
OFFPRINT

Empirical analysis of web-based user-object
bipartite networks

Ming-Sheng Shang, Linyuan Lü, Yi-Cheng Zhang and Tao
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Abstract – Understanding the structure and evolution of web-based user-object networks is a
significant task since they play a crucial role in e-commerce nowadays. This letter reports the
empirical analysis on two large-scale web sites, audioscrobbler.com and del.icio.us, where
users are connected with music groups and bookmarks, respectively. The degree distributions and
degree-degree correlations for both users and objects are reported. We propose a new index, named
collaborative similarity, to quantify the diversity of tastes based on the collaborative selection.
Accordingly, the correlation between degree and selection diversity is investigated. We report
some novel phenomena well characterizing the selection mechanism of web users and outline the
relevance of these phenomena to the information recommendation problem.

Copyright c© EPLA, 2010

Introduction. – The last decade has witnessed
tremendous activities devoted to the understanding of
complex networks [1–5]. A particular class of networks is
the bipartite networks, whose nodes are divided into two
sets X and Y , and only the connection between two nodes
in different sets is allowed. Many systems are naturally
modeled as bipartite networks [6]: the human sexual
network [7] consists of men and women, the metabolic
network [8] consists of chemical substances and chemical
reactions, the collaboration network [9] consists of acts
and actors, the Internet telephone network consists of
personal computers and phone numbers [10], etc. In
addition to the empirical analysis on the above-mentioned
bipartite networks, great effort has been made in how to
characterize bipartite networks [11–13], how to project
bipartite networks into monopartite networks [14–16] and
how to model bipartite networks [17–20].
An important class of bipartite networks is the web-

based user-object networks, which play the central role
in e-commerce for many online selling sites and online
services sites [21]. This class of networks has two specific
evolving mechanisms different from the well-understood
act-actor bipartite networks and human sexual networks.
Firstly, connections between existent users and objects are

(a)E-mail: zhutou@ustc.edu

generated moment by moment while this does not happen
in act-actor networks (e.g., one cannot add authors to
a scientific paper after its publication). Secondly, users
are active (to select) while objects are passive (to be
selected). This is different from the human sexual networks
where in principle both men and women are active. In
a word, the user-object networks are driven by users’
selections while the human sexual networks are driven
by matches. Bianconi et al. [22] investigated the effects
of the selection mechanisms of users on the network
evolution. Lambiotte and Ausloos [23,24] analyzed the
web-based bipartite network consisted of listeners and
music groups, especially, they developed a percolation-
based method to uncover the social communities and
music genres. Zhou et al. [15] proposed a method to better
measure the user similarity in general user-object bipartite
networks, which has found its applications in personalized
recommendations [15,25]. Huang et al. [26] analyzed the
user-object networks (called consumer-product networks
in ref. [26]) to better understand the purchase behavior
in e-commerce settings1. Grujić et al. [27,28] studied the
clustering patterns and degree correlations of user-movie
bipartite networks according to the large-scale Internet

1Instead of the direct analysis on bipartite networks, Huang
et al. [26] concentrated on the monopartite networks obtained from
the bipartite networks.
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Movie Database (IMDb), and applied a spectral analysis
method to detect communities in the projected weighted
networks. They found the monopartite networks for both
users and movies exhibit an assortative behavior while the
bipartite network shows a disassortative mixing pattern.
This letter reports the empirical analysis on two well-

known web sites, audioscrobbler.com and del.icio.us,
where users are connected with music groups and book-
marks, respectively. Our main findings are threefold:
i) All the object-degree distributions are power-law, while
the user-degree distributions obey stretched exponential
functions. ii) The networks exhibit disassortative mixing
patterns, indicating that the fresh users tend to view
popular objects and the unpopular objects are usually
collected by very active users. iii) We propose a new index,
named collaborative similarity, to quantify the diversity
of tastes based on the collaborative selection. The two
networks are of high average collaborative similarities for
both users and objects. For the lower-degree objects, a
negative correlation between the object collaborative simi-
larity and the object degree is observed, which disappears
when the degree exceeds the average object degree. For
audioscrobbler.com, the user collaborative similarity is
strongly negatively correlated with the user degree, decay-
ing in a logarithmic form for low degrees.

