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Abstract. This paper evaluates the performance of different criterion functions in the context of partitional
clustering algorithms for document datasets. Our study involves a total of seven different criterion functions, three
of which are introduced in this paper and four that have been proposed in the past. We present a comprehensive
experimental evaluation involving 15 different datasets, as well as an analysis of the characteristics of the various
criterion functions and their effect on the clusters they produce. Our experimental results show that there are a set
of criterion functions that consistently outperform the rest, and that some of the newly proposed criterion functions
lead to the best overall results. Our theoretical analysis shows that the relative performance of the criterion functions
depends on (i) the degree to which they can correctly operate when the clusters are of different tightness, and (ii)
the degree to which they can lead to reasonably balanced clusters.
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1. Introduction

The topic of clustering has been extensively studied in many scientific disciplines and a
variety of different algorithms have been developed (MacQueen, 1967; King, 1967; Zahn,
1971; Sneath & Sokal, 1973; Dempster, Laird, & Rubin, 1977; Jackson, 1991; Ng & Han,
1994; Berry, Dumais, & O’Brien, 1995; Cheeseman & Stutz, 1996; Ester et al., 1996; Guha,
Rastogi, & Shim, 1998; Boley, 1998; Guha, Rastogi, & Shim, 1999; Karypis, Han, & Kumar,
1999a; Strehl & Ghosh, 2000; Ding et al., 2001). Two recent surveys on the topics (Jain,
Murty, & Flynn, 1999; Han, Kamber, & Tung, 2001) offer a comprehensive summary
of the different applications and algorithms. These algorithms can be categorized along
different dimensions based either on the underlying methodology of the algorithm, leading
to agglomerative or partitional approaches, or on the structure of the final solution, leading
to hierarchical or non-hierarchical solutions.

In recent years, various researchers have recognized that partitional clustering algorithms
are well-suited for clustering large document datasets due to their relatively low compu-
tational requirements (Cutting et al., 1992; Larsen & Aone, 1999; Steinbach, Karypis, &
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Kumar, 2000). A key characteristic of many partitional clustering algorithms is that they use
a global criterion function whose optimization drives the entire clustering process. For some
of these algorithms the criterion function is implicit (e.g., PDDP (Boley, 1998)), whereas
for other algorithms (e.g, K -means (MacQueen, 1967), Cobweb (Fisher, 1987), and Auto-
class (Cheeseman & Stutz, 1996)) the criterion function is explicit and can be easily stated.
This latter class of algorithms can be thought of as consisting of two key components.
First is the criterion function that the clustering solution optimizes, and second is the actual
algorithm that achieves this optimization.

The focus of this paper is to study the suitability of different criterion functions to
the problem of clustering document datasets. In particular, we evaluate a total of seven
criterion functions that measure various aspects of intra-cluster similarity, inter-cluster
dissimilarity, and their combinations. These criterion functions utilize different views of
the underlying collection by either modeling the documents as vectors in a high dimen-
sional space or by modeling the collection as a graph. We experimentally evaluated the
performance of these criterion functions using 15 different datasets obtained from various
sources. Our experiments show that different criterion functions do lead to substantially dif-
ferent results and that there are a set of criterion functions that produce the best clustering
solutions.

Our analysis of the different criterion functions shows that their overall performance
depends on the degree to which they can correctly operate when the dataset contains clusters
of different tightness (i.e., they contain documents whose average pairwise similarities are
different) and the degree to which they can produce balanced clusters. Moreover, our analysis
also shows that the sensitivity to the difference in the cluster tightness can also explain an
outcome of our study (that was also observed in earlier results reported in Steinbach,
Karypis, and Kumar (2000)), that for some clustering algorithms the solution obtained by
performing a sequence of repeated bisections is better (and for some criterion functions
by a considerable amount) than the solution obtained by computing the clustering directly.
When the solution is computed via repeated bisections, the tightness difference between
the two clusters that are discovered is in general smaller than the tightness differences
between all the clusters. As a result, criterion functions that cannot handle well variation in
cluster tightness tend to perform substantially better when used to compute the clustering
via repeated bisections.

The rest this paper is organized as follows. Section 2 provides some information on the
document representation and similarity measure used in our study. Section 3 describes the
different criterion functions and the algorithms used to optimize them. Section 4 provides
the detailed experimental evaluation of the various criterion functions. Section 5 analyzes
the different criterion functions and explains their performance. Finally, Section 6 provides
some concluding remarks.

2. Preliminaries

Document representation. The various clustering algorithms described in this paper rep-
resent each document using the well-known term frequency-inverse document frequency
(tf-idf) vector-space model (Salton, 1989). In this model, each document d is considered to



SELECTED CRITERION FUNCTIONS FOR DOCUMENT CLUSTERING 313

be a vector in the term-space and is represented by the vector

dtfidf = (tf1 log(n/df1), tf2 log(n/df2), . . . , tfm log(n/dfm)),

where tfi is the frequency of the i th term (i.e., term frequency), n is the total number of
documents, and dfi is the number of documents that contain the i th term (i.e., document
frequency). To account for documents of different lengths, the length of each document
vector is normalized so that it is of unit length. In the rest of the paper, we will assume that
the vector representation for each document has been weighted using tf-idf and normalized
so that it is of unit length.

