
Research Article

Empirical Analysis of High Efficient Remote Cloud Data Center
Backup Using HBase and Cassandra

Bao Rong Chang,1 Hsiu-Fen Tsai,2 Chia-Yen Chen,1 and Cin-Long Guo1

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
2Department of Marketing Management, Shu-Te University, Kaohsiung 82445, Taiwan

Correspondence should be addressed to Chia-Yen Chen; ayen@nuk.edu.tw

Received 6 September 2014; Accepted 12 December 2014

Academic Editor: Gianluigi Greco

Copyright © 2015 Bao Rong Chang et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

HBase, a master-slave framework, and Cassandra, a peer-to-peer (P2P) framework, are the two most commonly used large-scale
distributed NoSQL databases, especially applicable to the cloud computing with high 	exibility and scalability and the ease of big
data processing. Regarding storage structure, di
erent structure adopts distinct backup strategy to reduce the risks of data loss.
�is paper aims to realize high e�cient remote cloud data center backup using HBase and Cassandra, and in order to verify the
high e�ciency backup they have applied�ri� Java for cloud data center to take a stress test by performing strictly data read/write
and remote database backup in the large amounts of data. Finally, in terms of the e
ectiveness-cost evaluation to assess the remote
datacenter backup, a cost-performance ratio has been evaluated for several benchmark databases and the proposed ones. As a result,
the proposed HBase approach outperforms the other databases.

1. Introduction

In recent years, cloud services [1, 2] are applicable in our
daily lives. Many traditional services such as telemarketing,
television and advertisement are evolving into digitized for-
mats. As smart devices are gaining popularity and usage, the
exchange of information is no longer limited to just desktop
computers, but instead, information is transferred through
portable smart devices [3, 4], so that humans can receive
prompt and up-to-date information anytime. Due to the
above reasons, data of all types and forms are constantly
being produced, leaving themass of uncorrelated or unrelated
information, causing conventional databases to not be able to
handle the workload in a big data environment. �is leads
to the emergence of nonrelational databases, of which many
notable NoSQL databases that are currently being used by
enterprises are HBase [5], Cassandra [6], and Mongo [7].
Generally, companies will assess the types of applications
before deciding which database to use. To these companies,
the data analysis of these databases can mean a matter of
success or failure. For example, the mailing system, trading
records, or number of hits on an advertisement, performing

such retrieval, clearing, analysis, and transforming them into
useful information for the user. As the types of information
ever increases, the data processing abilities of nonrelational
databases becomes ever challenging. �e more well-known
HBase and Cassandra databases are o�en used for a company
as internal database system, and it uses its own distributed
architecture to deal with data backup between di
erent sites.

Distributed systems are o�en built under a single-cluster
environment and contain a preventive measure against the
single-point failure problem, that is, to prevent system crash
or data loss. However, it could happen in such accidents as
power shut-down, natural disaster, or manual error that leads
to whole system collapse and then initiates a remote backup
to the remote data center. Even though NoSQL database uses
distributed architecture to prevent the risk of data loss, it has
neglected the importance of remote data center backup. In
addition to considering nodal independence and providing
uninterrupted services, a good database system should also
be able to support instant cross-cluster or cross-hierarchy
remote backup. With this backup mechanism, data can be
restored and prevent further data corruption problems. �is
paper will implement data center remote backup using two

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 294614, 10 pages
http://dx.doi.org/10.1155/2015/294614

2 Scienti�c Programming

hlog-
· · ·

· · · -ts5
hlog-· · · -ts4
hlog-· · · -ts3
hlog-· · · -ts2
hlog-· · · -ts1 → o�set

Synchronous call
Slave cluster

Slave cluster

Slave cluster

H
T

ab
le

H
T

ab
le

H
T

ab
le

Master cluster

HRegionServer

HRegionServer

HRegionServer

ZooKeeper

HDFS

HLog
list

HLog
list

HLog

list

HLog

Synchronous call

Synchronous call

/hbase/replication/. . .