Basic concepts. – Figure 1 illustrates a small bipartite
network that consists of six users and eight objects. The
degree of user i, denoted by ki, is defined as the number of
objects connected to i. Analogously, the degree of object
α, denoted by dα, is the number of users connected to α.
For example, as shown in fig. 1, ki = dα = 3. The density
function, p(k), is the probability that a randomly selected
user is of degree k, while the cumulative function, P (k),
denotes the probability that a randomly selected user is
of degree no less than k. The nearest neighbors’ degree
for user i, denoted by dnn(i), is defined as the average
degree over all the objects connected to i. For example,
as shown in fig. 1, dnn(i) =

dα+dβ+dγ
3 = 73 . The degree-

dependent nearest neighbors’ degree, dnn(k) is the average
nearest neighbors’ degree over all the users of degree k,
that is, dnn(k) = 〈dnn(i)〉ki=k. Corresponding definitions
for objects, say p(d), P (d), knn(α) and knn(d), are similar
and thus omitted here.
The traditional clustering coefficient [29] cannot be used

to quantify the clustering pattern of a bipartite network
since it always give a zero value. Lind et al. [11] proposed
a variant counting the rectangular relations instead of
triadic clustering, which can be applied to general bipar-
tite networks. However, this letter aims at a special class
of bipartite networks, and thus we propose a new index to
characterize the clustering selections2 resulted from the
collaborative interests of users. A standard measure of

2Here the term “clustering” describes the fact that a user’s
selections are usually very similar to each other, and may belong to
a few clusters or communities according to the standard clustering
analysis or community detection.

Fig. 1: (Color online) Illustration of a small user-object bipar-
tite network.

object similarity according to the collaborative selection

is the Jaccard similarity [30], sαβ =
|Γα
⋂
Γβ |

|Γα
⋃
Γβ |
, where Γα

and Γβ are the sets of neighboring nodes of α and β,
respectively. Obviously, sαβ = sβα and 0� sαβ � 1 for any
α and β. For example, as shown in fig. 1, sαβ = sβγ =
1
3 and sαγ =

1
2 . The collaborative similarity of user i is

then defined as the average similarity between i’s selected
objects: Cu(i) =

1
ki(ki−1)

∑
α�=β sαβ , where α and β run

over all i’s neighboring objects. For example, as shown in
fig. 1, the collaborative similarity of user i is Cu(i) =

7
18 .

According to the definition, a user whose collections are
very similar to each other will have high collaborative
similarity. For example, a user who only watches science
fiction movies is probably of higher collaborative similar-
ity than the one who has very diverse interests of movies.
The user collaborative similarity of the whole network is
defined as Cu =

1
N ′

∑
i Cu(i), where i runs over all users

with degrees larger than 1 and N ′ denotes the number of
these users. The degree-dependent collaborative similar-
ity, Cu(k), is defined as the average collaborative similar-
ity over all the k-degree users. Corresponding definitions
for objects are as following: i) Co(α) =

1
dα(dα−1)

∑
i�=j sij ,

where sij =
|Γi
⋂
Γj |

|Γi
⋃
Γj |
is the Jaccard similarity between users

i and j; ii) Co =
1
M ′

∑
α Co(α), where M

′ denotes the
number of objects with degrees larger than 1; iii) Co(d) is
the average collaborative similarity over all the d-degree
objects.

Data. – This letter analyzes two data sets. One is
downloaded from audioscrobbler.com3 in January 2005
by Lambiotte and Ausloos [23,24], which consists of a
listing of users, together with the list of music groups the
users own in their libraries. Detailed information about
this data set can be found in refs. [23,24]. The other is a
random sampling of 104 users together with their collected

3
audioscrobbler.com is a well-known collaborative filtering web

site that allows user to create the personal web pages as their music
libraries and to discover new music groups form other users’ libraries.
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Table 1: The basic properties of the two data sets. N , M and E denote the number of users, objects and edges, respectively.
〈k〉 and 〈d〉 are the average user degree and average object degree. Cu and Co are the average collaborative similarity for users
and objects, and for comparison, s̄o and s̄u are the average similarities over all object pairs and over all user pairs, respectively.
The user selection is considered to be highly clustered (i.e., less diverse) since Cu≫ s̄o.

Data N M E 〈k〉 〈d〉 Cu s̄o Co s̄u

audioscrobbler.com 35916 617900 5028580 140.01 8.14 0.0267 9.96× 10−5 0.0198 4.82× 10−3

del.icio.us 10000 232658 1233995 123.40 5.30 0.0338 4.64× 10−4 0.0055 8.10× 10−4

Fig. 2: Distributions of user degrees, which obey the stretched
exponential form [32,33]. We therefore plot the cumulative
distribution P (k) instead of p(k) and show the linear fittings
of log(−logP (k)) vs. log k in the insets.

bookmarks (URLs) from del.icio.us4 in May 2008 [31].
Table 1 summarizes the basic statistics of these two data
sets.

