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Abstract

Background: For construction management, data collection is a critical process for gathering and measuring

information for the evaluation and control of ongoing project performances. Taking into account that construction

involves a significant amount of manual work, worker monitoring can play a key role in analyzing operations and

improving productivity and safety. However, time-consuming tasks involved in field observation have brought up

the issue of implementing worker observation in daily management practice.

Methods: In an effort to address the issue, this paper investigates the performances of a cost-effective and portable

RGB-D sensor, based on recent research efforts extended from our previous study. The performance of an RGB-D

sensor is evaluated in terms of (1) the 3D positions of the body parts tracked by the sensor, (2) the 3D rotation

angles at joints, and (3) the impact of the RGB-D sensor’s accuracy on motion analysis. For the assessment,

experimental studies were undertaken to collect motion capture datasets using an RGB-D sensor and a marker-

based motion capture system, VICON, and to analyze errors as compared with the VICON used as the ground truth.

As a test case, 25 trials of ascending and descending during ladder climbing were recorded simultaneously with

both systems, and the resulting motion capture datasets (i.e., 3D skeleton models) were temporally and spatially

synchronized for their comparison.

Results: Through the comparative assessment, we found a discrepancy of 10.7 cm in the tracked locations of body

parts, and a difference of 16.2 degrees in rotation angles. However, motion detection results show that the

inaccuracy of an RGB-D sensor does not have a considerable effect on action recognition in the experiment.

Conclusions: This paper thus provides insight into the accuracy of an RGB-D sensor on motion capture in various

measures and directions of further research for the improvement of accuracy.
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Introduction
During a construction project, data collection is critical

to the evaluation and control of ongoing project perfor-

mances. The complexity of construction environments

and the dynamics of moving equipment and human

resources, however, often pose a challenge in undertak-

ing such tasks on a jobsite. Particularly, the time-

consuming tasks required for worker monitoring can

give rise to the issue of implementing field observation

in a daily management practice (Johnson and Sackett

1998). For efficient field data acquisition, research ef-

forts have thus been made to investigate and propose

available sensing devices—such as cameras, laser scan-

ners, and the combination of sensors (e.g., ultra wide-

band and physiological status monitoring devices)—for

the tracking of human movements and the analysis of

construction activities (Cheng et al. 2013; Gong and

Caldas 2011; Peddi et al. 2009; Gonsalves and Teizer

2009). The previous studies provide valuable insight

into the analysis of human postures and actions, but

further research is still needed for the capture of an ar-

ticulated motion and the modeling of its kinematics.
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Along this line, an RGB-D sensor—such as the Microsoft

Kinect sensor—has gained great attention as a cost-

effective and readily available device for motion capture.

Since it was released in 2010, the Kinect has been ac-

tively studied as a motion capture device to record the

movement of human subjects. In this regard, action rec-

ognition techniques—in particular—have been explored

for the detection of specific actions using the motion

capture data for use with operation and safety analysis in

construction. For example, Weerasinghe et al. (2012)

propose a Kinect-based tracking framework for the

localization of workers and the analysis of their move-

ment patterns, which could potentially be used for pro-

ductivity measurement. For operation analysis, Escorcia

et al. (2012) also present an action recognition technique

to classify construction workers’ actions based on the

color and depth information from a Kinect. On the

other hand, Ray and Teizer (2012) utilize a Kinect for

the pose analysis of construction workers to classify

awkward postures based on ergonomic rules during

safety and health training, and Han et al. (2013) study

the unsafe action detection of workers for safety beha-

vior monitoring with motion capture data from a Kinect.

These studies have thus demonstrated the great poten-

tial of the Kinect to gather motion information from a

jobsite, as well as the great potential of its applications

to construction management. To validate the proposed

approach, however, the prior work has mainly focused

on the performances of motion classification and detec-

tion rather than the accuracy of estimated postures and

actions (e.g., 3D human skeleton models). The results in

the studies suggest that pose estimation is computation-

ally verified to a certain extent, but the accuracy of the

Kinect solely when used for motion capture still remains

unexplored. Taking into account that one of the main

uses of the Kinect is to estimate 3D body skeletons of

humans and track their movements over time, the thor-

ough assessment of a Kinect-based motion capture sys-

tem will thus help elucidate: (1) up to what degree of

accuracy a Kinect sensor can detect and track the 3D

positions of body parts; (2) to what research areas the

Kinect can potentially be applied, depending on the ac-

curacy; and (3) which processes of motion analysis cause

computational errors for the debugging of action recog-

nition systems.