.

.

.
.
.
.

Figure 1: Remote HBase data center backup.

remarkable NoSQL databases and perform stress tests with
a large scale of data, for instances, read, write, and remote
data center backup. �e experimental results of remote data
center backup using HBase and Cassandra will show the
assessment of their e
ectiveness and e�ciency based on cost-
performance ratio [8].

�e following paragraphs of this paper are arranged as
follows. In Section 2, large-scale database in data center will
be described. �e way to remote data center backup is given
in Section 3. Section 4 proposes the method to implement
theNoSQLdatabase remote backup.�e experimental results
and discussion will be obtained in Section 5. Finally we drew
a brief conclusion in Section 6.

2. Large-Scale Database in Data Center

�e database storage structure can be divided into several
types; currently, the more common databases are hierarchi-
cal (IBM IMS), network (Computer Associates Company
IDMS), relational (MySQL, Microso� SQL Server, Informix,
PostgreSQL, and Access), and object-oriented (PostgreSQL).
With the rapid growth of IT in recent years, the new data stor-
age architecture to store large amounts of unstructured data,
collectively called nonrelational database, that is, NoSQL
Database (Google BigTable, Mongo DB, Apache HBase, and
Apache Cassandra), was developed. NoSQL �rst appeared in
1998; it was developed by Carlo Strozzi as a lite, open sourced
relational database, which does not provide the SQL function.

�is paper will realize remote data center backup for
the two distributed databases HBase and Cassandra. Both
designs achieved two of the three characteristics that are
consistency (C), availability (A), and partition tolerance (P)
in C.A.P. theory [9].

HBase, a distributed database, works under the master-
slave framework [10], where themaster node assigns informa-
tion to the slave node to realize the distributed data storage,
meanwhile emphasizing consistency and partition tolerance
characteristics. Regarding remote data center backup, a cer-
tain data center with HBase has the following advantages: (1)
retain data consistency, (2) activate instant reading or writing
of massive information, (3) access large-scale unstructured
data, (4) expand new slave nodes, (5) provide computing
resources, and (6) prevent a single-node failure problems in
the cluster.

Cassandra, a distributed database, works under the peer-
to-peer (P2P) [11] framework, where each node contains
totally identical backup information to realize the distributed
data storage with uninterrupted services, at the same time
emphasizing availability and partition tolerance characteris-
tics. As for remote data center backup, a certain data center
with Cassandra has the following advantages: (1) each node
shares equal information, (2) cluster setup is quick and
simple, (3) cluster can dynamically expand new nodes, (4)
each node has the equal priority of its precedence, and (5)
cluster does not have a single-node failure problem.

3. Remote Data Center Backup

3.1. Remote HBase and Cassandra Data Centers Backup.
Remote HBase data center backup architecture [12] is as
shown in Figure 1. �e master cluster and slave cluster must
possess their own independent Zookeeper in a cluster [13].
�e master cluster will establish a copy code for the data
center and designate the location of the replication, so to
achieve o
site or remote data center backup between di
erent
sites. Remote Cassandra data center backup architecture [14]

Scienti�c Programming 3

DataCenter

Node 1

DatatataCeaCeC ntntnterNode 2

Node 6

DataCenter

Node 1

DatatataCeaCeC ntntnterNode 2

Node 6

Data center 1 Data center 2

(Cassandra)

(Cassandra)

(Cassandra) (Cassandra)

(Cassandra)

(Cassandra)Data backup

Data recovery

Figure 2: Remote Cassandra data center backup.

