when there are changes is

plotted for the same reason above.

Comparing the robustness of the two types of immigrants

schemes, EAs with indirect immigrants schemes outperforms

those with corresponding direct immigrants schemes on

nearly all DOPs with respect to both Best Robustness and

Average Robustness, see statistical-test results regarding

EIGA–EIIGA and IIHIGA–EIHIGA in Table 10. Seeing

Figs. 2 and 3, when the environment changes, except for

the dynamic Deceptive problem with τ = 50 and ρ = 1, it

is clear that the performance of direct immigrants schemes
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Fig. 2 Dynamic Best Performance of algorithms on DOPs with τ = 50 and ρ = 0.1 and 1, respectively for the first ten environments

drops more sharply than the corresponding indirect immi-

grants schemes. This result can also be apparently observed

from dynamic robustness in Figs. 4 and 5 that indirect immi-

grants schemes manage to keep higher robustness level than

the corresponding direct immigrants schemes except for the

dynamic Deceptive problem with τ = 50 and ρ = 1. These

phenomena can be regarded as the result of different capa-

bility of immigrants schemes to maintain the diversity of the

population which has already been examined above. To sum

up, the results above confirm our expectation in Sect. 4 that

the performance and the robustness can not be optimized

simultaneously. Generally speaking, EAs with direct immi-

grants schemes have higher performance level and lower

robustness level than EAs with indirect immigrants schemes.
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Fig. 3 Dynamic Average Performance of algorithms on DOPs with τ = 50 and ρ = 0.1 and 1, respectively for the first ten environments

6.3 Experimental analysis regarding the interaction

between two types of immigrants schemes

In order to investigate the interaction between two types

of immigrants schemes, the dynamic Best Performance and

Average Performance of immigrants in investigated algo-

rithms on DOPs for the first 10 environments with τ = 50,

ρ = 0.1 and ρ = 1 are plotted in Figs. 6 and 7, where “HI-

GADirect” and “HIGAIndirect” denote immigrants in HIGA

generated directly and indirectly respectively, and the data

were averaged over 30 runs.

First, comparing the proposed algorithm with indirect

immigrants schemes, HIGA outperforms EIIGA and EIHI-

GA on nearly all DOPs with respect to the Average
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Table 9 Experimental results with respect to overall robustness

GAs and functions OneMax Royal Road Deceptive

Overall Best Robustness

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 0.92 0.87 0.78 0.71 0.73 0.57 0.40 0.81 0.87 0.75 0.67 0.96

EIIGA 0.94 0.90 0.84 0.78 0.79 0.68 0.52 0.83 0.92 0.88 0.86 0.95

EIHIGA 0.94 0.90 0.84 0.93 0.79 0.67 0.53 0.87 0.94 0.92 0.91 0.96

IIHIGA 0.93 0.87 0.77 0.35 0.74 0.58 0.38 0.07 0.84 0.76 0.69 0.96

HIGA 0.93 0.88 0.77 0.12 0.74 0.59 0.39 0.07 0.84 0.77 0.71 0.97

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 0.91 0.82 0.55 0.14 0.71 0.48 0.20 0.38 0.87 0.73 0.50 0.93

EIIGA 0.92 0.84 0.61 0.26 0.72 0.52 0.25 0.41 0.89 0.78 0.60 0.91

EIHIGA 0.92 0.84 0.61 0.97 0.72 0.53 0.25 0.90 0.90 0.82 0.72 0.95

IIHIGA 0.91 0.82 0.56 0.33 0.70 0.48 0.19 0.03 0.80 0.64 0.49 0.96

HIGA 0.91 0.82 0.55 0.10 0.70 0.48 0.20 0.02 0.80 0.64 0.50 0.97

Overall Average Robustness

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 0.92 0.86 0.75 0.66 0.69 0.49 0.25 0.70 0.84 0.71 0.59 0.96

EIIGA 0.93 0.88 0.80 0.73 0.74 0.58 0.33 0.73 0.91 0.85 0.82 0.96

EIHIGA 0.94 0.89 0.81 0.68 0.74 0.56 0.34 0.08 0.93 0.91 0.89 0.96

IIHIGA 0.92 0.87 0.73 0.07 0.69 0.49 0.22 0.04 0.82 0.73 0.62 0.93

HIGA 0.92 0.87 0.73 0.06 0.69 0.50 0.22 0.03 0.83 0.74 0.64 0.94

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA 0.90 0.81 0.52 0.09 0.66 0.42 0.12 0.26 0.84 0.69 0.43 0.94

EIIGA 0.91 0.82 0.57 0.19 0.68 0.45 0.14 0.23 0.87 0.74 0.52 0.93

EIHIGA 0.92 0.83 0.59 0.15 0.68 0.47 0.14 0.06 0.89 0.79 0.65 0.93

IIHIGA 0.91 0.81 0.53 0.05 0.66 0.41 0.11 0.02 0.76 0.59 0.43 0.93

HIGA 0.90 0.81 0.53 0.05 0.66 0.42 0.11 0.02 0.77 0.61 0.45 0.94

Bold values are significant at α = 0.05 by Wilcoxon rank sum test

Performance and on most DOPs with respect to the Best Per-

formance. On the other hand, compared with direct immi-

grants schemes, HIGA outperforms EIGA on most DOPs

with respect to the Best Performance while is beaten on

nearly all DOPs with respect to the Average Performance.