Similarity measures. Two prominent ways have been proposed to compute the similarity
between two documents di and d j . The first method is based on the commonly-used (Salton,
1989) cosine function

cos(di , d j ) = di
t d j/(‖di‖‖d j‖),

and since the document vectors are of unit length, it simplifies to di
t d j . The second method

computes the similarity between the documents using the Euclidean distance dis(di , d j ) =
‖di − d j‖. Note that besides the fact that one measures similarity and the other measures
distance, these measures are quite similar to each other because the document vectors are
of unit length.

Definitions. Throughout this paper we will use the symbols n, m, and k to denote the
number of documents, the number of terms, and the number of clusters, respectively. We
will use the symbol S to denote the set of n documents to be clustered, S1, S2, . . . , Sk to
denote each one of the k clusters, and n1, n2, . . . , nk to denote their respective sizes. Given a
set A of documents and their corresponding vector representations, we define the composite
vector DA to be DA = ∑

d∈A d , and the centroid vector CA to be CA = DA/|A|.

3. Document clustering

At a high-level the problem of clustering is defined as follows. Given a set S of n documents,
we would like to partition them into a pre-determined number of k subsets S1, S2, . . . , Sk ,
such that the documents assigned to each subset are more similar to each other than the
documents assigned to different subsets.

As discussed in the introduction, our focus is to study the suitability of various clustering
criterion functions in the context of partitional document clustering algorithms. Conse-
quently, given a particular clustering criterion function C, the clustering problem is to
compute a k-way clustering solution such that the value of C is optimized. In the rest of this
section we first present a number of different criterion functions that can be used to both
evaluate and drive the clustering process, followed by a description of the algorithms that
were used to perform their optimization.
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Table 1. Clustering criterion functions.
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3.1. Clustering criterion functions

Our study involves a total of seven different clustering criterion functions that are defined
in Table 1. These functions optimize various aspects of intra-cluster similarity, inter-cluster
dissimilarity, and their combinations, and represent some of the most widely-used criterion
functions for document clustering.

The I1 criterion function (Eq. (1)) maximizes the sum of the average pairwise similari-
ties (as measured by the cosine function) between the documents assigned to each cluster
weighted according to the size of each cluster and has been used successfully for cluster-
ing document datasets (Puzicha, Hofmann, & Buhmann, 2000). The I2 criterion function
(Eq. (2)) is used by the popular vector-space variant of the K -means algorithm (Cutting
et al., 1992; Larsen & Aone, 1999; Dhillon & Modha, 2001; Steinbach, Karypis, & Kumar,
2000). In this algorithm each cluster is represented by its centroid vector and the goal is
to find the solution that maximizes the similarity between each document and the centroid
of the cluster that is assigned to. Comparing I1 and I2 we see that the essential difference
between them is that I2 scales the within-cluster similarity by the ‖Dr‖ term as opposed to
the nr term used by I1. ‖Dr‖ is the square-root of the pairwise similarity between all the
document in Sr and will tend to emphasize clusters whose documents have smaller pairwise
similarities compared to clusters with higher pairwise similarities.

The E1criterion function (Eq. (3)) computes the clustering by finding a solution that
separates the documents of each cluster from the entire collection. Specifically, it tries to
minimize the cosine between the centroid vector of each cluster and the centroid vector
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of the entire collection. The contribution of each cluster is weighted proportionally to its
size so that larger clusters will be weighted higher in the overall clustering solution. E1was
motivated by multiple discriminant analysis and is similar to minimizing the trace of the
between-cluster scatter matrix (Duda, Hart, & Stork, 2001).

The H1 and H2 criterion functions (Eqs. (4) and (5)) are obtained by combining criterion
I1 with E1, and I2 with E1, respectively. Since E1 is minimized, both H1 and H2 need to be
maximized as they are inversely related to E1.

The criterion functions that we described so far, view each document as a multidimen-
sional vector. An alternate way of modeling the relations between documents is to use graphs.
Two types of graphs are commonly-used in the context of clustering. The first corresponds
to the document-to-document similarity graph Gs and the second to the document-to-term
bipartite graph Gb (Beeferman & Berger, 2000; Zha et al., 2001a; Dhillon, 2001). Gs is
obtained by treating the pairwise similarity matrix of the dataset as the adjacency matrix
of Gs , whereas Gb is obtained by viewing the documents and the terms as the two sets of
vertices (Vd and Vt ) of a bipartite graph. In this bipartite graph, if the i th document contains
the j th term, then there is an edge connecting the corresponding i th vertex of Vd to the j th
vertex of Vt . The weights of these edges are set using the tf-idf model discussed in Section 2.

Viewing the documents in this fashion, a number of edge-cut-based criterion functions
can be used to cluster document datasets (Cheng & Wei, 1991; Hagen & Kahng, 1991; Shi
& Malik, 2000; Ding et al., 2001; Zha et al., 2001a; Dhillon, 2001). G1 and G2 (Eqs. (6) and
(7)) are two such criterion functions that are defined on the similarity and bipartite graphs,
respectively. The G1 function (Ding et al., 2001) views the clustering process as that of par-
titioning the documents into groups that minimize the edge-cut of each partition. However,
because this edge-cut-based criterion function may have trivial solutions the edge-cut of
each cluster is scaled by the sum of the cluster’s internal edges (Ding et al., 2001). Note
that cut (Sr , S − Sr ) in Eq. (6) is the edge-cut between the vertices in Sr and the rest of
the vertices S − Sr , and can be re-written as Dr

t (D − Dr ) since the similarity between
documents is measured using the cosine function. The G2 criterion function (Zha et al.,
2001a; Dhillon, 2001) views the clustering problem as a simultaneous partitioning of the
documents and the terms so that it minimizes the normalized edge-cut (Shi & Malik, 2000)
of the partitioning. Note that Vr is the set of vertices assigned to the r th cluster and W (Vr )
is the sum of the weights of the adjacency lists of the vertices assigned to the r th cluster.

