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Abstract

Background: Assessment of array quality is an essential step in the analysis of data from
microarray experiments. Once detected, less reliable arrays are typically excluded or "filtered"
from further analysis to avoid misleading results.

Results: In this article, a graduated approach to array quality is considered based on empirical
reproducibility of the gene expression measures from replicate arrays. Weights are assigned to
each microarray by fitting a heteroscedastic linear model with shared array variance terms. A novel
gene-by-gene update algorithm is used to efficiently estimate the array variances. The inverse
variances are used as weights in the linear model analysis to identify differentially expressed genes.
The method successfully assigns lower weights to less reproducible arrays from different
experiments. Down-weighting the observations from suspect arrays increases the power to detect
differential expression. In smaller experiments, this approach outperforms the usual method of
filtering the data. The method is available in the limma software package which is implemented in
the R software environment.

Conclusion: This method complements existing normalisation and spot quality procedures, and
allows poorer quality arrays, which would otherwise be discarded, to be included in an analysis. It
is applicable to microarray data from experiments with some level of replication.

the experimental procedure [4-7] and it is inevitable that

Background

Assessment of data quality is an important component of
the analysis pipeline for gene expression microarray
experiments [1,2]. Although careful pre-processing and
normalisation can ameliorate some problems with micro-
array data, including background fluorescence, dye effects
or spatial artifacts [3], many sources of variation can affect

variations in data quality will remain. In this article we
demonstrate an approach in which variations in data
quality are detected and adjusted for as part of the differ-
ential expression analysis. The method is widely applica-
ble, easy to use and can have a high payoff.

Page 1 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/7/261
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16712727
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:261

Quality assessment procedures can be applied at the
probe level or at the array level. Probe quality is influ-
enced by local factors on the array such as printing irregu-
larities or spatial artifacts. For spotted microarrays, spot-
specific morphology and signal measurements obtained
from image analysis software can be used to assign a qual-
ity score to each probe on the array [8-11]. Spots with low
quality scores are commonly removed from further analy-
sis. An alternative approach is to measure agreement
between gene expression values from repeat probes
directly and eliminate those spots with inconsistent repli-
cate values [12,13]. For high-density oligonucleotide
microarrays with multiple probes per gene, quality meas-
ures can be obtained from probe level models (PLMs).
Image plots of robust weights or residuals obtained from
robust PLMs can highlight artifacts on the array surface

2].

Probe quality assessment is not sufficient because some
artifacts only become evident at the array level. Indeed the
detection of problems is even more critical at the array
level than at the probe level because a single bad array
may constitute a sizeable proportion of the data from a
microarray experiment. The quality of data from an entire
array can be influenced by factors such as sample prepara-
tion and day-to-day variability [14]. Sub-standard arrays
are typically identified using diagnostic plots of the array
data [1,15-17]. The correlation between expression values
of repeatedly spotted clones on an array is also used as an
array quality measure [18]. Where large data sets are avail-
able, a statistical process control approach can identify
outlier arrays [19]. In Affymetrix GeneChip experiments,
array quality can be assessed using PLM standard errors or
from RNA degradation plots [2].

Almost all the methods cited above classify the data as
either "good" or "bad", and exclude "bad" probes or
arrays from further analysis. In our experience however
the "bad" arrays are usually not entirely bad. Very often
the lesser quality arrays do contain good information
about gene expression but which is embedded in a greater
degree of noise than for "good" arrays. In this article, a
graduated, quantitative approach is taken to quality at the
array level in which poorer quality arrays are included in
the analysis but down-weighted.

Quality assessment methods can be divided into those
which are "predictive" and those which are "empirical”.
The operational meaning of quality is that high quality
features produce highly reproducible expression values,
while low quality features produce values which are more
variable and hence less reproducible. Predictive quality
assessment methods attempt to predict variability by
comparing features such as spot morphology to norma-
tive measures. On the other hand, methods which com-
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pare duplicate spots within arrays are empirical in that
they observe variability.

In this article we extend the empirical approach to multi-
array experiments for which we measure the discrepancies
between replicate arrays. In order to be as general as pos-
sible, we do not limit ourselves to simple replicate exper-
iments, but work with a linear model formulation which
allows us to handle experiments of arbitrary complexity
including those with factorial or loop designs. The degree
of replication in such experiments is reflected in the resid-
ual degrees of freedom for computing the residual stand-
ard errors. Our method is implemented by way of a
heteroscedastic variance model. It is common for statisti-
cal models of microarray data to allow each probe to have
its own individual variance. Our heteroscedastic model
allows the variance to depend on the array as well as on
the probe. The array variance factors then enter into the
subsequent analysis as inverse array quality weights.
Importantly, our method not only detects variations in
data quality but adjusts for this as part of the analysis.

Our approach can be combined with predictive quality
assessment methods and is an effective complement to
them. Predictive methods can be used to filter spots or to
provide quantitative prior spot weights which are incor-
porated into the linear model analysis. However the
causes of poor quality data cannot always be clearly iden-
tified. The empirical array weight method described here
estimates and accommodates any variation in quality
which remains after the spot quality weights have been
taken into account, i.e., after prediction has achieved as
much as it can. Our approach is particularly effective
when arrays vary in quality but the problems cannot be
isolated to particular regions or particular probes on the
offending arrays.

The presence of array-level parameters in our hetero-
scedastic model means that the statistical analysis can no
longer be undertaken in a purely gene-wise manner. A
naive approach to fitting the model would be computa-
tionally expensive. We propose two computationally effi-
cient algorithms for estimating the model by the well-
recognised statistical criterion of residual maximum like-
lihood (REML). These algorithms view the microarray
data as many small data sets, one for each probe, with a
small number of shared parameters corresponding to the
array variance factors. An innovative gene-by-gene update
procedure is proposed for particularly fast approximate
REML estimation.