Rack 1

Rack 2

Node 1

Node 2

Node 5

Node 2

Node 4

Node 6

Rack 1

Rack 2

Node 7

Node 9

Node 11

Node 8

Node 10

Node 12

R1

R2

R3

R4

Data center 1 Data center 2

Figure 3: Illustration of rack.

is as shown in Figure 2. Cassandra is of peer-to-peer (P2P)
framework connects all nodes together. When information is
written into data center A, a copy of the data is immediately
backed up into a designated data center B, and each node can
designate a permanent storage location in a rack [15] as show
in Figure 3. �is paper expands the application of a single-
cluster replicationmechanism to the replication of data center
level. �rough adjusting the replication mechanism between
data center and nodes, the corresponding nodes from two
independent data centers are connected and linked through
SSHprotocol, and then information is distributed andwritten
into these nodes by master node or seed node to achieve
remote data center backup.

3.2. Cross-Platform Data Transfer Using Apache �ri	.
Apache�ri� [16] was developed by the Facebook team [17],
and it was donated to the Apache Foundation in 2007 to
become one of the open source projects. �ri� was designed

Input code

Service client

Write ()/read ()

TProtocol

TTransport

Input/output

Input code

Service client

TProtocol

TTransport

Input/output

Client Server

Generated code

Read ()/write ()

Figure 4: Apache�ri� architecture.

to solve Facebook’s problem of large number of data trans-
fers between various platforms and distinct programming
languages and thus cross-platform RPC protocols. �ri�
supports a number of programming languages [18], such as
C++, C#, Cocoa, Erlang, Haskell, Java, Ocami, Perl, PHP,
Python, Ruby, and Smalltalk. With binary high performance
communication properties,�ri� supports multiple forms of
RPC protocol acted as a cross-platform API. �ri� is also a
transfer tool suitable for large amounts of data exchange and
storage [19]; when comparing with JSON and XML, its per-
formance and capability of large-scale data transfer is clearly
superior to both of them. �e basic architecture of �ri�
is as shown in Figure 4. In Figure 4 the Input Code is the
programming language performed by the Client.�e Service
Client is the Client side and Server side code framework
de�ned by �ri� documents, and read ()/write () are codes
outlined in �ri� documents to realize actual data read and
write operations. �e rest are �ri�’s transfer framework,
protocols, and underlying I/O protocols. Using �ri�, we
can conveniently de�ne a multilanguage service system, and
select di
erent transfer protocol.�e Server side includes the
transfer protocol and the basic transfer framework, providing
both single and multithread operation modes on the Server,
where the Server and browser are capable of interoperability
concurrently.

4. Research Method

�e following procedures will �rst explain how to setup
HBase and Cassandra data centers using CentOS 6.4 system
to achieve remote backup. Next, this system will test the
performance of data centers against reading, writing, and
remote backup of large amounts of information.

4.1. Implementation of HBase and Cassandra Data Centers.
Data centers A and B are installed on the CentOS 6.4 operat-
ing system, and HBase and Cassandra data centers are setup

4 Scienti�c Programming

Figure 5: Settings to allow the passage through �rewall.

Figure 6: Examine HBase’s node status.

using CentOS 6.4 system. �e following procedures explain
how to build Cassandra and HBase data centers and backup
mechanisms. Finally, we will develop test tools; the test
performances include reading, writing, and remote backup
in the data center:

(1) CentOS’s �rewall is strictly controlled; to use the
transfer ports, one must preset the settings as shown
in Figure 5.

(2) ITmanager sets upHBase andCassandra data centers
and examines the status of all nodes as shown in
Figures 6 and 7.

(3) Forms with identical names must be created in both
data centers inHBase system.�eprimary data center
will execute command (add peer) [12], and back up
the information onto the secondary data center, as
shown in Figures 8 and 9.

(4) IT manager edits Cassandra’s �le content (cassandra-
topology.properties), as shown in Figure 10 and then
sets the names of the data center and the storage
location of the nodes (rack number).

(5) IT manager edits Cassandra’s �le content (cassan-
dra.yaml), as shown in Figure 11, and then changes the
content of endpoint snitch [14] to PropertyFileSnitch
(data center management mode).

Figure 7: Examine Cassandra’s node status.

Figure 8: Create forms in HBase.