3.2. Criterion function optimization

There are many techniques that can be used to optimize the criterion functions described
in the previous section. They include relatively simple greedy schemes, iterative schemes
with varying degree of hill-climbing capabilities, and powerful but computationally ex-
pensive spectral-based optimizers (MacQueen, 1967; Cheeseman & Stutz, 1996; Fisher,
1996; Meila & Heckerman, 2001; Karypis, Han, & Kumar, 1999b; Boley, 1998; Zha et al.,
2001b; Zha et al., 2001a; Dhillon, 2001). Despite this wide-range of choices, in our study,
the various criterion functions were optimized using a simple and obvious greedy strategy.
This was primarily motivated by our experience with document datasets (and similar results
presented in Savaresi and Boley (2001)), which showed that greedy-based schemes (when
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run multiple times) produce comparable results to those produced by more sophisticated
optimization algorithms for the range of the number of clusters that we used in our experi-
ments. Nevertheless, the choice of the optimization methodology can potentially impact the
relative performance of the various criterion functions, since that performance may depend
on the optimizer (Fisher, 1996). However, as we will see later in Section 5, our analysis
of the criterion functions correlates well with our experimental results, suggesting that the
choice of the optimizer does not appear to be biasing the experimental comparisons.

Our greedy optimizer computes the clustering solution by first obtaining an initial k-way
clustering and then applying an iterative refinement algorithm to further improve it. During
initial clustering, k documents are randomly selected to form the seeds of the clusters
and each document is assigned to the cluster corresponding to its most similar seed. This
approach leads to an initial clustering solution for all but the G2 criterion function as it
does not produce an initial partitioning for the vertices corresponding to the terms (Vt ). The
initial partitioning of Vt is obtained by assigning each term v to the partition that is most
connected with. The iterative refinement strategy that we used is based on the incremental
refinement scheme described in Duda, Hart, and Stork (2001). During each iteration, the
documents are visited in a random order and each document is moved to the cluster that
leads to the highest improvement in the value of the criterion function. If no such cluster
exists, then the document does not move. The refinement phase ends, as soon as an iteration
is performed in which no documents were moved between clusters. Note that in the case
of G2, the refinement algorithm alternates between document-vertices and term-vertices
(Kolda & Hendrickson, 2000).

The algorithms used during the refinement phase are greedy in nature, they are not
guaranteed to converge to a global optimum, and the local optimum solution they obtain
depends on the particular set of seed documents that were selected to obtain the initial
clustering. To eliminate some of this sensitivity, the overall process is repeated a number of
times. That is, we compute N different clustering solutions (i.e., initial clustering followed
by cluster refinement), and the one that achieves the best value for the particular criterion
function is kept. In all of our experiments, we used N = 10. For the rest of this discussion
when we refer to a clustering solution we will mean the solution that was obtained by
selecting the best (with respect to the value of the respective criterion function) out of these
N potentially different solutions.

4. Experimental results

We experimentally evaluated the performance of the different clustering criterion functions
on a number of different datasets. In the rest of this section we first describe the various
datasets and our experimental methodology, followed by a description of the experimental
results.

4.1. Document collections

In our experiments, we used a total of 15 datasets (http://www.cs.umn.edu/˜karypis/cluto/
files /datasets.tar.gz.) whose general characteristics and sources are summarized in Table 2.
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Table 2. Summary of datasets used to evaluate the various clustering criterion functions.

No. of No. of No. of
Data Source documents terms classes

classic CACM/CISI/CRANFIELD/MEDLINE 7089 12009 4
(ftp://ftp.cs.cornell.edu/pub/smart)

fbis FBIS (TREC-5 (TREC, 1999)) 2463 12674 17

hitech San Jose Mercury (TREC, TIPSTER Vol. 3) 2301 13170 6

reviews San Jose Mercury (TREC, TIPSTER Vol. 3) 4069 23220 5

sports San Jose Mercury (TREC, TIPSTER Vol. 3) 8580 18324 7

la12 LA Times (TREC-5 (TREC, 1999)) 6279 21604 6

new3 TREC-5 & TREC-6 (TREC, 1999) 9558 36306 44

tr31 TREC-5 & TREC-6 (TREC, 1999) 927 10128 7

tr41 TREC-5 & TREC-6 (TREC, 1999) 878 7454 10

ohscal OHSUMED-233445 (Hersh et al., 1994) 11162 11465 10

re0 Reuters-21578 (Lewis, 1999) 1504 2886 13

re1 Reuters-21578 (Lewis, 1999) 1657 3758 25

k1a WebACE (Han et al., 1998) 2340 13879 20

k1b WebACE (Han et al., 1998) 2340 13879 6

wap WebACE (Han et al., 1998) 1560 8460 20

The smallest of these datasets contained 878 documents and the largest contained 11,162
documents. To ensure diversity in the datasets, we obtained them from different sources.
For all datasets we used a stop-list to remove common words and the words were stemmed
using Porter’s suffix-stripping algorithm (Porter, 1980). Moreover, any term that occurs in
fewer than two documents was eliminated.