The array weight method developed here can be applied
to any microarray experiment with array-level replication,
including experiments using high-density oligonucleotide
arrays, but our experience is mainly with experiments
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using spotted microarrays. High density arrays allow the
additional possibility of measuring reproducibility for
multiple probes for each gene rather than relying on gene
or probe-set summaries [2]. A full treatment of empirical
array quality for these platforms is therefore likely to
involve an analysis of reproducibility at both the probe
level and probe-set level, a further development which is
not investigated in this article.

In this paper, the linear model approach to microarray
data analysis is reviewed and the heteroscedastic model
which includes array weights is introduced. Next, the
experimental and simulated data sets used in this study
are explained and results for these data are presented. The
computational algorithms for fitting the heteroscedastic
model are then described, followed by discussion and
conclusions. Supplementary materials including data, R
scripts and additional plots are available [20].

Linear models for microarray data

Linear models provide a convenient means to measure
and test for differential expression in microarray experi-
ments involving many different RNA sources [21,22]. The
linear model approach allows a unified treatment of a
wide variety of microarray experiments, including dye-
swaps, common reference experiments, factorial experi-
ments and loop or saturated designs, with little more
complication than simple replicated experiments.
Although the statement of the linear model, given below,
requires some mathematical notation, the application of
the methods we describe is in practice very simple using
available software. Consider a microarray experiment
with expression values y,; for genes g = 1, ..., G and arrays
j=1, ..., J. The expression values could be log-ratios from
two-colour microarrays or summarised log-intensity val-
ues from a single-channel technology such as Affymetrix
GeneChips. We assume that the expression values have
been appropriately pre-processed, background corrected
and normalised. The term gene is used here in a general
way to include any ESTs or control probes that might be
on the arrays. Assume that the systematic expression
effects for each gene can be described by a linear model

E(y) =Xp, (1)

where y, = (yg1, .., V)T is the vector of expression values
for gene g X is a known design matrix with full column
rank K, and S, = (B, - B )7 is a gene-specific vector of
regression coefficients. The design matrix will depend
upon the experimental design and choice of parameterisa-
tion and the regression coefficients represent log-fold
changes between RNA sources in the experiment [22,23].
For example, consider a two-colour microarray experi-
ment with three replicate arrays comparing RNA sources A
and B. The individual log-ratios y,; = log,(R,;/G,;), where
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Ry and G are the Cy5 and Cy3 intensities, measure differ-
ences in gene expression between the two samples. For a
simple replicated experiment with sample B always
labelled Cy5, the design matrix would be a column of
ones, and the coefficient £, would represent the log-fold-
change for gene g in sample B over A. Replicated experi-
ments with dye-swaps would be the same except that
minus ones would indicate the dye-swap arrays. Consider
another example where samples A and B are compared
through a common reference sample. If there are two
arrays for each sample and the common reference is
always Cy3, then the design matrix would be

<

Il
[ Y
- = o o

Here the first coefficient f3,; estimates the log-fold-change
between A and the common reference while the second
coefficient /S, estimates the comparison of interest
between B and A. The design matrix can be expanded
indefinitely to represent experiments of arbitrary com-
plexity.

The linear model also assumes
var(yg) = o5 fwg  (2)

where w,; is a prior spot quality weight and 0'§ is the

unknown gene-specific variance factor. The spot quality
weights will usually have arisen from a predictive spot
quality assessment step, with large weights representing
good quality spots and low weights representing poor
quality spots. To avoid unnecessary complications we will
assume throughout that all the y,; are observed and that all
the spot weights are strictly positive, w,; > 0. In practice,
the methods developed in this article can be modified to
accommodate missing y-values or zero weights, but this

complicates the presentation somewhat and will be omit-
ted.

For simplicity we will assume that the y,; are normally dis-
tributed and that expression values from different arrays
are independent. The weighted least squares estimator of

Bgis
B, =(X"z' X)X x,y, (3)
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where X, = diag(wy;, ..., wy) is the diagonal matrix of prior
weights. The t-statistic for testing any particular £, equal

to zero is

_ ﬁgk
tgk =—F
S/ Cak
where s§ is the residual mean square from weighted
regression and cy, is the kth diagonal element of
Ty—1y1-1
(X ZX) .

Itis important to appreciate that the spot weights w,;act in
a relative fashion for each gene. The t-statistic t,, and its
associated p-value would be unchanged if all the w,; for a
given g were scaled up or down by a constant factor.
Hence it is only the relative sizes of the w,; across arrays j
for any given g which are important.

The t-statistic has J - K degrees of freedom. In microarray
analyses with a small to moderate number of arrays, for

which J - K is small, it is usually beneficial to replace 5;;'

with a variance estimator which is shrunk or moderated
across genes to obtain moderated ¢-statistics [22]. Genes
can then be selected for differential expression based on
large moderated t-statistics or small p-values.

A heteroscedastic model for probes and arrays
In this article we allow the unknown variance factors to
depend on the array as well as on the gene,

var(yy) = ogifwg.  (4)

We need a model for the variance factors Géj which

reflects the fact that the genes differ in variability and also
that the arrays in the experiment may differ in quality in a
way which increases or decreases the variability of all or
most of the probes on a particular array. The simplest
model which does this is the additive log-linear model

log o5 = &,+% (5)

[24,25]. We impose the constraint z;zlyj =0 so that

the cr§ = exp ¢, represent the gene-wise variance factors

while the y represent the relative variability of each array.