Figure 9: Initialize remote HBase data center backup.

(6) IT manager executes command (create keyspace test
with strategy options = {DC1:2,DC2:1} and place-
ment strategy = “NetworkTopologyStrategy”) in Cas-
sandra’s primary data center and then creates a form
and initializes remote backup as shown in Figure 12.

(7) IT manager eventually has to test the performance of
writing, reading, and o
site data backup against large
amounts of information using�ri� Java as shown in
Figures 13 and 14.

Scienti�c Programming 5

Figure 10: Setup of nodes for the data center.

Figure 11: Setup of type for the data center.

As shown in Figure 15, the user will be connected to the
database through the Server Login function, select a �le
folder using Server Information, and then select a data table.
Having completed above instructions, the user can operate
the database according to the functions described and shown
in Figure 15.

4.2. Performance Index. Equation (1) calculates the average
access time (AAT) for di
erent data size. In (1), AAT���
represents the average access time with a speci�c data size,
and��� represents the current data size:
AAT���� = AAT������ ,
where � = 1, 2, . . . , �, � = 1, 2, . . . , �, � = 1, 2, . . . , �.

(1)

�e following three formulae will evaluate the performance
index (PI) [1, 2]. Equation (2) calculates the data center’s aver-

age access times overall AAT��� (i.e., write, read, and remote

Figure 12: Created forms in Cassandra.

Figure 13: Test of remote HBase data backup.

Figure 14: Test of remote Cassandra data backup.

backup), in which AAT���� represents the average access time

of each data size; please refer back to (1). Equation (3) calcu-
lates the data center’s normalized performance index. Equa-
tion (4) calculates the data center’s performance index overall,

6 Scienti�c Programming

Start

Server login

Logined=?

No

Server information

Is there an
choosed table?

No

Yes

Data
import

Single/multiple
write

Single/multiple

read

Condition

search

NoNoNoNo

Database

(HBase/Cassandra)

Access

Yes

No No No

Is there an
archives?

Is there
the empty

value

Is there
the empty

value

Is there
the empty

value

Figure 15: Flowchart of HBase and Cassandra database operation.

SF1 is constant value and the aim is to quantify the value for
observation:

AAT��� =
�∑
�=1

� ⋅AAT���� ,

where � = 1, 2, . . . , �, � = 1, 2, . . . , �, �∑
�=1

� = 1,

(2)

PI�� = 1/AAT���
Maxℎ=1,2,...,� (1/AAT�ℎ�) ,

where � = 1, 2, . . . , �, � = 1, 2, . . . , �,
(3)

PI� = (∑
�=1
�� ⋅PI��) ⋅ SF1,

where � = 1, 2, . . . , �, � = 1, 2, . . . , �, SF1 = 102, 	∑
�=1
�� = 1.

(4)

4.3. Total Cost of Ownership. �e total cost of ownership
(TCO) [1, 2] is divided into four parts: hardware costs,
so�ware costs, downtime costs, and operating expenses. �e
costs of a �ve-year period Cost�
 are calculated using (5)
where the subscript � represents various data center and �
stands for a certain period of time. Among it, we assume there

Scienti�c Programming 7

Table 1: Hardware speci�cation.

Item Data center A Data center B

Server IBM X3650 ∗ 7 IBM BladeCenter HS22 ∗ 2
IBM BladeCenter HS23 ∗ 5

CPU
Intel Xeon E5-2620

CPU ∗ 2 Intel Xeon 4C E5-2609
CPU ∗ 2

Memory 32GB 32GB

Disk 300GB ∗ 4 (SAS HDD) 300GB ∗ 2 (SAS HDD)

is an annual unexpected downtime, Costdowntime for server�
, the

monthly expenses Costmonthly�
⋅ period, including machine

room fees, installation and setup fee, provisional changing
fees, and bandwidth costs:

Cost�
 = ∑
�
Costdowntime for server�

+∑
�
Costmonthly�

⋅ period+∑

Costhardware�

+∑
�
Costso�ware	 ,
where � = 1, 2, . . . , �, � = 1, 2, . . . , �.