4.2. Experimental methodology and metrics

For each one of the different datasets we obtained a 5-, 10-, 15-, and 20-way clustering
solution that optimized the various clustering criterion functions shown in Table 1. The
quality of a clustering solution was evaluated using the entropy measure that is based on
how the various classes of documents are distributed within each cluster. Given a particular
cluster Sr of size nr , the entropy of this cluster is defined to be

E(Sr ) = − 1

log q

q∑
i=1

ni
r

nr
log

ni
r

nr
,

where q is the number of classes in the dataset and ni
r is the number of documents of the

i th class that were assigned to the r th cluster. The entropy of the entire solution is defined
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to be the sum of the individual cluster entropies weighted according to the cluster size, i.e.,

Entropy =
k∑

r=1

nr

n
E(Sr ).

A perfect clustering solution will be the one that leads to clusters that contain documents
from only a single class, in which case the entropy will be zero. In general, the smaller the
entropy values, the better the clustering solution is.

To eliminate any instances that a particular clustering solution for a particular criterion
function got trapped into a bad local optimum, in all of our experiments we found ten
different clustering solutions. As discussed in Section 3.2 each of these ten clustering
solutions correspond to the best solution (in terms of the respective criterion function) out
of ten different initial partitioning and refinement phases. As a result, for each particular
value of k and criterion function we generated 100 different clustering solutions. The overall
number of experiments that we performed was 3 ∗ 100 ∗ 4 ∗ 8 ∗ 15 = 144,000, that were
completed in about 8 days on a Pentium III@600MHz workstation.

One of the problems associated with such large-scale experimental evaluation is that of
summarizing the results in a meaningful and unbiased fashion. Our summarization is done
as follows. For each dataset and value of k, we divided the entropy obtained by a particular
criterion function by the smallest entropy obtained for that particular dataset and value of k
over the different criterion functions. These ratios represent the degree to which a particular
criterion function performed worse than the best criterion function for that dataset and value
of k. These ratios are less sensitive to the actual entropy values and the particular value of k.
We will refer to these ratios as relative entropies. Now, for each criterion function and value
of k we averaged these relative entropies over the various datasets. A criterion function that
has an average relative entropy close to 1.0 indicates that this function did the best for
most of the datasets. On the other hand, if the average relative entropy is high, then this
criterion function performed poorly. In addition to these numerical averages, we evaluated
the statistical significance of the relative performance of the criterion functions using a
paired-t test (Devore & Peck, 1997) based on the original entropies for each dataset. The
original entropy values for all the experiments presented in this paper can be found in Zhao
and Karypis (2001).

4.3. Evaluation of direct k-way clustering

Our first set of experiments was focused on evaluating the quality of the clustering so-
lutions produced by the various criterion functions when they were used to compute a
k-way clustering solution directly. The values for the average relative entropies for the
5-, 10-, 15-, and 20-way clustering solutions are shown in Table 3. The row labeled
“Avg” contains the average of these averages over the four sets of solutions. Furthermore,
the last column shows the relative ordering of the different schemes using the paired-t
test.

From these results we can see that the I1 and the G2 criterion functions lead to clustering
solutions that are consistently worse (in the range of 19–35%) than the solutions obtained
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Table 3. Average relative entropies for the clustering solutions obtained via direct k-way clustering and their
statistical significance.

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value = .05

5 1.361 1.041 1.044 1.069 1.033 1.092 1.333 (I1,G2) � (G1,H1) � (E1, I2,H2)

10 1.312 1.042 1.069 1.035 1.040 1.148 1.380 G2 � I1 � G1 � (E1,H2,H1, I2)

15 1.252 1.019 1.071 1.029 1.029 1.132 1.402 G2 � I1 � G1 � E1 � (H2,H1, I2)

20 1.236 1.018 1.086 1.022 1.035 1.139 1.486 G2 � I1 � G1 � E1 � H2 � (I2,H1)

Avg 1.290 1.030 1.068 1.039 1.034 1.128 1.400

Underlined entries represent the best performing scheme in terms of average relative entropies. Note that “�”
indicates that schemes on the right are significantly better than the schemes on the left, and “( )” indicates that
the relationship is not significant. The order of the schemes within parentheses represent the order of the weak
relationship.

using the other criterion functions. On the other hand, the I2,H2, andH1 criterion functions
lead to the best solutions irrespective of the number of clusters. Over the entire set of
experiments, these methods are either the best or always within 2% of the best solution.
Finally, E1 performs the next best followed by G1 that produces solutions whose average
relative entropy is 9% worse than those produced by the best scheme.

4.4. Evaluation of k-way clustering via repeated bisections

Our second set of experiments was focused on evaluating the clustering solutions produced
by the various criterion functions when the overall solution was obtained via a sequence of
cluster bisections (RB). In this approach, a k-way solution is obtained by first bisecting the
entire collection. Then, one of the two clusters is selected and it is further bisected, leading
to a total of three clusters. This step of selecting and bisecting a cluster is performed k − 1
times leading to the desired k-way clustering solution. Each of these bisections is performed
so that the resulting bisection optimizes a particular criterion function. However, the overall
k-way clustering solution will not necessarily be at a local optimum with respect to that
criterion function.

The key step in this algorithm is the method used to select which cluster to bisect next
and a number of different approaches were described in Steinbach, Karypis, and Kumar
(2000), Karypis and Han (2000) and Savaresi et al. (2002). In all of our experiments, we
selected the largest cluster, as this approach leads to reasonably good and balanced clustering
solutions (Steinbach, Karypis, & Kumar, 2000).