Empirical results. – Figure 2 reports the degree
distributions for users, which do not follow either the
power-law form or the exponential form. In fact, they lie
in between exponential and power-law forms, and can be
well fitted by the so-called stretched exponential distri-
butions [32,33], as p(k)∼ kµ−1 exp[−( k

k0
)µ], where k0 is

a constant and 0� µ� 1 is the characteristic exponent.
The borderline µ= 1 corresponds to the usual exponen-
tial distribution. For µ smaller than unity, the distribution

4
del.icio.us is one of the most popular social bookmarking web

sites, which allows users not only to store and organize personal
bookmarks, but also to look into other users’ collections and find
what they might be interested in.

Fig. 3: Distributions of object degrees, which are power-law
(they can pass the Kolmogorov-Smirnov test with threshold
quantile 0.9) with exponents obtained by using the maximum
likelihood estimation [35].

presents a clear curvature in a log-log plot. The exponent
µ can be determined by considering the cumulative distri-
bution P (k)∼ exp[−( k

k0
)µ], which can be rewritten as

log(−logP (k))∼ µ log k. Therefore, using log k as x-axis
and log(−logP (k)) as y-axis, if the corresponding curve
can be well fitted by a straight line, then the slope equals
µ. Accordingly, as shown in fig. 2, the exponents µ for
audioscrobbler.com and del.icio.us are 0.76 and 0.66,
respectively. These results have refined the previous statis-
tics [23], where the exponential function is directly used to
fit the user-degree distribution of audioscrobbler.com5.
As shown in fig. 3, all the object-degree distributions are
power-laws, as p(d)∼ d−φ. The exponents, φ, obtained by
the maximum likelihood estimation [35], are shown in the
corresponding figures.

5This paper does not consider the evolving properties, but it is
worthwhile to remind the readers that the user-degree distribution
may not be stationary, as shown by Gonçalves and Ramasco [34].
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Fig. 4: The degree-dependent nearest neighbors’ degree, dnn(k),
as a function of user-degree, k.

Fig. 5: The degree-dependent nearest neighbors’ degree, knn(d),
as a function of object-degree, d.

As shown in fig. 4 and fig. 5, for both users and
objects, the degree is negatively correlated with the aver-
age nearest neighbors’ degree, exhibiting a disassortative
mixing pattern. This result is in accordance with the
user-movie bipartite network [27,28], indicating that the
fresh users tend to view popular objects and the unpop-
ular objects are usually collected by very active users.
The correlation between dnn and k is stronger than this
between knn and d, which may be caused by the fact that
the users are active while the objects are passive.
Table 1 reports the user collaborative similarity and

object collaborative similarity for the whole network.
For comparison, we calculate the average user simi-
larity over all user pairs, s̄u =

1
N(N−1)

∑
i�=j sij , and

the average object similarity over all object pairs,
s̄o =

1
M(M−1)

∑
α�=β sαβ . The connections for both users

and objects are considered to be highly clustered since
Cu≫ s̄o and Co≫ s̄u. The similarity-degree correlations
for users are reported in fig. 6. For audioscrobbler.com,
a remarkable negative correlation for small-degree users is
observed. Actually, Cu(k) decays in a logarithmic form for
small k. This result agrees with our daily experience that a
heavy listener generally has broader interests of music6. In
contrast, for del.icio.us a weakly positive correlation is
observed for small-degree users. One reason for the differ-
ence between audioscrobbler.com and del.icio.us is
that the collections in audioscrobbler.com only reflect
the particular tastes of music, while the collections of
URLs contain countless topics wherein music is just a very
small one. In audioscrobbler.com, collections of a heavy
listener (i.e., large-degree user) usually consist of several
music genres, each of which contains a considerable

6In the statistical level, the collaborative similarity reflects the
diversity of a user’s tastes: the higher value corresponds to the
narrower tastes.

Fig. 6: (Color online) The similarity-degree correlations for
users. Blue dashed lines denote the collaborative similarities of
the whole networks, Cu. The inset displays the early decaying
behavior of Cu(k) for audioscrobbler.com, which obeys a
logarithmic form as Cu(k)∼ log k.