(5)

4.4. Cost-Performance Ratio. �is section de�nes the cost-
performance ratio (C-P ratio) [8], CP�
, of each data center
based on total cost of ownership, Cost�
, and performance
index, PI�, as shown in (6). Equation (6) is the formula for C-
P ratio where SF2 is the constant value of scale factor, and the
aim is to quantify the C-P ratio within the interval of (0, 100]
to observe the di
erences of each data center:

CP�
 = PI�

Cost�

⋅ SF2,

where � = 1, 2, . . . , �, � = 1, 2, . . . , �, SF2 = 104.
(6)

5. Experimental Results and Discussion

�is section will go for the remote data center backup, the
stress test, as well as the evaluation of total cost of own-
ership and performance index among various data centers.
Finally, the assessment about the e
ectiveness and e�ciency
among various data centers have done well based on cost-
performance ratio.

5.1. Hardware and So	ware Speci
cations in Data Center. All
of tests have performed on IBM X3650 Server and IBM
BladeCenter as shown in Table 1. �e copyrights of several
databases applied in this paper are shown in Table 2, of which
ApacheHBase andApache Cassandra are of NoSQL database
proposed this paper, but otherwiseClouderaHBase,DataStax
Cassandra, and Oracle MySQL are alternative databases.

Table 2: So�ware copyright.

Database Copyright

Apache HBase Free

Apache Cassandra Free

Cloudera HBase Free/License

DataStax Cassandra Free/License

Oracle MySQL License

1.
E

 +
 0

3

1.
E

 +
 0

4

1.
E

 +
 0

5

1.
E

 +
 0

6

1.
E

 +
 0

7

1.
E

 +
 0

8

1.
E

 +
 0

9

Data size (# of rows, 5 columns/row)

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0.014000

T
im

e
(s

)
Apache Hbase

Apache Cassandra

Cloudera HBase

DataStax Cassandra
Oracle MySQL

Figure 16: Average time of a single datum write in database.

5.2. Stress Test of Data Read/Write in Data Center. Writing
and reading tests of large amounts of information are orig-
inating from various database data centers. A total of four
varying data sizes were tested, and the average time of a single
datum access was calculated for each:

(1) Data centers A and B perform large amounts of infor-
mation writing test through �ri� Java. Five consec-
utive writing times among various data centers were
recorded for each data size as listed in Table 3. We
substitute the results from Table 3 into (1) to calculate
the average time of a single datum write for each type
of data center as shown in Figure 16.

(2) Data centers A and B perform large amounts of
information reading test through�ri�. Five consec-
utive reading times among various data centers were
recorded for each data size as listed in Table 4. We
substitute the results from Table 4 into (1) to calculate
the average time of a single datum read for each type
of data center as shown in Figure 17.

5.3. Stress Test of Remote Data Center Backup. �e remote
backup testing tool,�ri� Java, ismainly used to �nd out how
long will it take to backup each other’s data remotely between
data centers A and B as shown in Table 5.

As a matter of fact, tests show that the average time
of a single datum access for the remote backup of Apache
HBase and Apache Cassandra only takes a fraction of mini-
second. Further investigations found that although the two
data centers are located in di
erent network domains, they
still belonged to the same campus network. �e information

8 Scienti�c Programming

Table 3: Data write test (unit: sec.).

Data size Apache HBase Apache Cassandra Cloudera HBase DataStax Cassandra Oracle MySQL

103 1.6 1.2 3.2 2.9 11.7

104 17.1 14.9 18.9 17.4 37.8

105 158.5 137.8 178.4 148.3 297.2

106 1798.4 1277.8 1942.8 1438.4 2318.7

107 15983.1 11437.7 20114.2 14983.7 21291.7

108 41753.8 49238.3 44277.9 42829.4 53872.6

109 267832.2 241911.8 354219.2 336949.1 508727.6

Table 4: Data read test (unit: sec.).