The average relative entropies of the resulting solutions are shown in Table 4, and these
results are in general consistent with those obtained for direct k-way clustering (Table 3).
The I1 and G2 functions lead to the worst solutions, H2 leads to the best overall solutions,
and I2, E1, and G1 are within 2% of the best. However, in the case of RB, there is a
reduction in the relative difference between the best and the worst schemes. For example,
G2 is only 13% worse than the best (compared to 35% for direct k-way). Similar trends
can be observed for the other functions. This relative improvement becomes most apparent
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Table 4. Average relative entropies for the clustering solutions obtained via repeated bisections and their statistical
significance.

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value = .05

5 1.207 1.050 1.060 1.083 1.049 1.053 1.191 (I1,G2) � (H1, E1,G1, I2,H2)

10 1.243 1.112 1.083 1.129 1.056 1.106 1.221 (I1,G2) � (H1, I2,G1, E1,H2)

15 1.190 1.085 1.077 1.102 1.079 1.085 1.205 (G2, I1) � (H1,G1, E1, I2,H2)

20 1.183 1.070 1.057 1.085 1.072 1.075 1.209 (G2, I1) � (H1,G1, E1, I2,H2)

Avg 1.206 1.079 1.069 1.100 1.064 1.080 1.207

Figure 1. (left chart) The relative performance of direct k-way clustering over that of repeated bisections (RB).
(right chart) The relative performance of repeated bisections-based clustering followed by k-way refinement over
that of repeated bisections alone. These results correspond to averages over the different datasets.

for the G1 criterion function that now almost always performs within 2% of the best. The
reason for these improvements will be discussed in Section 5.

Figure 1 compares the quality of the solutions obtained via direct k-way to those ob-
tained via repeated bisections. These plots were obtained by dividing the entropies of
the solutions obtained by the direct k-way approach with those obtained by the RB ap-
proach and averaging them over the fifteen datasets. Ratios that are greater than one in-
dicate that the RB approach leads to better solutions than direct k-way and vice versa.
From these plots we see that the direct k-way solutions obtained by I1, G1, and G2 are
worse than those obtained by RB clustering. For the remaining functions, the relative per-
formance appears to be sensitive to the number of clusters. For small number of clus-
ters, the direct approach tends to lead to better solutions; however, as the number of
clusters increases the RB approach tends to outperform it. In fact, the sensitivity on k
appears to be true for all seven criterion functions, and the main difference has to do
with how quickly the relative quality of the direct k-way clustering solution degrades.
Among the different functions, I2, H1, and H2 appear to be the least sensitive as their
relative performance does not change significantly between the two clustering methods as k
increases.
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Table 5. Average relative entropies for the clustering solutions obtained via repeated bisections followed by
k-way refinement and their statistical significance.

k I1 I2 E1 H1 H2 G1 G2 Statistical significance test, p-value = .05

5 1.304 1.081 1.077 1.121 1.076 1.097 1.273 (I1,G2) � (H1,G1, E1, I2,H2)

10 1.278 1.065 1.088 1.063 1.051 1.127 1.255 (G2, I1) � G1 � (E1,H1, I2,H2)

15 1.234 1.037 1.089 1.057 1.046 1.140 1.334 G2 � I1 � (G1, E1) � (H1,H2, I2)

20 1.248 1.030 1.098 1.041 1.051 1.164 1.426 G2 � I1 � G1 � E1 � (H2,H1, I2)

Avg 1.266 1.053 1.088 1.070 1.056 1.132 1.322

4.5. Evaluation of k-way clustering via repeated bisections followed by k-way refinement

To further investigate the behavior of the RB-based clustering approach we performed
a sequence of experiments in which the final solution obtained by the RB approach for a
particular criterion function was further refined using the greedy k-way refinement algorithm
described in Section 3.2. We will refer to this scheme as RB-k-way. The average relative
entropies for this set of experiments are shown in Table 5.

Comparing the relative performance of the various criterion functions we can see that
they are more similar to those of direct k-way (Table 3) than those of the RB-based approach
(Table 4). In particular, I2, E1, H1, and H2 tend to outperform the rest, with I2 performing
the best. Also, we can see that both I1, G1, and G2 are considerably worse than the best
scheme. Figure 1 compares the relative quality of the RB-k-way solutions to the solutions
obtained by the RB-based scheme. Looking at these results we can see that by optimizing the
I1, E1, G1, and G2 criterion functions, the quality of the solutions become worse, especially
for large number of clusters. The largest degradation happens for G1and G2. On the other
hand, as we optimize either I2, H1, or H2, the overall cluster quality changes only slightly
(sometimes it gets better and sometimes it gets worse). These results verify the observations
we made in Section 4.4 that suggest that the optimization of some of the criterion functions
does not necessarily lead to better quality clusters, especially for large values of k.

5. Discussion and analysis

The experiments presented in Section 4 showed two interesting trends. First, the quality of
the solutions produced by some seemingly similar criterion functions is often substantially
different. For instance, both I1 and I2 find clusters by maximizing a particular within cluster
similarity function. However, I2 performs substantially better than I1. This is also true for
E1 and G1 that attempt to minimize a function that takes into account both the within cluster
similarity and the across cluster dissimilarity. However, in most of the experiments, E1 tends
to perform consistently better than G1. The second trend is that for many criterion functions,
the quality of the solutions produced via repeated bisections is better than the corresponding
solutions produced either via direct k-way clustering or after performing k-way refinement.
Furthermore, this performance gap seems to increase with the number of clusters k. In the
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Figure 2. The cluster-class distribution of the clustering solutions for the I1 and I2 criterion functions for the
sports dataset.

remainder of this section we present an analysis that explains the cause of these trends. Our
analyses are specific to selected criterion functions, and thus may have limited direct transfer
in cases where other criteria are used. However, we believe that such analyses of criteria
biases are important generally to better understand empirical findings. This is particularly
important in clustering studies, an area in which a plethora of criteria exist, some appearing
quite similar in form, but with very different implications for clustering results.