This paper evaluates the performance of the Kinect

sensor on motion capture and action recognition for

construction worker monitoring. An experimental study

is undertaken to compare the accuracy of a Kinect with

a commercial marker-based motion capture system,

VICON, which has been used as the ground truth in prior

work (Dutta 2012; Stone and Skubic 2011; Fernández-

Baena et al. 2012). A VICON tracks the 3D locations of re-

flective markers attached to body parts with multiple

cameras (e.g., 6 or 8 cameras), thereby minimizing occlu-

sions and producing accurate tracking results. Extended

from our previous work (Han et al. 2012), this paper per-

forms the error analysis based on: (1) the estimated 3D

positions of body joints, (2) the recomputed 3D rotation

angles at particular joints, and (3) the effect of the motion

capture accuracy on motion detection. The rest of this

paper is organized as follows. Background section provides

a background on the Kinect sensor and its performance

evaluation. Methods section demonstrates a research

methodology used to compute and analyze the three types

of errors for the comparative study. Experiment section

describes the experimental process for the collection of

motion capture datasets with both a Kinect and a VICON.

Results, including the error analysis, are presented and

discussed in Results and discussion section. Finally, Con-

clusion section summarizes the findings of this study and

suggests the direction of future research.

Background
This section summarizes the pros and cons of an RGB-

D sensor (i.e., Kinect) for motion capture, and reviews

previous work on the performance evaluation of a

Kinect motion capture system. Based on the literature

review, further research efforts required in this domain

are identified.

An RGB-D sensor for motion tracking and analysis

The Kinect sensor was initially developed as a motion-

sensing device for video gaming. A Kinect consists of

two main components—one is a RGB camera that pro-

duces images at a 640 × 480 resolution, while the other

is a depth sensor that measures the depth information of

the image (Rafibakhsh et al. 2012). In addition, the depth

sensor is comprised of both a projector and an infrared

(IR) camera, all of which projects a structured IR light

onto the scene and measures the depth by analyzing the

distortion of the IR light (Weerasinghe et al. 2012;

Khoshelhan 2011). Accordingly, the Kinect allows not

only for the 3D reconstruction of a scene with point

clouds but also for the 3D skeleton extraction of a hu-

man subject as combined with the motion capture solu-

tions (e.g., OpenNI, Microsoft Kinect for Windows SDK,

iPi Soft Motion Capture). In terms of the image process-

ing for motion capture, the measured depth can be used

for the building of 3D human models through 2D pose

estimation (i.e., 2D skeletons with depth), as well as for

the direct inference of 3D poses by integrating the depth

into the pose estimation process. On the other hand, the

use of IR light brings about constraints in the practical

application of a Kinect to a field setting. For example,

the Kinect’s sensitivity of IR light to sunlight may cause

unreliable motion capture outcomes in an outdoor

environment, and its operating ranges for motion
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capture are also known to be limited (e.g., 0.8–4 m)

(Weerasinghe et al. 2012; Han et al. 2013). Nevertheless,

previous studies report that the operating distance for

object tracking can be extended up to 10 m (Rafibakhsh

et al. 2012) and 7.5 m (Ray and Teizer 2012) from a

camera; hence, further investigation is required to clarify

the range issue. Though limited to indoor applications,

the Kinect still has the following notable advantages for

motion sensing: (1) it requires no additional body at-

tachment (e.g., markers, a special suit), which allows for

worker observation without the interference of ongoing

work; (2) the cost of a sensor (e.g., approximately 150–

250 USD) is quite competitive, compared with other

motion capture systems (e.g., approximately 96–120K

USD for a marker-based VICON system) (Han et al.

2013); (3) the minimum number of sensors for motion

tracking is only one Kinect; and (4) it provides an easy-

to-use and easy-to-carry means for data collection in a

field setting.

Previous work on the performance evaluation of an RGB-

D sensor

For motion capture, performances of the Kinect can

broadly be evaluated in terms of the functionalities such

as the depth measured by a sensor and body part positions

estimated by motion capture solutions. This section sum-

marizes the previous work on depth measurement and

discusses issues in the pose estimation assessment.