Data size Apache HBase Apache Cassandra Cloudera HBase DataStax Cassandra Oracle MySQL

103 1.5 1.9 3.4 4.1 11.9

104 4.6 5.2 9.8 10.7 67.2

105 44.6 64.1 55.8 70.5 378.5

106 604.9 658.8 694.7 732.8 672.8

107 5981.3 6317.1 6759.4 7189.6 7916.3

108 42398.1 43381.6 45792.9 46990.4 51481.1

109 319627.7 326960.4 344192.1 358910.7 509751.9

Table 5: Remote backup test (unit: sec.).

Data size Apache HBase Apache Cassandra Cloudera HBase DataStax Cassandra Oracle MySQL

103 0.8 1.3 2.2 2.9 10.1

104 1.1 2 3.1 3.9 21.9

105 5.4 16.3 9.1 20.7 181.1

106 18.4 108.6 25.9 137.7 1079.7

107 191.3 1081.6 273.1 1281.9 4381.8

108 2307.3 2979.1 3209.6 3419.1 7319.1

109 24468.3 27953.1 29013.8 29567.3 39819.3

1.
E

 +
 0

3

1.
E

 +
 0

4

1.
E

 +
 0

5

1.
E

 +
 0

6

1.
E

 +
 0

7

1.
E

 +
 0

8

1.
E

 +
 0

9

Data size (# of rows, 5 columns/row)

0.0000000

0.0020000

0.0040000

0.0060000

0.0080000

0.0100000

0.0120000

0.0140000

T
im

e
(s

)

Apache Hbase

Apache Cassandra

Cloudera HBase

DataStax Cassandra

Oracle MySQL

Figure 17: Average time of a single datum read in database.

might have only passed through the campus network inter-
nally but never reaches the internet outside, leading to speedy
the remote backup.Nonetheless, we do not need to set up new
data centers elsewhere to conductmore detailed tests because
we believe that information exchange through internet will
get the almost same results just like performing the remote

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

Data size (# of rows, 5 columns/row)

T
im

e
(s

)

Apache Hbase

Apache Cassandra

Cloudera HBase

DataStax Cassandra

Oracle MySQL

1.
E

 +
 0

3

1.
E

 +
 0

4

1.
E

 +
 0

5

1.
E

 +
 0

6

1.
E

 +
 0

7

1.
E

 +
 0

8

1.
E

 +
 0

9

Figure 18: Average time of a single datum backup in the remote data
center.

backup tests via intranet in campus. Five consecutive backup
times among various data centers were recorded for each data
size as listed in Table 5. We substitute the results from Table 5
into (1) to calculate the average time of a single datum backup
for each type of data center as shown in Figure 18.

Scienti�c Programming 9

Table 6: Normalized performance index.

Function Apache HBase Apache Cassandra Cloudera HBase DataStax Cassandra Oracle MySQL

Write 0.805 1 0.621 0.735 0.302

Read 1 0.851 0.612 0.534 0.175

Remote backup 1 0.541 0.386 0.274 0.067

Table 7: Average normalized performance index.

Database Total average

Apache HBase 0.935

Apache Cassandra 0.798

Cloudera HBase 0.540

DataStax Cassandra 0.514

Oracle MySQL 0.181

Table 8: Performance index.

Database Performance index

Apache HBase 93

Apache Cassandra 80

Cloudera HBase 54

DataStax Cassandra 51

Oracle MySQL 18

Table 9: Total cost of ownership over a 5-year period (unit: USD).