5.1. Analysis of the I1 and I2 criterion functions

As a starting point for analyzing the I1 and I2 criterion functions it is important to quali-
tatively understand the solutions that they produce. Figure 2 shows the 10-way clustering
solutions obtained for the sports dataset using the direct clustering approach for I1 and I2.
The rows of each subtable represent a particular cluster, and show the class distribution of
the documents assigned to it. The columns labeled “Size” show the number of documents
assigned to each cluster and those labeled “Sim” show the average pairwise similarity be-
tween the documents of each cluster. From these results we can see that both I1 and I2

produce solutions that contain a mixture of large, loose clusters and small, tight clusters.
However, I1 behaves differently from I2 in two ways. (i) I1’s solution has a cluster (cid
= 9) that contains a very large number of documents from different categories and very
low average pairwise similarities, whereas I2’s solution does not. This is also the reason
why I1’s solution has a higher overall entropy value compared to I2’s (0.357 vs 0.240). (ii)
Excluding this large poor cluster, I1’s remaining clusters tend to be quite pure and relatively
tight (i.e., high “Sim” values), whereas I2’s clusters are somewhat less pure and less tight.
The above observations on the characteristics of the solutions produced by I1 and I2 and
the reasons as to why the former leads to higher entropy solutions hold for the remaining
datasets as well.

To analyze this behavior we focus on the properties of an optimal clustering solution with
respect to either I1 or I2 and show how the tightness of each cluster affects the assignment
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of documents between the clusters. The following two propositions, whose proofs are in
Appendix A, state the properties that are satisfied by the optimal solutions produced by the
I1 and I2 criterion functions:

Proposition 1. Given an optimal k-way solution {S1, S2, . . . , Sk} with respect to I1, then
for each pair of clusters Si and Sj , each document d ∈ Si satisfies the following inequality:

δi − δ j ≥ µi − µ j

2
, (8)

where µi is the average pairwise similarity between the document of Si excluding d, δi is
the average pairwise similarity between d and the other documents of Si , µ j is the average
pairwise similarity between the document of S j , and δ j is the average pairwise similarity
between d and the documents of S j .

Proposition 2. Given an optimal k-way solution {S1, S2, . . . , Sk} with respect to I2, then
for each pair of clusters Si and Sj , each document d ∈ Si satisfies the following inequality:

δi

δ j
≥

√
µi

µ j
, (9)

where µi , µ j , δi , and δ j is as defined in Proposition 1.

From Eq. (8) with (9), we have that if the optimal solution contains clusters with substan-
tially different tightness, then both criterion functions lead to optimal solutions in which
documents that are more similar to a tighter cluster are assigned to a looser cluster. That
is, without loss of generality, if µi > µ j , then a document for which δi is small will be
assigned to Sj , even if δ j < δi . However, what differentiates the two criterion functions is
how small δ j can be relative to δi before such an assignment can take place. In the case of
I1, even if δ j = 0 (i.e., document d has nothing in common with the documents of Sj ), d
can still be assigned to Sj as long as δi < (µi − µ j )/2, i.e., d has a relatively low average
similarity with the documents of Si . On the other hand, I2 will only assign d to Sj if it has
a non-trivial average similarity to the documents of Sj (δ j > δi

√
µ j/µi ). In addition, when

δi and δ j are relatively small, that is

δ j < µ j
α − 1

2(
√

α − 1)
and δi < µi

√
α(α − 1)

2(
√

α − 1)
, where α = µi

µ j
,

for the same value of δ j , I1 assigns documents to Sj that have higher δi values than I2

does. Of course whether or not such document assignments will happen, depends on the
characteristics of the particular dataset, but as long as the dataset has such characteristics,
regardless of how I1 or I2 are optimized, they will tend to converge to this type of solution.

These observations explain the results shown in figure 2, in which I1’s clustering solution
contains nine fairly pure and tight clusters, and a single large and poor-quality cluster. That
single cluster acts almost like a garbage collector that attracts all the peripheral documents
of the other clusters.
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Figure 3. The cluster-class distribution of the clustering solutions for the E1 and G1 criterion functions for the
sports dataset.

5.2. Analysis of the E1 and G1 criterion functions

Both E1 and G1 functions measure the quality of the overall clustering solution by taking
into account the separation between clusters and the tightness of each cluster. However, as
the experiments presented in Section 4 show E1 consistently leads to better solutions than
G1. Figure 3 shows the 10-way clustering solutions produced by E1 and G1 for the sports
dataset and illustrates this difference in the overall clustering quality. As we can see E1 finds
clusters that are considerably more balanced than those produced by G1. In fact, the solution
obtained by G1 exhibits similar characteristics (but to a lesser extent) with the corresponding
solution obtained by the I1 criterion function described in the previous section. G1 tends to
produce a mixture of large and small clusters, with the smaller clusters being reasonably
tight and the larger clusters being quite loose.