Array j will have y < 0 or > 0 depending on whether it is
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relatively better or poorer quality than the average. For
instance, an array with exp y = 2 is twice as variable as a
typical array and will be given half weight in an analysis.
Note that the variances are assumed to depend multiplica-
tively on array quality. This is more appropriate than, say,
an additive model of gene and array variances because it
preserves relativities between the gene-wise precisions as
array quality varies. The log-linear variance model also
has substantial numerical and inferential advantages over
other variance models in that positivity for the variances

is ensured for any values of the &, and y parameters.

The fact that all the genes contribute to the estimation of
the  means that, once estimated, the array weights can be
taken to be fixed quantities when analysing each individ-
ual gene. The array weights v;= 1/exp y j can be incorpo-

rated into a differential expression analysis simply by
combining them with the prior weights into modified
g
tions described in the previous section (Equation 3) can

weights w,; = w,v;. The weighted least squares calcula-

then be conducted with w;- replacing wy; throughout. The

use of appropriate array weights will produce more precise
estimates of the gene expression coefficients and improve
power to detect differentially expressed genes.

Note that, although the scaling of the array weights is in
principle arbitrary, our convention that ZLI ¥j=0

means we always choose the array weights v; to have geo-

metric mean equal to one.

Data

The use of array quality weights will be demonstrated on
both real and simulated data sets. The first data set was
acquired as a quality control step in the array fabrication
process at the Peter MacCallum Cancer Centre, Mel-
bourne. This data set contains 100 microarrays represent-
ing 4-6 arrays taken from the beginning, middle and end
of 22 different print batches. The arrays were printed with
a human 10.5 K ¢DNA library and six copies of the Luci-
dea Microarray ScoreCard (LMS) set of control probes
[26]. Each array was hybridised with Cy3 labelled mRNA
from the MCF7 breast cancer cell line and Cy5 labelled
mRNA from the Jurkat T-cell leukemia cell line. Test and
reference LMS spike-in mixes were added to the mRNA
samples prior to labelling to produce predictable fold
changes for the control spots (Table 1). The ratio control
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Table I: Summary of QC LMS controls. Theoretical fold-changes
for the spike-in control probes in the QC LMS data set are
shown. M values have been rounded to 2 decimal places.

Control (abbreviation) Ratio R:G M =log,(R/G)
Up-regulated 3-fold (U03) 3:1 log,3 =1.58
Up-regulated 10-fold (U10) 10:1 log, 10 = 3.32
Down-regulated 3-fold (D03) 1:3 -log, 3 =-1.58
Down-regulated 10-fold (D10) I:10 -log, 10 = -3.32
Dynamic Range (DR) I:1 log, | = 0.00

spots should show three-fold or ten-fold changes while
the dynamic range spots should not be differentially
expressed. The array images were analysed using Spot 2.0
[27] and the intensities were background corrected by
subtracting morphological (morph) background values.
The morph background treatment ensures that all intensi-
ties remain positive after background correction, and
damps down the variability of the log-ratios for low inten-
sity spots [28]. This eliminates the need for intensity-
based filtering of spots in the subsequent analysis. We use
this data for two purposes. Firstly, log-ratios were print-tip

loess normalised [29]. Standardised residuals, (y,;- ¥, )/s,

were computed where y,; are the normalised log-ratios and

V¢ and s, are the probe-wise means and standard devia-

tions. Standardised residuals from the 75% most highly
expressed probes in the 10.5 K cDNA library were used as
a population of non-normal deviates for generating simu-
lated data sets. The other analysis of this data uses only the
120 LMS control spots on each array. Log-ratios from
these control spots were global loess normalised [29],

OmM

1,4 2,3

8 10

1mM<5—’6PaneI L3mM

Figure |

Design of the METH experiment. The METH experi-
ment compared 3 mRNA sources of interest (0 mM, | mM
and 3 mM) directly on the first 4 arrays and indirectly via a
Panel reference on a further 6 arrays. The arrays are num-
bered from | to 10 in the order they were hybridised. Each
arrow indicates a direct comparison made within an array,
and points from the Cy3 labelled sample towards the Cy5
labelled sample.
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using a relatively wide span of 0.7 because of the relatively
small number of spots used. The resulting data will be
referred to as the QC LMS data set in the remainder of the
article.

The second data set arose from a study aimed at identify-
ing novel methylated markers in myeloid malignancy
using the leukemia cell line KGla. Microarrays were
printed with the same cDNA library and controls as the
first data set. A known inhibitor of DNA methylation, 5-
azacytidine, was added to KG1a cells in varying doses (0
mM, 1 mM and 3 mM). Both direct and indirect compar-
isons between the 1 mM and 3 mM treatments and the 0
mM treatment were made on a total of 10 arrays (Figure
1). The panel reference RNA consisted of a pool of RNA
from 11 cancer cell lines. The arrays were scanned on a
GenePix 4000B scanner and image analysed using Gene-
Pix Pro 4.0. The intensities were background corrected
using the model-based 'normexp' method with an offset
of 50 [30]. Again, this background correction method
avoids negative intensities and the need for intensity-
based filtering. Log-ratios were print-tip loess normalised
[29]. This data set will be referred to as the METH experi-
ment.