Database 1st year 2nd year 3rd year 4th year 5th year

Apache HBase 12686 10020 10020 10097 10171

Apache Cassandra 12686 10020 10020 10097 10171

Cloudera HBase 14240 12373 12373 12050 12109

DataStax Cassandra 14190 12727 12727 12209 12313

Oracle MySQL 15030 13373 13373 13450 13524

5.4. Evaluation of Performance Index. �e following subsec-
tion will evaluate the performance index. We �rst substitute
in the average execution times from Figures 16, 17, and 18 into
(2) to �nd the normalized performance index of data centers
for each test as listed in Table 6.

Next we substitute the numbers from Table 6 into (3)
to �nd average normalized performance index as listed in
Table 7. Finally, we substitute the numbers from Table 7 into
(4) to �nd the performance index of data centers as listed in
Table 8.

5.5. Evaluation of Total Cost of Ownership. �e total cost
of ownership (TCO) includes hardware costs, so�ware
costs, downtime costs, and operating expenses. TCO over
a �ve-year period is calculated using (5) and has listed in
Table 9.We estimate an annual unexpected downtime costing
around USD$1000; the monthly expenses includes around
USD$200 machine room fees, installation and setup fee of
around USD$200/time, provisional changing fees of around
USD$10/time, and bandwidth costs.

Table 10: C-P ratio over a 5-year period.

Database 1st year 2nd year 3rd year 4th year 5th year

Apache HBase 74 93 93 93 92

Apache Cassandra 63 80 80 79 78

Cloudera HBase 38 44 44 45 45

DataStax Cassandra 36 40 40 42 42

Oracle MySQL 12 14 14 13 13

0

20

40

60

80

100

1st 2nd 3rd 4th 5th

Year

S
ca

le
 (

re
al

 n
u

m
b

er
)

Apache Hbase

Apache Cassandra

Cloudera Hbase

DataStax Cassandra

Oracle MySQL

Figure 19: Cost-performance ratio for each data center.

5.6. Assessment of Cost-Performance Ratio. In (6), the for-
mula assesses the cost-performance ratio, CP�
, of each data
center according to total cost of ownership, Cost�
, and
performance index, PI�.�erefore, we substitute the numbers
from Tables 8 and 9 into (6) to �nd the cost-performance
ratio of each data center as listed in Table 10 and shown in
Figure 19.

5.7. Discussion. In Figure 19, we have found that Apache
HBase and Apache Cassandra obtain higher C-P ratios,
whereas MySQL get the lowest one. MySQL adopts the two-
dimensional array storage structure and thus each row can
havemultiple columns.�e test data used in this paper is that
considering each rowkey it has �ve column values, and hence
MySQL will need to execute �ve more writing operations
for each data query. In contrast, Apache HBase and Apache
Cassandra adopting a single Key-Value pattern in storage, the
�ve column values can be written into database currently,
namely, no matter how many number of column values for
each rowkey, only one write operation required. Figures 16
and 17 show that when comparing with other databases,
MySQL consumemore time; similarly, as shown in Figure 18,
MySQL consumes more time in the remote backup as well.
To conclude from the above results, NoSQL database has

10 Scienti�c Programming

gained better performance when facing massive information
processing.

6. Conclusion

According to the experimental results of remote datacenter
backup, this paper has successfully realized the remote
HBase and/or Cassandra datacenter backup. In addition the
e
ectiveness-cost evaluation using C-P ratio is employed to
assess the e
ectiveness and e�ciency of remote datacenter
backup, and the assessment among various datacenters has
been completed over a �ve-year period. As a result, both
HBase and Cassandra yield the best C-P ratio when com-
paring with the alternatives, provided that our proposed
approach indeed gives us an insight into the assessment of
remote datacenter backup.

Conflict of Interests

�e authors declare that there is no con	ict of interests
regarding the publication of this paper.

Acknowledgment

�is work is supported by the Ministry of Science and
Technology, Taiwan, under Grant no.MOST 103-2221-E-390-
011.

References

[1] B. R. Chang, H.-F. Tsai, C.-M. Chen, and C.-F. Huang, “Analysis
of virtualized cloud server together with shared storage and
estimation of consolidation ratio and TCO/ROI,” Engineering
Computations, vol. 31, no. 8, pp. 1746–1760, 2014.