In order to compare the E1 and G1 criterion functions it is important to rewrite them in
a way that makes their similarities and dissimilarities apparent. To this end, let µr be the
average similarity between the documents of the r th cluster Sr , and let ξr be the average
similarity between the documents in Sr to the entire set of documents S. Using these
definitions, the E1 and G1 functions (Eqs. (3) and (6)) can be rewritten as

E1 =
k∑

r=1

nr
Dr

t D

‖Dr‖ =
k∑

r=1

nr
nr nξr

nr
√

µr
= n

k∑
r=1

nr
ξr√
µr

, (10)

G1 =
k∑

r=1

Dr
t (D − Dr )

‖Dr‖2 =
(

k∑
r=1

nr nξr

n2
r µr

)
− k =

(
n

k∑
r=1

1

nr

ξr

µr

)
− k. (11)

Note that since k in Eq. (11) is constant, it does not affect the overall solution and we will
ignore it.

Comparing Eqs. (10) and (11) we can see that they differ on the way they measure the
quality of a particular cluster, and on how they combine these individual cluster quality
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measures to derive the overall quality of the clustering solution. In the case of E1, the
quality of the r th cluster is measured as ξr/

√
µr , whereas in the case of G1 it is measured

as ξr/µr . Since the quality of each cluster is inversely related to either µr or
√

µr , both
measures will prefer solutions in which there are no clusters that are extremely loose.
Because large clusters tend to have small µr values, both of the cluster quality measures
will tend to produce solutions that contain reasonably balanced clusters. Furthermore, the
sensitivity of G1’s cluster quality measure on clusters with small µr values is higher than the
corresponding sensitivity of E1 (µr ≤ √

µr because µr ≤ 1). Consequently, we would have
expected G1 to lead to more balanced solutions than E1, which as the results in figure 3 show
does not happen, suggesting that the second difference between E1 and G1 is the reason for
the unbalanced clusters.

The E1 criterion function sums the individual cluster qualities weighting them propor-
tionally to the size of each cluster. G1 performs a similar summation but each cluster quality
is weighted proportionally to the inverse of the size of the cluster. This weighting scheme
is similar to that used in the ratio-cut objective for graph partitioning (Cheng & Wei,
1991; Hagen & Kahng, 1991). Recall from our previous discussion that since the quality
measure of each cluster is inversely related to µr , the quality measure of large clusters will
have large values, as these clusters will tend to be loose (i.e., µr will be small). Now, in
the case of E1, by multiplying the quality measure of a cluster by its size, it ensures that
these large loose clusters contribute a lot to the overall value of E1’s criterion function. As
a result, E1 will tend to be optimized when there are no large loose clusters. On the other
hand, in the case of G1, by dividing the quality measure of a large loose cluster by its size,
it has the net effect of decreasing the contribution of this cluster to the overall value of G1’s
criterion function. As a result, G1 can be optimized at a point in which there exist some
large and loose clusters.

5.3. Analysis of the G2 criterion function

The various experiments presented in Section 4 showed that theG2 criterion function consis-
tently led to clustering solutions that were among the worst over the solutions produced by
the other criterion functions. To illustrate how G2 fails, figure 4 shows the 10-way clustering
solution that it produced via direct k-way clustering on the sports dataset. As we can see, G2

produces solutions that are highly unbalanced. For example, the sixth cluster contains over
2500 documents from many different categories, whereas the third cluster contains only
42 documents that are primarily from a single category. Note that, the clustering solution
produced by G2 is very similar to that produced by the I1 criterion function (figure 2).
In fact, for most of the clusters we can find a good one-to-one mapping between the two
schemes.

The nature of G2’s criterion function makes it extremely hard to analyze it. However, one
reason that can potentially explain the unbalanced clusters produced by G2 is the fact that it
uses a normalized-cut inspired approach to combine the separation between the clusters (as
measured by the cut) versus the size of the respective clusters. It has been shown in Ding
et al. (2001) that when the normalized-cut approach is used in the context of traditional
graph partitioning, it leads to a solution that is considerably more unbalanced than that
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G2 Criterion Function (Entropy=0.315)

Figure 4. The cluster-class distribution of the clustering solutions for the G2 criterion function for the sports
dataset.

obtained by the G1 criterion function. However, as our discussion in Section 5.2 showed,
even G1’s balancing mechanism often leads to quite unbalanced clustering solutions.

5.4. Analysis of direct k-way clustering versus repeated bisections

From our analysis of the I1, I2, and G1 criterion functions we know that based on the
difference between the tightness (i.e., the average pairwise similarity between the documents
in the cluster) of the two clusters, documents that are naturally part of the tighter cluster
will end up be assigned to the looser cluster. In other words, the various criterion functions
will tend to produce incorrect clustering results when clusters have different degrees of
tightness. Of course, the degree to which a particular criterion function is sensitive to
tightness differences will be different for the various criterion functions. When the clustering
solution is obtained via repeated bisections, the difference in tightness between each pair of
clusters in successive bisections will tend to be relatively small. This is because, each cluster
to be bisected, will tend to be relatively homogeneous (due to the way it was discovered),
resulting in a pair of subclusters with small tightness differences. On the other hand, when the
clustering is computed directly or when the final k-way clustering obtained via a sequence
of repeated bisections is refined, there can exist clusters that have significant differences in
tightness. Whenever such pairs of clusters occur, most of the criterion functions will end
up moving some of the document of the tighter cluster (that are weakly connected to the
rest of the documents in that cluster) to the looser cluster. Consequently, the final clustering
solution can potentially be worse than that obtained via repeated bisections.