Simulations
For the simulation studies, normal and non-normal
expression values (y,;) from replicate arrays were gener-

ated with G = 10000 genes and J = 3 and 5 arrays in six dif-
ferent scenarios. For each simulation, different array

variances (exp y) were assumed, and the gene-specific var-

iances (exp &) were sampled from the estimates (sg)

obtained from the QC data set. Non-normal deviates were
sampled from the standardised residuals of the QC data
set. These deviates are considerably more heavy-tailed
than normal. In each data set, 5% (500) of genes were
simulated to be differentially expressed at either 2-fold
(250) or 3-fold (250), while the remaining 95% were sim-
ulated to have mean zero.

For the simulations with 3 arrays, the expression values
for the third array were generated to be twice as variable as
those from the first two arrays in simulation 1 (i.e., v, = v,
= 2v,), ten times as variable as the first two arrays in sim-
ulation 2 (i.e., v; = v, = 10v;) or five times more variable
on the second array and ten times more variable on the
third array relative to the first in simulation 3 (i.e., v, = 5v,
= 10v3).

Simulations with 5 arrays were generated to have at least
two more variable arrays. In simulation 4, expression val-
ues on the fourth and fifth arrays were simulated to be two
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Table 2: Estimates of array weights obtained from 1000 simulated microarray data sets. Means and standard deviations of the array
weights estimated from 1000 simulated data sets assuming six different array variance scenarios are shown for normal and non-
normal data using the full REML algorithm and the gene-by-gene update algorithm. Accurate estimates with small standard deviations
are obtained using the full algorithm. The gene-by-gene update algorithm recovers weights which are generally only slightly flattened

towards equal weights.

Mean (Standard deviation)

Sim. True weight Normal Non-Normal
Full Gene-by-gene Full Gene-by-gene
| 1.26 1.26 (0.04) 1.23 (0.07) 1.25 (0.04) 1.22 (0.07)
1.26 1.26 (0.04) 1.23 (0.07) 1.25 (0.04) 1.22 (0.07)
0.63 0.63 (0.01) 0.66 (0.03) 0.64 (0.01) 0.67 (0.03)
2 2.15 2.16 (0.15) 2.07 (0.14) 2.13 (0.13) 2.04 (0.14)
2.15 2.16 (0.14) 2.07 (0.13) 2.14 (0.14) 2.04 (0.14)
0.22 0.22 (0.00) 0.24 (0.01) 0.22 (0.00) 0.24 (0.01)
3 3.68 3.72 (0.33) 2.07 (0.14) 3.54 (0.29) 2.05 (0.15)
0.74 0.74 (0.04) 1.03 (0.06) 0.75 (0.04) 1.03 (0.06)
037 0.37 (0.02) 0.47 (0.02) 0.38 (0.01) 0.48 (0.02)
4 1.52 1.52 (0.03) 1.50 (0.05) 1.51 (0.03) 1.50 (0.05)
1.52 1.52 (0.03) 1.50 (0.04) I.51 (0.03) 1.50 (0.05)
1.52 1.52 (0.03) 1.50 (0.05) I.51 (0.03) 1.50 (0.05)
0.76 0.76 (0.01) 0.77 (0.02) 0.76 (0.01) 0.77 (0.02)
0.38 0.38 (0.01) 0.38 (0.01) 0.38 (0.01) 0.39 (0.01)
5 2.19 2.19 (0.05) 2.16 (0.07) 2.17 (0.05) 2.14 (0.07)
2.19 2.19 (0.05) 2.16 (0.07) 2.17 (0.05) 2.14 (0.07)
2.19 2.19 (0.05) 2.15 (0.07) 2.17 (0.05) 2.14 (0.07)
0.44 0.44 (0.01) 0.45 (0.01) 0.44 (0.01) 0.45 (0.01)
0.22 0.22 (0.00) 0.22 (0.00) 0.22 (0.00) 0.23 (0.00)
6 3.44 3.44 (0.12) 3.00 (0.13) 3.37 (0.12) 2.95 (0.13)
1.72 1.72 (0.04) 1.78 (0.06) 1.72 (0.04) 1.77 (0.06)
0.86 0.86 (0.02) 0.89 (0.02) 0.86 (0.02) 0.89 (0.02)
0.57 0.57 (0.01) 0.59 (0.01) 0.58 (0.01) 0.60 (0.01)
0.34 0.34 (0.01) 0.36 (0.01) 0.35 (0.01) 0.36 (0.01)

times and four times more variable than those on the first
three arrays (i.e., v; = v, = v; = 2v, = 4v5). In simulation 5,
expression values from the fourth and fifth arrays were
five and ten times more variable than those on the first
three arrays (i.e., v; = v, = v3 = 5v, = 10v;). For simulation
6, the expression values were two times, four times, six
times and ten times more variable on arrays two to five
respectively relative to the first array (i.e., v, = 2v, = 4v; =
6v, = 10vs).

The six different scenarios and the true array weights in
each case are listed in the first two columns of Table 2.
Recall that only the relative sizes of the array weights are

relevant so, by the convention described earlier

(2;=1 Yj =0), we always scale the array weights so that

they have geometric mean equal to one.

Results

Simulations

First we demonstrate the ability of the algorithms to
return the correct array weights for simulated data sets
where the true array variances are known. For each of the
six simulation scenarios described in the previous section,

1000 independent data sets were generated and the vari-
ance model (Equation 5) was fitted to each. This was car-
ried out for both normal and non-normal data. For each
data set, estimates were obtained using the full REML
algorithm and the approximate gene-by-gene update algo-
rithm (see Methods section). Table 2 shows the means
and standard deviations of the estimated array weights .
The full algorithm is shown to assign weights almost
exactly consistent with the predicted values. The gene-by-
gene update method returns array weights which are
slightly less extreme, i.e., slightly flattened towards equal
weights, although still broadly accurate. The gene-by-gene
estimates are also somewhat more variable than those for
full REML, a consequence of the fact that the REML esti-
mators are theoretically optimal. All the standard devia-
tions are small enough however that the variability is
negligible, even for the approximate algorithm. The
results are virtually unchanged whether the data is normal
or non-normal. Although the accuracy of the full REML
algorithm is impressive here, it is important to appreciate
that very precise estimates of the array variances are not
required for a weighted analysis to be effective, so that the
gene-by-gene algorithm may be adequate in practice.
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Note also that the REML algorithms are invariant with
respect to the gene-wise means or standard deviations, so
the results given in Table 2 remain the same regardless of
how the gene specific means or standard deviations are
generated.