A principal function of the Kinect sensor is to com-

pute the depth (i.e., the distance from a sensor) as a laser

scanner does. Due to its low cost compared with that of

a laser scanner (e.g., 10–130K USD) (Golparvar-Fard

et al. 2011), previous studies have investigated the accur-

acy and resolution of Kinect depth data for the 3D

Figure 1 Overview of evaluation processes.
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modeling of indoor environments, as well as for motion

sensing. Khoshelham and Elberink (2012) report that the

depth discrepancies between pairs of point clouds gener-

ated by a Kinect and a high-end laser scanner (i.e., Faro

LS 880) are less than 3 cm for 84% of the point pairs,

and that the point spacing in the depth direction (i.e.,

resolution) is about 2 mm, 2.5 cm, and 7 cm at the 1-,

3-, and 5-m distance. Rafibakhsh et al. (2012) also com-

pare the accuracy and resolution of a Kinect with a laser

scanner (i.e.. a Faro Focus3D scanner) and reveal that

the average distance error between the point pairs is

3.49 cm, and that the resolution of the Kinect is about 4

times less than that of a laser scanner at 1.7- to 3.4-m

distances from a sensor. Dutta (2012) measures the dif-

ferences in distances between a Kinect and a VICON for

a 0.1-m cube over a range of 1–3 m from a sensor, and

the Root-Mean-Square Errors (RMSEs) are 6.5 mm in a

horizontal direction, 5.7 mm in a vertical direction, and

10.9 mm in depth. On the other hand, Stoyanov et al.

(2011) evaluate the accuracy of a Kinect in comparison

with a laser scanner using the Three-Dimensional Nor-

mal Distributions Transform (3DNDT), which is a

spatial representation accuracy evaluation technique,

and conclude that the Kinect sensor performs well

within 3.5-m distances. In Chow et al. (2012), a 3D re-

construction model of a mannequin is computed and

compared with a laser scanner, and an RMSE of

11 mm is observed. In sum, previous studies reviewed

herein conclude that the depth measurement and reso-

lution of the Kinect are promising within a short range

(e.g., 3 m), though not as accurate as those of a laser

scanner, particularly in longer ranges.

The accuracy of motion capture data obtained with the

Kinect has also been investigated. In Livingston et al.

(2012), human skeletons tracked by a Microsoft software

development kit are evaluated based on the positions of

body joints (e.g., arms and hands) along a meter stick, and

the average error and standard deviation in this experiment

are 5.6 mm and 8.1 mm, respectively. Fernandez-Baena

et al. (2012) conduct an experiment associated with re-

habilitation treatments to compare the accuracy between a

Kinect—combined with Natural Interaction Technology for

End-user (NITE)—and a VICON in terms of the rotation

angles of knee, hip, and shoulder joints, defined as angles

Figure 3 Experimental settings; (a) configurations of Kinect and VICON sensors, (b) a VICON sensor, (c) a Kinect, and (d) a human

subject wearing a black suit and attaching reflective markers.

Figure 2 Y-axis rotation for data correspondences; (a) a local coordinate system of motion capture data, (b) a global coordinate

system, and (c) Y-axis rotation between (a) and (b).
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between two vectors of body parts (e.g., one from knee to

foot); the results show that the differences in rotation angles

range from 6.78 to 8.98 degrees for a knee, from 5.53 to

9.92 degrees for a hip, and from 7 to 13 degrees for a shoul-

der. In the study of physical rehabilitation by Chang et al.

(2012), the trajectories of the right hand, right elbow, and

right shoulder that are tracked by a Kinect with OpenNI/

NITE middleware are visually compared with those of

marker-based OptiTrack motion capture system; the trajec-

tories of a hand and an elbow are matched between two

systems, while a shoulder is not accurately tracked by a

Kinect system. To apply the Kinect to construction, how-

ever, further research efforts are required to address the fol-

lowing issues on the assessment of its motion capture

performances: (1) the motions involved in construction

activities need to be investigated, (2) the tracking results

of full body joints need to be evaluated due to the cha-

racteristics of construction activities (i.e., manual work),

and (3) the impact of the Kinect system’s performances

on action recognition needs to be studied for the analysis

of construction worker monitoring and operation.