To illustrate this behavior we used the I2 criterion function and computed a 15-way
clustering solution using repeated bisections and then refined it by performing a 15-way
refinement for the sports dataset. These results are shown in figure 5. The RB solution
contains some clusters that are quite loose and some clusters that are quite tight. Comparing
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I2— RB + Refinement (Entropy=0.168)

Figure 5. The cluster-class distribution of the clustering solutions for the I2 criterion function for the sports
dataset, for the repeated-bisections solution and the repeated-bisections followed by k-way refinement.

this solution against the one obtained after performing refinement we can see that the size
of clusters 6 and 8 (which are among the looser clusters) increased substantially, whereas
the size of some of the tighter clusters decreased (e.g., clusters 5, 10, and 14).

6. Concluding remarks

In this paper we studied seven different global criterion functions for clustering large docu-
ments datasets. Four of these functions (I1, I2, G1, and G2) have been previously proposed
for document clustering, whereas the remaining three (E1, H1, and H2) were introduced by
us. Our study consisted of a detailed experimental evaluation using fifteen different datasets
and three different approaches to find the desired clusters, followed by a theoretical analysis
of the characteristics of the various criterion functions. Our experiments showed that I1

performs poorly whereas I2 leads to reasonably good results that outperform the solutions
produced by some recently proposed criterion functions (G1 and G2). Our three new crite-
rion functions performed reasonably well, with the H2 criterion function achieving the best
overall results.

Our analysis showed that the performance difference observed by the various criterion
functions can be attributed to the extent to which the criterion functions are sensitive to
clusters of different degrees of tightness, and the extent to which they can lead to reasonably
balanced solutions. Moreover, our analysis was able to identify a key property of the I1

criterion function that can be useful in clustering noisy datasets, in which many documents
are segregated to a separate “garbage” cluster.

The various clustering algorithms and criterion functions described in this paper are avail-
able in the CLUTO clustering toolkit that is available online at http://www.cs.umn.edu/˜cluto.
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Appendix A: Proofs of I1’s and I2’s optimal solution properties

Proof (Proposition 1): For contradiction, let Aopt = {S1, S2, . . . , Sk} be an optimal so-
lution and assume that there exists a document d and clusters Si and Sj such that d ∈ Si

and δi − δ j < (µi − µ j )/2. Consider the clustering solution A′ = {S1, S2, . . . , {Si −
d}, . . . , {Sj + d}, . . . , Sk}. Let Di , Ci , and D j , C j be the composite and centroid vectors
of cluster Si − d and Sj , respectively. Then,

I1(Aopt ) − I1(A′) = ‖Di + d‖2

ni + 1
+ ‖D j‖2

n j
−

(‖Di‖2

ni
+ ‖D j + d‖2

n j + 1

)

=
(‖Di + d‖2

ni + 1
− ‖Di‖2

ni

)
−

(‖D j + d‖2

n j + 1
− ‖D j‖2

n j

)

=
(

2ni dt Di + ni − Di
t Di

ni (ni + 1)

)
−

(
2n j dt D j + n j − D j

t D j

n j (n j + 1)

)

=
(

2niδi

ni + 1
+ 1

ni + 1
− niµi

ni + 1

)

−
(

2n jδ j

n j + 1
+ 1

n j + 1
− n jµ j

n j + 1

)
≈ (2δi − 2δ j ) − (µi − µ j ),

when ni and n j are sufficiently large. Since δi − δ j < (µi − µ j )/2, we have I1(Aopt ) −
I1(A′) < 0, a contradiction.

Proof (Proposition 2): For contradiction, let Aopt = {S1, S2, . . . , Sk} be an optimal solu-
tion and assume that there exists a document d and clusters Si and Sj such that d ∈ Si and
δi/δ j <

√
µi/µ j . Consider the clustering solution A′ = {S1, S2, . . . , {Si − d}, . . . , {Sj +

d}, . . . , Sk}. Let Di , Ci , and D j , C j be the composite and centroid vectors of cluster Si − d
and Sj , respectively. Then,

I2(Aopt ) − I2(A′) = ‖Di + d‖ + ‖D j‖ − (‖Di‖ + ‖D j + d‖)

= (√
Di

t Di + 1 + 2dt Di −
√

Di
t Di

)
− (√

D j
t D j + 1 + 2dt D j −

√
D j

t D j
)
. (12)

Now, if ni and n j are sufficiently large we have that Di
t Di + 2dt Di 
 1, and thus

Di
t Di + 1 + 2dt Di ≈ Di

t Di + 2dt Di . (13)
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Furthermore, we have that

(√
Di

t Di + dt Di√
Di

t Di

)2

= Di
t Di + (dt Di )2

Di
t Di

+ 2dt Di ≈ Di
t Di + 2dt Di , (14)

as long as δ2
i /µi = o(1). This condition is fairly mild as it essentially requires that µi is

sufficiently large relative to δ2
i , which is always true for sets of documents that form clusters.

Now, using Eqs. (13) and (14) for both clusters, Eq. (12) can be rewritten as

I2(Aopt ) − I2(A′) = dt Di√
Di

t Di

− dt D j√
D j

t D j

= δi√
µi

− δ j√
µ j

.

Since δi/δ j <
√

µi/µ j , we have I2(Aopt ) − I2(A′) < 0, a contradiction.
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