number of music groups, while most of the music groups
collected by a small-degree user belong to one genre.
However, in del.icio.us, even for a very-small-degree
user, his/her few collected URLs can be of highly diverse
topics. Therefore, for del.icio.us, one can not infer
that a small-degree user has limited interests. In addi-
tion, collections of music groups are mainly determined
by personal interests, while we have checked that in
del.icio.us, many bookmarks are less personalized,
that is, they can not well reflect the personal interests
of users. For example, online tools like translators and
search engines, and information services webs like the
train schedules and air ticket centers are frequently
collected. However, till now, we have not yet fully under-
stood the origins of those nontrivial correlations, a future
exploration making use of content-based or topic-based
analysis on the URLs may provide a clearer picture.
Figure 7 reports the similarity-degree correlations for

objects. For the lower-degree objects, a negative corre-
lation between the object collaborative similarity and
the object degree is observed, which disappears at about
the average object degree. This result suggests that the
unpopular objects (i.e., small-degree objects) may be
more important than indicated by their degrees, since the
collections of unpopular objects can be considered as a
good indicator for the common interests —it is not very
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Fig. 7: (Color online) The similarity-degree correlations for
objects. Blue dashed lines denote the collaborative similarities
of the whole networks, Co. The insets display the early decaying
behavior of Co(d), with the red dashed lines denoting the
average object degrees.

meaningful if two users both select a popular object, while
if a very unpopular object is simultaneously selected by
two users, there must be some common tastes shared
by these two users. In fact, the empirical result clearly
shows that the users commonly collected some unpopular
objects have much higher similarity to each other than the
average. The information contained by those small-degree
objects, usually having little effect in previous algorithms,
may be utilized for better community detection and infor-
mation recommendation.

Conclusion and discussion. – Today, the explod-
ing information confronts us with an information over-
load: we are facing too many alternatives to be able to
find out what we really need. The collaborative filtering
web sites provide a promising way to help us in automat-
ically finding out the relevant objects by analyzing our
past activities. In principle, all our past activities can be
stored in the user-object networks (maybe in a weighted
manner), which play the central role in those online
services. This letter reports the empirical analysis of two
user-object networks based on the data downloaded from
audioscrobbler.com and del.icio.us. We found that
all the object-degree distributions are power-law while the
user-degree distributions obey stretched exponential func-
tions, which refines the previous results [23]. For both

users and objects, the connections display disassortative
mixing patterns, in accordance with the observations in
user-movie networks [27,28]. We propose a new index,
named collaborative similarity, to quantify the diversity
of tastes based on the collaborative selection. The connec-
tions for both users and objects are considered to be highly
clustered (i.e., less diverse) since the collaborative similar-
ities are much larger than the corresponding background
similarities.
A problem closely related to the analysis of web-based

user-object bipartite networks is how to recommend
objects to users in a personalized manner [36,37]. The
empirical results reported in this letter provide some
insights in the design of recommendation algorithms. For
example, as shown in fig. 4, the average degree of collected
objects is negatively correlated with the user’s degree, and
the fresh users tend to select very popular objects, that is,
they have not well established their personalities and their
collections are mostly popularity-based. This phenom-
enon gives an empirical explanation of the so-called
cold-start problem [38], namely the personalized recom-
mendations to the very-small-degree users are often
inaccurate. In addition, if we compare the significance
of the user collaborative similarity, Cu/s̄o, and the
significance of the object collaborative similarity, Co/s̄u,
we will find that for both audioscrobbler.com and
del.icio.us, the former (268.07 and 72.84) are much
larger than the latter (4.11 and 6.79). Therefore, the fact
that some users have commonly selected an object does
not imply that they are much more similar to each other
than two random users, however the objects selected by
a user are statistically much more similar to each other
than two random objects. The collaborative filtering
techniques have two categories in general [36,37]: one
is user-based, which recommends to the target user the
objects collected by the users sharing similar tastes; the
other is object-based, which recommends the objects simi-
lar to the ones the target user preferred in the past. The
comparison between Cu/s̄o and Co/s̄u indicates that the
object-based collaborative filtering will perform better,
and such a kind of comparison can be considered as a
helpful evidence before the choice between any user-based
and object-based algorithms [39]. In the individual level,
collaborative similarity characterizes the personal habit
whether a user has diverse interests or focuses on narrow
alternatives. Such information about user tastes can be
used to enhance the recommendation accuracy [40]. We
have recently proposed a personalized recommendation
algorithm where a free parameter is introduced to control
the diversification of recommendations [41]. We could
assign different users different parameters according to
their collaborative similarities which may improve the
user experience. Furthermore, the similarity-degree corre-
lations reported in fig. 7 suggest that the small-degree
objects actually play a more significant role than indicated
by their degrees. In fact, we have already demonstrated
that to emphasize the impacts of small-degree objects
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can remarkably enhance the recommendation algorithms’
accuracies [42,43]. We think the further in-depth analysis
of information contained by the small-degree objects can
find its applications in the design of more efficient and
accurate recommendation algorithms.
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