Next we turn to the detection of differential expression
and false discovery rates. For each simulated data set, dif-
ferentially expressed genes were selected using ordinary ¢-
statistics and using the empirical Bayes moderated t-statis-
tics implemented in the limma software package [30].
These differential expression measures were used to com-
pare three different array weighting schemes. We consid-
ered that an experimenter might choose (i) to use all the
arrays equally in the analysis (equal weights), (ii) to use
the array weights estimated by the REML algorithm, or
(iii) to remove the worst one or two arrays from the anal-
ysis entirely (filtering). False discovery rates were calcu-
lated to compare the three weighting schemes. Figure 2
shows the average number of false discoveries plotted
against the number of genes selected using ordinary t-sta-
tistics (solid lines) or moderated ¢-statistics (dashed lines)
for the 3 array simulations listed in Table 2. Each line rep-
resents the average of 1000 simulations. Panels (a), ()
and (e) show the normal results for simulation 1, 2 and 3
respectively, while panels (b), (d) and (f) give the corre-
sponding results for non-normal data. The same layout is
used in Figure 3 for the 5 array simulations.

The black lines show the results obtained after removing
the most variable array from simulations 1, 2 and 3 (Fig-
ure 2), or after removing the two most variable arrays in
simulations 4, 5 and 6 (Figure 3). The light gray lines
show the number of false positives obtained using equal
weights and the dark gray lines indicate the false discovery
rates when array weights from the full REML algorithm are
used.

The first striking feature of Figures 2 and 3 is that the mod-
erated t-statistics easily outperform the ordinary t-statistics
regardless of the simulation assumptions, consistent with
findings in other studies [22,31]. The second feature is
that the use of array weights always gives the lowest false
discovery rate of the three weighting schemes, regardless
of which t-statistic is used. Array weighting outperforms
both equal weighting and array filtering in all cases,
although in simulation 1 equal weighting is nearly as
good (the dark gray and light gray lines overlap in Figure
2, panels a and b). It is interesting that the strategy most
commonly proposed in the literature, that of array-filter-
ing, is generally the worst performer across the scenarios,
except in simulation 5 with moderated t-statistics, when
equal weighting is worst. The use of array-filtering with
ordinary t-statistics is very poor indeed. This is despite the
fact that the simulation results make array-filtering appear
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somewhat better than it could be in practice. This is
because we always removed the one or two arrays which
were known to be the most variable, whereas in real data
situations the true status of each array is uncertain and
must be inferred using diagnostic plots or other methods.
The results in Figures 2 and 3 are for the full REML algo-
rithm, however the results are virtually identical when the
approximate gene-by-gene update algorithm is used
instead [20]. This shows that the differences in estimated
weights between the full and approximate REML algo-
rithms observed in Table 2 are relatively unimportant
from the point of view of evaluating differential expres-
sion.

QC LMS Data

The QC LMS data set provides an example of real data
where we know the differential expression status of each
spot. This example has the structure of a simple replicated
experiment. The very large number of replicates allows us
to assess accurately the effect of array weights. The vari-
ance model (Equation 5) was fitted to the log-ratios for
the 120 LMS control spots across the 100 arrays. The array
weights, v; = 1/exp }7]~, are shown in Figure 4(a). The

weights vary from a minimum of 0.11 for array 19 to a
maximum of 3.68 for array 91. The least squares estimate
of the log-fold change between the two RNA sources for
each gene is the weighted mean of the individual array
log-ratios with these weights. Inspection of MA-plots
shows that arrays with lower estimated weights do indeed
appear to return the theoretical fold changes more poorly
than arrays with higher weights (Figure 5).

The differential expression status of the LMS control spots
are known, so we can use them to assess our ability to dis-
tinguish probes which are differentially expressed from
those which are not. Figure 6 plots t-statistics for testing
differential expression for the 120 LMS controls. Ordinary
t-statistics were calculated using either equal weights or
using the array weights shown in Figure 4(a). The ¢-statis-
tics for all classes of ratio controls (D03, D10, U03 and
U10) move further from zero when array weights are used
while the distribution of t-statistics for the dynamic range
controls does not noticeably change. This demonstrates
that the array quality weights increase statistical power to
detect true differential expression without increasing the
false discovery rate.