Methods
The objective of this paper is to assess the accuracy of

Kinect motion capture data for the motion analysis of

construction operations; Figure 1 illustrates an overview

of evaluation processes comparing the outputs of

VICON and Kinect motion capture systems. The evalua-

tions are based on the error analysis of tracked 3D posi-

tions of full body joints, the 3D rotation angles at body

joints used as a feature for motion classification, and the

effect of the accuracy on action recognition. To compute

the tracking errors, a VICON is used as the ground truth

for motion tracking, and the iPi Motion Capture solu-

tion (http://ipisoft.com) is used with Kinect sensors to

track the 3D positions of a human subject and extract

3D skeletons; the iPi Motion capture system estimates

human poses mainly based on the depth measurements

of a human body, and is thus less affected by a per-

former’s appearance (e.g., special black suit and markers

required by a VICON). In the experiment, human mo-

tions are thus simultaneously recorded with a Kinect

and a VICON, and corresponding body joints of both

systems—synchronized in time and space domains—are

compared to compute the errors of Kinect outcomes. In

addition, the ethics of this study including human sub-

jects has been approved by the University of Michigan

Institutional Review Board and the reference number is

HUM00061888.

Data correspondence and synchronization

To compare the pose estimation results of a Kinect and

a VICON, coordinate systems and data frames of both

systems are matched through the rotation of coordinate

systems and the synchronization of frames. For the

spatial correspondence, local coordinate systems of both

(i.e., coordinate systems defined by each system—an

x-axis defined by the pelvis and a y-axis defined by the

spine) are rotated about the y-axis into a global coordin-

ate system (i.e., an absolute coordinate system newly de-

fined for the coordinate system matching—a subject

always faces the front) (Figure 2). In this experiment, a

local coordinate system is defined based on the positions

of a hip (i.e., Phip), a spine (i.e., Pspine), and a pelvis (i.e.,

Table 1 Description of body parts and their joint IDs in Figure 4c

Body part ID 1 2 3 4 5 6 7

Body part Left upper leg Left leg Left foot Right upper leg Right leg Right foot Left arm

Body part ID 8 9 10 11 12 13 14

Body part Left forearm Left hand Right arm Right forearm Right hand Neck Head

Figure 4 Human skeleton models; (a) a Kinect, (b) a VICON, and (c) a converted skeleton model (number: body joint ID).
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Figure 5 3D position trajectories of a Kinect and a VICON in x-, y-, and z-directions over the first 500 frames; (a) left upper leg, (b) left

leg, (c) left foot, (d) right upper leg, (e) right leg, (f) right foot, (g) left arm, (h) left forearm, and (i) left hand.
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Ppelvis) tracked by motion capture systems. The y-axis

rotation angle, Ry, is calculated using Eq. (1):

Ry ¼ cos−1 →zp;x� Zx

→

þ→zp;y� Zy

→

þ→zp;z� Zz

→
� �

ð1Þ

where→zp;x ;

→zp;y ; and →zp;z denote x, y, and z components

of zp
→

in Figure 2c, and Zx

→

;Zy

→

; and Zz

→

denote x, y, and z

components of Z
→

in Figure 2b. Then, entire datasets of

both systems are rotated using a rotation matrix obtained

from Ry. In this manner, skeleton models of both systems

face the front (i.e., z-axis), thus allowing for the compari-

son of skeletons in the same coordinate system regardless

of viewpoints.

In the experiment, the synchronization of a pair of

datasets is manually performed by identifying the same

frame. For instance, we observe the frame in which a

performer contacts a ladder’s rung with a foot, and then

we search for the exact frame among adjacent frames

(e.g., 2 frames before and after the frame) by selecting

the moment minimizing the distance between two

datasets. In addition, the frame rates of the two systems

are different (e.g., 120 frames per second for a VICON,

and 30 frames per second for a Kinect). In the case of a

VICON, thus 1 frame for every 4 is selected for the per-

formance comparison. The accuracy is evaluated using

RMSE in Eq. (2):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

xv;i−xk;i

� �2

n

s

ð2Þ

where xv denotes a VICON data value, xk denotes a

Kinect data value at each frame (i), and n is the total

number of frames.

Action recognition

To evaluate the impact of motion tracking accuracy on

action recognition, this paper adopts the action detec-

tion framework presented in our previous work (Han

et al. 2013). The framework consists of the dimension

reduction of high-dimensional motion data, similarity

measurements between a pair of motion data, and mo-

tion classification based on the measured similarity.