[2] B. R. Chang, H.-F. Tsai, and C.-M. Chen, “High-performed
virtualization services for in-cloud enterprise resource planning
system,” Journal of Information Hiding and Multimedia Signal
Processing, vol. 5, no. 4, pp. 614–624, 2014.

[3] B. R. Chang, C.-M. Chen, C.-F. Huang, and H.-F. Tsai, “Intel-
ligent adaptation for UEC video/voice over IP with access
control,” International Journal of Intelligent Information and
Database Systems, vol. 8, no. 1, pp. 64–80, 2014.

[4] C.-Y. Chen, B. R. Chang, and P.-S. Huang, “Multimedia aug-
mented reality information system for museum guidance,” Per-
sonal and Ubiquitous Computing, vol. 18, no. 2, pp. 315–322,
2014.

[5] D. Carstoiu, E. Lepadatu, and M. Gaspar, “Hbase-non SQL
database, performances evaluation,” International Journal of
Advanced Computer Technology, vol. 2, no. 5, pp. 42–52, 2010.

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized struc-
tured storage system,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 2, pp. 35–40, 2010.

[7] D. Ghosh, “Multiparadigm data storage for enterprise applica-
tions,” IEEE So	ware, vol. 27, no. 5, pp. 57–60, 2010.

[8] B. R. Chang, H.-F. Tsai, J.-C. Cheng, and Y.-C. Tsai, “High
availability and high scalability to in-cloud enterprise resource
planning system,” in Intelligent Data Analysis and Its Applica-
tions, Volume II, vol. 298 of Advances in Intelligent Systems and
Computing, pp. 3–13, Springer, Cham, Switzerland, 2014.

[9] J. Pokorny, “NoSQL databases: a step to database scalability
in web environment,” International Journal of Web Information
Systems, vol. 9, no. 1, pp. 69–82, 2013.

[10] A. Giersch, Y. Robert, and F. Vivien, “Scheduling tasks sharing
�les on heterogeneous master-slave platforms,” Journal of Sys-
tems Architecture, vol. 52, no. 2, pp. 88–104, 2006.

[11] A. J. Chakravarti, G. Baumgartner, andM. Lauria, “�e organic
grid: Self-organizing computation on a peer-to-peer network,”
IEEE Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans, vol. 35, no. 3, pp. 373–384, 2005.

[12] L. George, HBase: �e De
nitive Guide, O’Reilly Media,
Sebastopol, Calif, USA, 2011.

[13] E. Okorafor and M. K. Patrick, “Availability of Jobtracker
machine in Hadoop/MapReduce zookeeper coordinated clus-
ters,” Advanced Computing, vol. 3, no. 3, pp. 19–30, 2012.

[14] V. Parthasarathy, Learning Cassandra for Administrators, Packt
Publishing, Birmingham, UK, 2013.

[15] Y. Gu and R. L. Grossman, “Sector: a high performance wide
area community data storage and sharing system,” Future
Generation Computer Systems, vol. 26, no. 5, pp. 720–728, 2010.

[16] M. Slee, A. Agarwal, and M. Kwiatkowski, “�ri�: scalable
cross-language services implementation,” Facebook White
Paper 5, 2007.

[17] J. J. Maver and P. Cappy, Essential Facebook Development: Build
Successful Applications for the Facebook Platform, Addison-
Wesley, Boston, Mass, USA, 2009.

[18] R.Murthy and R. Goel, “Peregrine: low-latency queries onHive
warehouse data,” XRDS: Crossroads, �e ACM Magazine for
Students—Big Data, vol. 19, no. 1, pp. 40–43, 2012.

[19] A. C. Ramo, R. G. Diaz, and A. Tsaregorodtsev, “DIRAC REST-
ful API,” Journal of Physics: Conference Series, vol. 396, no. 5,
Article ID 052019, 2012.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