METH Data

In order to demonstrate our method on a smaller and
more complex experiment, we now turn to the METH
data. For this experiment, replication takes the form not
only of duplicate arrays but also of redundancy between
the direct and indirect comparisons available for each pair
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Figure 2

Number of false discoveries from simulated data sets with 3 arrays. For each 3 array simulation in Table 2 (I, 2 and
3), the average false discovery rates calculated using ordinary t-statistics (solid lines) or moderated t-statistics (dashed lines) are
given. Panels (a), (c) and (e) show the results for normal data under simulations I, 2 and 3 respectively while panels (b), (d) and
(f) display the corresponding results for non-normal data. Black lines plot the false discovery rates when the most unreliable
array is removed from the analysis. Light gray lines are the results obtained using equal weights and dark gray lines show the
false discovery rates recovered with array weights. Each line is the average of 1000 simulated data sets. In nearly all cases, the
use of array weights in the analysis gives fewer false positives than the other methods. Simulation | is the exception, with equal
weighting and array weighting producing similar false discovery rates (overlapping curves) for both normal (a) and non-normal
(b) data.
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Number of false discoveries from simulated data sets with 5 arrays. For each 5 array simulation in Table 2 (4, 5 and
6), the average false discovery rates calculated using ordinary t-statistics (solid lines) or moderated t-statistics (dashed lines) are
given. Panels (a), (c) and (e) show the results for normal data under simulations 4, 5 and 6 respectively while panels (b), (d) and
(f) display the corresponding results for non-normal data. Black lines plot the false discovery rates when the two most unrelia-
ble arrays are removed from the analysis. Light gray lines are the results obtained using equal weights and dark gray lines show
the false discovery rates recovered with array weights. Each line is the average of 1000 simulated data sets. In all cases, the use
of array weights in the analysis gives fewer false positives than the other methods.
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Array weights for the QC LMS and METH data sets.
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to represent differences between the three RNA treatments
and the common reference leaving seven residual degrees
of freedom. Of primary interest are the coefficients £, ,
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Table 3: Number of differentially expressed genes for the METH
experiment. Counts of candidate differentially expressed genes
for the METH experiment obtained after (1) removing arrays
with high background levels from the analysis or (2) keeping
these arrays in the analysis, but down-weighting their expression
values using the array quality weights from Figure 4 (b) are given
for each comparison of interest. The false discovery rate was
controlled to be less than 0.05 in each case. More candidate
genes are discovered using array weights.

Analysis method Number of genes

ImM-0mM 3mM-0mM
|. Remove arrays 0 1263
2. Array weights 654 1790

and S, , which measure the gene expression differences
ImM-OmM and 3mM-OmM respectively. The design
matrix was generated automatically using the limma soft-
ware package. The linear model was fitted to all genes in
the 10.5 K library and control probes were excluded.

The experimenters who conducted the METH experiment
were suspicious of the reliability of the first 4 arrays
hybridised, which they believed were not giving consist-
ent results with the last 6 arrays.

Figure 4(b) shows the array weights estimated from this
data. Arrays 1 and 4 were assigned the lowest weights of
0.29 and 0.36 respectively. Diagnostic plots of the data
[20] reveal that arrays 1 and 4 have high levels of back-
ground fluorescence in both channels, which does indeed
indicate that these arrays are of poorer quality. The diag-
nostics do not identify a particular subset of problem
spots which could be filtered out, so spot quality methods
do not offer a solution. The usual method of dealing with
this problem would involve removing these two suspect
arrays from further analysis. We now consider the alterna-
tive of retaining these microarrays but down-weighting
their expression values using empirical array weights. Dif-
ferential expression was assessed for both methods using
moderated t-statistics [22] adjusted for multiple testing
using the false discovery rate method [33]. Table 3 shows
the number of genes for the 1mM-0mM and 3mM-O0mM
treatment comparisons with adjusted p-values (g-values)
less than 0.05. For the 1mM-0mM comparison, which has
two poor quality arrays directly comparing these RNA
sources, removal of the worst arrays throws away most of
the information on this comparison and results in no dif-
ferentially expressed genes. Using array weights gives 654
candidate differentially expressed genes for this compari-
son. Of these genes, 413 are also differentially expressed
in the 3mM-OmM comparison and 237 show a monot-
onic response to dose with the 3mM-0mM fold-change
being larger and in the same direction as the ImM-0mM
change. This suggests that many of these genes are worthy
candidates for further validation.
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MA-plots of QC LMS controls for two arrays. MA-plots
for arrays 91 (a) and 19 (b) which were assigned the highest
and lowest quality weights respectively. Here M = log,(R/G)
is the spot log-ratio and A = (log,G + log,R)/2 is the spot log-
intensity. Dashed lines show the theoretical M values from
Table |. The controls from array 91 consistently recover the
true spike-in log-ratios and are assigned high weight (vy, =
3.68), whereas the log-ratios from array 19 are considerably
more variable, resulting in a very low weight (vg, = 0.11).
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Methods

Need for new algorithms

We now turn to the problem of computing REML esti-
mates for the array variance parameters in the probe-array
variance model (Equation 5). Algorithms for fitting heter-
oscedastic linear models are already available [34], how-
ever the high dimensionality of microarray data limits the
usability of conventional algorithms. There are G + J - 1
parameters in the variance model and a further GK param-
eters in the linear model itself. The fact that the array
parameters in the variance model are shared by all the
genes means that the usual strategy of fitting models sep-
arately for each gene is not available. Even computers with
many gigabytes of memory will run into memory limits
using conventional algorithms with G much larger than
around 50. Using a conventional algorithm for a typical
microarray experiment with tens of thousands of genes is
out of the question.

The basic difficulty from an algorithmic point of view is
not the large number of expression values but rather the
large number of parameters to be estimated. In the next
section we develop a strategy for eliminating the gene-
wise parameters £, and &, from the estimation problem.

Nested iterations

Conditional on the array variance factors 7, the gene-wise
coefficients £, and variances J, can be computed in closed
form using weighted least squares as described in the lin-
ear models section (Equation 3). The method of nested
iterations is a strategy to reduce the dimension of an esti-
mation problem by eliminating conditionally estimable
parameters [35]. The idea is applied here to eliminate the
gene-specific parameters from the REML likelihood func-
tion. This reduces the estimation problem to one involv-
ing just the J - 1 array weights.