Meanwhile, HIGA is beaten by IIHIGA on almost all DOPs

except dynamic Royal Road problems regarding the Best

Performance and on nearly all DOPs with respect to the Aver-

age Performance, see statistical-test results regarding HIGA–

EIGA, HIGA–EIIGA, HIGA–EIHIGA and HIGA–IIHIGA

in Table 8. However, seeing the dynamic Best Performance

and Average Performance in Figs. 2 and 3, things are not

so simple as what results in Table 8 show. HIGA maintains

nearly the same dynamic Best Performance level as IIHIGA

and sometimes even higher Best Performance level than IIH-

IGA on dynamic OneMax and Royal Road problems when

there is no change. Even if on dynamic Deceptive problems,

IIHIGA keeps only a little higher Best Performance level than

HIGA when there is no change. Therefore, the degradation in

overall Best Performance of HIGA over IIHIGA is due to its

larger fitness drop than IIHIGA when change occurs, which

can be clearly observed in Fig. 2, especially when ρ = 1.

This can be also seen from the dynamic Best Performance

of immigrants in Fig. 6 that on DOPs when τ = 50 and

ρ = 1 “HIGADirect” maintains higher fitness level than IIH-

IGA or nearly the same fitness level as IIHIGA in stationary

environmental period while drops more largely than IIHIGA.

On the other hand, on most DOPs IIHIGA has much higher

Average Performance level than HIGA. Nevertheless, seeing

the dynamic Average Performance of immigrants in Fig. 7,

“HIGADirect” maintains much higher level than IIHIGA.

Hence the degradation in Average Performance of HIGA

over IIHIGA is the result of much lower Average Perfor-

mance level of immigrants generated indirectly, see the curve

“HIGAIndirect” in Fig. 7.

Second, examining the interaction between direct immi-

grants schemes and indirect immigrants schemes, in most

cases, immigrants generated directly in HIGA performs bet-

ter than those in IIHIGA with respect to the Best Perfor-

mance, especially with respect to the Average Performance.
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Table 10 The statistical tests of comparing the robustness of algorithms on DOPs

GAs and functions OneMax Royal Road Deceptive

Best Robustness

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− ∼

IIHIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− ∼

HIGA–EIGA s+ s+ s− s− s+ s+ s− s− s− s+ s+ s+

HIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–IIHIGA ∼ s+ ∼ s− ∼ s+ s+ ∼ ∼ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− s+

IIHIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–EIGA ∼ ∼ ∼ s− s− ∼ ∼ s− s− s− ∼ s+

HIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–IIHIGA ∼ ∼ s− s− ∼ ∼ s+ s− ∼ ∼ s+ s+

Average Robustness

τ = 10, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− ∼

IIHIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s−

HIGA–EIGA ∼ s+ s− s− ∼ s+ s− s− s− s+ s+ s−

HIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s−

HIGA–IIHIGA ∼ ∼ ∼ s− ∼ s+ ∼ s− s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1 0.1 0.2 0.5 1 0.1 0.2 0.5 1

EIGA–EIIGA s− s− s− s− s− s− s− s+ s− s− s− s+

IIHIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− ∼

HIGA–EIGA ∼ ∼ s+ s− ∼ ∼ s− s− s− s− s+ ∼

HIGA–EIIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–EIHIGA s− s− s− s− s− s− s− s− s− s− s− s+

HIGA–IIHIGA s− ∼ ∼ ∼ ∼ s+ ∼ ∼ s+ s+ s+ +

On the other hand, immigrants generated indirectly in HIGA

performs much better than those in EIHIGA on all DOPs

with respect to the Best Performance. These results can be

also observed from Figs. 6 and 7 that “HIGADirect” main-

tains nearly the same fitness level as IIHIGA or higher fitness

level than IIHIGA on most DOPs regarding both kinds of

performance, and “HIGAIndirect” has much higher fitness

level than EIHIGA regarding the Best Performance. These

phenomena demonstrate the positive effect on the perfor-

mance of algorithms via the interaction between the Direct

Immigrants Scheme and the Indirect Immigrants Scheme.