Explicit expressions for the REML log-likelihood for heter-
oscedastic models such as ours can be found in [24] and
[34]. Write f(y, &, v) for the contribution to the REML
log-likelihood for gene g with y = (7, ..., .;)". The REML
likelihood already has the property that the linear model
parameters /3, are eliminated. The REML log-likelihood to
be maximised is

G
Yy Y6 01 86 ¥) = O f(Yi00,7)  (6)
g=1

Rather than deal with this large dimensional problem, we
eliminate the o, by considering the profile REML likeli-

hood for y. Write & gy for the value of 5, which maximises
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Ordinary t-statistics for the QC LMS controls. The t-
statistics were calculated using either equal weights or the
array weights (v) from Figure 4(a). Using array weights in the
analysis results in more extreme t-statistics for the known
differentially expressed controls (D03, D10, U03, U10)
which represents a gain in power.

fyg 9, v) for given y. The profile REML log-likelihood for

y is
G

ep(Yll e Y ¥) = 2 f(Yg;Sgb/ ¥ (7)
g=1

We consider now the nested iteration for maximising the
profile likelihood. Write

0 1007
u,, - f(yzy Iy )' (8)
Also let
Agss Ags
Ag= Ag Ag Y (9)
376 8

be the REML information matrix for gene g. The derivative

of flyg 5 gly + v) with respect to y is simply U, evaluated at
Oy = 88\7 . The information matrix for y from gene g, con-

ditional on 5g= (Sgl}’ is
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(10)

_ _ -1
Ag,w? - Agw Ag,yé Ag,éé Ag,éy

evaluated at 6, = Sgl}’ [35].

The derivative of the profile REML log-likelihood €,, there-
fore is

G
u, :ZUM (11)
g=1

and the information matrix associated with €p is

G
Ays = ZAM@ (12)
g=1
evaluated at &, = 5 gly - The REML estimate of y can be eval-

uated by the nested scoring iteration
YD =y + A5 U, (13)

where y() is the ith iterated value and A,. ;and U, are to be
evaluated at y = y(). The iteration will begin from a suita-
ble starting value y(©),

Full scoring iterations

In this section, convenient expressions will be derived for
the quantities A, ;and U, For any value of v, the least
squares estimator for f, can be computed using weighted
least squares computations (Equation 3) with working

*

weights w,; replacing the prior weights wy;. The standard-

ised residuals from this regression are

g =y g xB) (1)

where x; is the jth row of X.

Let

H

_ 5 1/25y(yTs=1y\-1vTs=1/2 _
o =T PX(XTE X)X = (hg )

(15)

be the projection matrix from the regression and write h,;
= h, ;; for the diagonal elements or leverages of H,. Finally,
let Z be the J x ] design matrix
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Estimated versus actual array variance parameters
from simulated data. The gene-by-gene update algorithm
was used to estimate the array variance parameters using
100, 1000 and 10000 genes from a simulated data set with 10
arrays. The estimates (}7]- ) are plotted against the true values

(%)- As more genes are included in the iterations the accu-
racy of the estimates obtained from the gene-by-gene update
algorithm improve, although with as few as 100 genes, the
values recovered are broadly correct.

1 1 O 0
1 0 1 0
Z=i 1o (16)
1 0 O 1
1 -1 -1 - -1

Using these expressions we can write down computable
expressions for quantities from the previous section. The

conditional REML estimator of &, is 8,, =logs?  with
g 8ly gly
2 = i g (17)
58\7 h ]_Kj—leg].
The score vector for yis

1,7
Ug,}, = EZng
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where Z, is the last ] - 1 columns of Z and z, is the vector
with components

2gj =g [ S5y, —(1=hgj) (19)

forj=1, .., J. The information matrix is

A, =Ly 7
2 8

g (20)

where Vg is the J x J matrix with diagonal elements (1 -

hé]-j) and off-diagonal elements hé]-k. Efficient algo-

rithms exist to compute A, [34]. Alternatively, it is often
satisfactory to approximate the dense matrix V, with the
diagonal approximation V,, = diag(1 - hyy, ..., 1 - hy) [25].
With this approximation, a straightforward calculation
gives

. 1
2Ag/}/'5= dlag(l— hg(])) + (1 - hg])L - ]__K (hg]— hg(])) (hg]—
hgp)™ - (21)
where hyj) = (hy, ..., hy ;)Tand Lis theJ -1 x ] - 1 matrix

of 1's. The nested information matrix A,. s therefore has
diagonal elements given by

2,51 - il (1=hg +1=hy ~(hy ~hg)? [~ K)} (22)
P
and off-diagonal elements given by
$ 1
245 Im :g,l{(l—hg/)—ﬁ(hg] —hg)(hg —hgm)} (23)
In matrix terms we can write
24, 5= diag(uy, ..., upy) + wL -NIN/(J-K) ~ (24)
where N is the matrix with ith row hy- h,;) and u; =

zgczl (1=hgi) (1 - hyj). With these quantities, the nested

scoring iteration (Equation 13) is very memory efficient
and can be carried out easily on a standard personal com-
puter.

Gene-by-gene scoring iterations

Although memory efficient, the nested scoring iteration
may still require a lot of computation for large G since G
gene-wise regressions must be evaluated for every itera-
tion. If the prior spot weights are equal, w,; = 1, the gene-

8
wise regressions can be computed very quickly but, if not,
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a full set of least squares computations must be repeated
for each gene and each iteration. In this section we explore
a much lighter computation scheme in which only one
pass is done through the genes and the array variance
parameters are updated for each gene. This results in a
very efficient gene-by-gene update algorithm which pro-
duces approximate REML estimators for the array weights.