More concretely, the interaction between two types of

immigrants schemes probably lies on the way in which the

population distribution vector DP is working. Instead of

incrementally updated, DP in this paper is updated

globally. Specifically, in each generation, a new vector DP

is constructed based on the whole new population. Conse-

quently, immigrants generated directly are involved when

constructing DP . As aforementioned, immigrants generated

directly are generally fit in the new environment, and thus

individuals generated via sampling this vector are naturally

fitter than immigrants in EIHIGA. On the other hand, indi-

viduals generated via sampling DP are more close to a point

in the searching space whereas individuals generated via

mutating a individual will sometimes produce individuals

far apart from promising area. This will lead to a greedy

behavior of the algorithm, which is beneficial to the local

performance.

Finally, comparing the robustness of HIGA with other two

types of immigrants schemes, HIGA performs worse than

EIHIGA and EIIGA, and better than IIHIGA and EIGA on

most DOPs with respect to both Best Robustness and Aver-

age Robustness, see statistical-test results regarding HIGA–

EIHIGA, HIGA–EIIGA, HIGA–IIHIGA and HIGA–EIGA
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Fig. 4 Dynamic Best Robustness of algorithms on DOPs with τ = 50 and ρ = 0.1 and 1, respectively

in Table 10. These results can be explained from the dynamic

diversity of the population in Fig. 1. We can see that HIGA

has much lower diversity level than EIHIGA and EIIGA,

and it maintains a little higher diversity level than IIHIGA

and much higher level than EIGA. In a word, the results of

HIGA confirm our expectation in Sect. 4 that taking into

account the interaction between two types of immigrants

can benefit the performance of the algorithm in dynamic

environments. However, to pay a price for this promotion

in performance, HIGA can not maintain satisfying robust-

ness level as EAs with indirect immigrants schemes. More

interestingly, in some cases, HIGA can outperform EA with
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Fig. 5 Dynamic Average Robustness of algorithms on DOPs with τ = 50 and ρ = 0.1 and 1, respectively

direct immigrants scheme regarding both the performance

and the robustness.

6.4 Experimental analysis regarding common behaviors of

algorithms in dynamic environments

First, comparing the extreme behavior with the average

behavior of algorithms on DOPs, it can be seen from Figs. 2

and 3 that the Average Performance of an algorithm on a

DOP falls greater than the Best Performance of it on the

same DOP when any changes occur. This result can be more

clearly observed via comparing Fig. 4 with Fig. 5. On most

DOPs and for most algorithms, the Best Robustness keeps at

a higher level than the corresponding Average Robustness.

This is because when the environment changes, most indi-

viduals which are adapted to the old new environment will
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Fig. 6 Dynamic Best Performance of immigrants in HIGA, EIHIGA, IIHIGA on DOPs (τ = 50, ρ = 0.1 and 1) for the first ten environment

lose their adaption to the new environment and thus their fit-

ness falls greatly. However, there are some individuals which

will be more fit in the new environment than they are in the

old environment, these potential new best individuals will

mitigate the fall of the best performance.

Second, taking stock of dynamic Best Robustness and

Average Robustness of algorithms on DOPs, in most cases,

decreases of robustness are relatively small at first, then

become larger, and finally small again. The probable rea-

son can be depicted as follows. The XOR operator used

in experiments influences a individual via changing inter-

mediate schema in it. At early searching stage, the popula-

tion is dominated by individuals that have a few elementary

schemata and very few intermediate schemata, and then the
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Fig. 7 Dynamic Average Performance of immigrants in HIGA, EIHIGA, IIHIGA on DOPs (τ = 50, ρ = 0.1 and 1) for the first ten environment

algorithm is devoting itself to exploring particular interme-

diate schemata. Therefore, the robustness decreases slightly

first and then significantly. However, as the searching pro-

cess goes on, the algorithm has found most of the intermedi-

ate schemata. In this case, imposing XOR operator on these

intermediate schemata would most likely to result in inter-

mediate schemata which already exist in the population, and

hence the robustness decreases slightly.

6.5 Experimental analysis regarding the general effect

of environmental dynamics on the performance

of algorithms

Carefully studying results in Table 7, and examining the

effect of dynamic environments on the performance of inves-

tigated algorithms, several results can be observed as follows.