The gene-by-gene update algorithm is given by

yE ) = 7@ + (A5 ) Uy, (25)

where U, ,is as above (Equation 18) while A* is an accu-
mulating information matrix defined by

*

Ag,y~5 = Ag—l,y-5 +Ag,}/'5 (26)

where A, . sis evaluated at y(8) and 88\7 . The iteration is

started from y°= 0 and

100 -K) 7237,

AO,y~5 = ( 27 )

These starting values begin the iteration from equal array
variances with the information weight of ten genes. The
effect of accumulating the information matrix in this way
is to gradually decrease the step size of the iteration as the
iteration passes through all the genes, resulting in a con-
vergent iteration. The final value y(G) is taken as the esti-
mate of y and is used to assign array weights. In our
implementation in R [36], this algorithm calculates the
array variance parameters in less than a second for the QC
LMS data and in around 12 seconds for the METH data set
on a 2.0 GHz Pentium M computer. The gene-by-gene
nature of the algorithm means that minimal RAM is
required for these computations.

While the gene-by-gene update algorithm is fast, it pro-
vides only an approximation to the REML estimators 7,
and we need to check the accuracy of this approximation.
To do this, expression values (y,;) were simulated from
normal distributions for J = 10 arrays and G = 10000
genes. The array variance parameters () were equally
spaced over the interval [-1, 1]. As already noted, the
REML algorithm is invariant with respect to the gene-wise
means and variances, so the gene-specific mean and vari-
ance parameters were set to zero in our simulations.

Figure 7 shows the estimated versus actual array variance
parameters obtained from the gene-by-gene update algo-
rithm after the first 100 genes, first 1000 genes and all
10000 genes respectively. The array variances are broadly
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correct even after 100 genes and after 1000 genes the accu-
racy is good. The root mean square errors between the
update algorithm estimates and the true values averaged
over the ten variance parameters were 0.17, 0.08 and 0.01
after 100, 1000 and 10000 genes respectively. These
results indicate that the algorithmic short-cut taken by the
gene-by-gene update algorithm does not seriously com-
promise the accuracy of the array variance estimates.

Discussion and Conclusion

This article has presented an empirical method for esti-
mating quantitative array quality weights which is inte-
grated into the linear model analysis of microarray data.
Computationally efficient algorithms are developed to
compute the array quality weights using the well-recog-
nized REML criterion. As well as full REML estimation, a
fast gene-by-gene update method which requires only one
pass through the genes is described.

Examples of array quality weights which give less influ-
ence to the gene expression measurements from unrelia-
ble microarrays and relatively more influence to the
measurements from reproducible arrays have been pre-
sented. In both simulated and real data examples, it has
been demonstrated that array weights improve our ability
to detect differential expression using standard statistical
methods. The graduated approach to array quality has
also been shown to be superior to filtering poor quality
arrays both in simulations and for an experimental data
set. In the simulations, filtering is shown to perform quite
poorly, especially in combination with ordinary t-statis-
tics. In the data example, filtering resulted in no signifi-
cant genes to follow up, whereas the weighted analysis
provided a few hundred sensible candidates.

The method is restricted for use on data from experiments
which include replication with at least two residual
degrees of freedom. For simple replicated experiments, a
minimum of three arrays are needed and results from sim-
ulation studies show that this method is reliable in these
situations, even in the presence of non-normally distrib-
uted data. Simulations were also used to show that array
variance parameters are estimated with greater accuracy
when more genes are available for the gene-by-gene
update algorithm, and that these computational savings
do not seriously compromise the accuracy of the final esti-
mates. As a rule of thumb, we recommend that the full
REML array weights be used when there are fewer than
1000 probes and that the gene-by-gene update method be
used otherwise. The analysis of the control probes from
the QC LMS data set showed that useful array weights can
be obtained from the gene-by-gene algorithm with as few
as 120 genes. The situation is different when there are no
spot weights or missing expression values in the data. In
this case the full REML algorithm can be implemented
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very efficiently and so is recommended for any number of
probes.

The empirical array weights form part of the quality and
analysis pipeline and are not intended to replace the usual
background correction, normalisation and quality assess-
ment steps. In particular, array weights are not designed to
account for spot-specific problems. The array weights
method is instead designed to incorporate spot quality
weights which might arise from gene filtering or from a
predictive quality assessment step. The use of zero weights
as prior weights (w,; = 0) presents no problems for the
method, although some special numerical treatment not
discussed here is needed to ensure the sum to zero con-
straints are satisfied.

The array weight approach is also not intended to replace
diagnostic array quality plots such as MA-plots, and arrays
which are catastrophically poor quality should still be dis-
carded. Taking a graduated approach to array quality, does
however allow arrays of less than ideal quality, which
would otherwise have to be discarded, to be kept in the
analysis, but down-weighted.

The authors have applied the array weight method to very
high quality data sets which featured arrays with low back-
ground, well-behaved controls and a good dynamic range
of spot intensities. For such data sets, the method assigns
approximately equal array weights to each array (data not
shown). This indicates that the method does no harm
when it is not required.

One further topic that deserves some attention is the use
of robust linear models to estimate the gene expression
coefficients. The array weights method has the same moti-
vation as robust regression methods, but accumulates
information on variability across genes on each array,
which gene-wise robust regression methods are unable to
do. Another consideration is sample size. While robust
methods perform well on large sample problems, many
microarray data sets such as the METH experiment consist
of a small number of arrays and, in these situations,
robust methods may not be suitable.
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