First, for a DOP with fixed ρ, the performance of algorithms
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rises as τ increases from 10 to 50. This result is natural, since

when the environment changes slowly, i.e., τ = 50, the algo-

rithm has enough time to attain higher fitness level before any

changes occur. Second, for a DOP with fixed τ , the perfor-

mance of algorithms generally decreases as ρ increases from

0.1 to 0.2 to 0.5. It is easy to understand, since a bigger value

of ρ means more severely changing environment. However,

when ρ = 1, the performance of algorithms seems much

better, especially on dynamic Royal Road and Deceptive

problems. This indicates that environmental changes espe-

cially significant changes sometimes can help the population

to jump out of particular schemata and to explore a wider

range of beneficial intermediate schemata. This can be also

observed from dynamic performance in Figs. 2 and 3 that on

dynamic Deceptive problem with τ = 50 and ρ = 1, the per-

formance of EIGA and EIIGA arises abruptly after the first

change of the environment and some environmental changes

thereafter. Besides, on dynamic Royal Road problem with

τ = 50 and ρ = 1, after some environmental changes, the

performance of EIGA and EIIGA does not fall or only drops

slightly, but then the performance of them will attain a much

higher level until the next change of the environment.

Finally, with the same ρ and τ , the performance of algo-

rithms on dynamic OneMax problems is usually better than

that of corresponding algorithms on dynamic Royal Road

problems. This seems natural, since the stationary OneMax

problem is easier for EAs to solve than the stationary Royal

Road problem, and for each environmental period every prob-

lem can be regarded as a stationary problem. However, on

some dynamic Deceptive problems, the performance of algo-

rithms seems better than that on dynamic Royal Road prob-

lems. This is because although deceptive attractors are not

global optimum, they are suboptimum with relatively higher

fitness.

7 Conclusions

In this paper, the mechanism of generating immigrants, which

is the most important issue among strategies designing immi-

grants schemes for EAs on DOPs, are closely examined.

According to the way in which immigrants are generated,

we categorize existing immigrants schemes for EAs on DOPs

into direct and indirect schemes, and we investigate them with

respect to average behavior and extreme behavior through

the experiments. Furthermore, we propose a new immigrants

scheme which takes into account the interactions between

two types of immigrants schemes for EAs on DOPs. From

experimental results, we can draw several conclusions as fol-

lows:

First, performance and robustness cannot be optimized

simultaneously. Generally speaking, EAs with direct immi-

grants schemes beat EAs with indirect immigrants schemes

with respect to the performance while are beaten by them

regarding the robustness. In addition, higher diversity level

can mitigate the fall of the robustness of EAs when any

changes occur and does not always lead to good performance

of EAs in dynamic environments.

Second, the interaction of direct and indirect immigrants

schemes does strike a balance between the performance and

the robustness. Specifically, it promotes the performance of

HIGA over EAs with indirect immigrants schemes at the

price of degrading the robustness. On the other hand, this

interaction improves the robustness level of HIGA over EAs

with direct immigrants schemes while degrades its perfor-

mance slightly in most cases. More importantly, this interac-

tion reveals positive effect in the performance of EAs, which

encourages us to develop more carefully designed interac-

tion between two types of immigrants schemes that will lead

to EAs with much better performance in dynamic environ-

ments.

Finally, the speed and the severity of the change of the

environment, and the difficulty of the base stationary prob-

lems can influence the difficulty of DOPs. Generally speak-

ing, fast and severely changing environments pose much

of difficulty for EAs. However, in some cases, especially

when the environment is changing significantly, better per-

formances of EAs have been observed. This indicates that

the change of the environment may sometimes alleviate the

difficulty of the problems being solved.

For now, several relevant works remain worthy of future

study. A primary work is to explore the potential of inter-

action of two types of immigrants schemes. Based on the

encouraging results presented in this paper, we believe that a

more careful design of interaction of two types of immigrants

schemes will improve the performance of EAs in dynamic

environments. Another future work is to analyze the work

theoretically and carry out more comprehensive computa-

tional studies using the design of experiment methodology.

Besides, finding other forms of indirect immigrants schemes

for EAs to address DOPs would be another interesting future

work. For example, some prediction model can be used as

the base to generate immigrants. Meanwhile, the other three

issues of designing immigrants schemes, i.e., the replace-

ment rate, the replacement strategy, and to promote the sur-

vival probability of new immigrants, still need to be carefully

studied in the future.

Furthermore, since an immigrants scheme mainly con-

cerns incorporating new individuals into the current popula-

tion, it is naturally applicable for any population-based search

algorithm, but not merely EAs. In particular, it would be

interesting to apply immigrants schemes to the memetic

algorithms (MAs). As a family of meta-heuristic search

methods that combine global search strategies (e.g., con-

ventional EAs) with local search heuristics, MAs have been

shown to be capable of obtaining high quality solutions more
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efficiently than conventional EAs [52]. Such characteristic is

of great importance in the context of dynamic optimization,

for which we are usually provided a tighter time budget than

for static optimization. Therefore, it is reasonable to expect

that the combination of immigrants schemes and MAs will

lead to further improved performance. Two straightforward

start points are to make use of a meme to generate new immi-

grants, and to introduce new memes instead of new individ-

uals to address a dynamic situation.
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