First, dimension reduction is needed due to the high di-

mensions in motion data (e.g., 78), which hinder efficient

and accurate action detection. Thus, we use Kernel Prin-

cipal Component Analysis (Kernel PCA) (Schölkopf

et al. 1998) to map motion data onto a 3D space, and

then we compare the trajectories of datasets in the low-

dimensional coordinate. In this space, a trajectory repre-

sents a sequential movement of postures (i.e., actions),

and actions can be recognized by comparing the tem-

poral patterns of transformed datasets. For the pattern

recognition, temporal-spatial similarity between a pair of

datasets is quantitatively measured using Dynamic Time

Warping (DTW) (Okada and Hasegawa 2008). In this

study, DTW measures Euclidean distances between

datasets by warping the datasets in a time domain so as

to compare datasets, even the sizes (i.e., durations) of

which are different. For the performance evaluation, thus

the similarity between a motion template (i.e., one trial

of action datasets) and the entirety of the data is com-

puted over all of the frames, and the behavior (e.g.,

fluctuation) of measured similarities is compared to in-

vestigate the effect of motion capture systems on the

detection accuracy. Eventually, we perform the action

detection that recognizes actions based on similarities

by observing the ones with less similarity than a

threshold (i.e., a classifier learned through classifica-

tion); the detection results of Kinect and VICON

datasets are compared in terms of accuracy (i.e., the

fraction of correctly classified actions among all sam-

ple actions), precision (i.e., the fraction of correctly

detected actions among detected ones), and recall (i.e.,

the fraction of correctly detected actions among ones

that should be detected).

Experiment
To collect motion capture data, a lab experiment was

conducted in the University of Michigan 3D Lab (Han

et al. 2012); experimental configuration and scenes are

illustrated in Figure 3. In this experiment, actions during

Table 2 3D position comparison (cm) of body joints between a Kinect and a VICON

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean

3D 2.7 8.3 8.8 3.1 10.0 9.5 6.8 9.1 24.3 6.8 12.4 21.7 19.0 7.7 10.7

(Std.) (0.4) (3.2) (3.0) (0.7) (3.7) (3.6) (2.3) (3.5) (12.0) (2.7) (4.9) (12.2) (1.2) (2.3) (5.3)

X 2.3 5.2 4.5 2.3 5.9 2.9 4.5 4.4 11.3 4.1 8.7 14.7 4.1 4.8 5.7

(Std.) (0.2) (3.9) (3.0) (0.2) (3.7) (2.7) (3.2) (4.0) (10.6) (3.3) (5.1) (10.9) (3.2) (3.9) (5.1)

Y 1.3 4.4 4.5 1.8 6.0 5.8 3.6 3.5 17.4 3.1 4.6 10.9 17.3 4.7 6.4

(Std.) (1.3) (3.0) (3.7) (1.3) (3.1) (4.1) (1.5) (3.1) (13.7) (1.5) (2.5) (10.4) (1.0) (1.0) (5.1)

Z 0.6 4.8 6.0 0.9 5.4 7.0 3.7 7.1 12.6 4.4 7.6 11.7 6.6 3.8 5.9

(Std.) (0.6) (4.2) (3.6) (0.6) (4.5) (3.4) (3.6) (6.3) (9.0) (3.7) (6.1) (11.6) (3.6) (3.0) (5.4)

(Unit: cm).
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Figure 6 Comparisons of 3D position estimation between a Kinect and a VICON for a trial of ladder climbing; frames (a) 310, (b) 335,

(c) 360, (d) 385, (e) 410, and (f) 435. 3D position trajectories of a Kinect and a VICON in the x-, y-, and z-directions over the first 500 frames;

(j) right arm, (k) right forearm, (l) right hand, (m) neck, and (n) head (Note: graphs are scaled for each body part).
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ladder climbing were recorded and analyzed; in con-

struction, 16% of fatalities and 24.2% of injuries were

caused by falls from a ladder in 2005 (CPWR 2008). 25

trials of each action (i.e., ascending and descending)

taken by 1 subject were recorded with six 4-mega-pixel

VICON sensors and a Kinect sensor. In total, 3,136 and

12,544 frames were collected with the Kinect and the

VICON, respectively; and the datasets were synchro-

nized for each system to have 3,136 frames for the

comparison.

In this experiment, human skeleton models of the

VICON and Kinect systems were slightly different

in terms of the hierarchical structures of a human

body; graphical illustrations of skeleton models

extracted from each system are presented in Figure 4.

Thus, for the comparison, corresponding body joints

between the two systems are selected to convert the

two models into the same form of a skeletal model

(Figure 4c), and positions of such joints, as well as

their rotation angles, are computed from motion

capture data. For instance, motion capture data used

in this study was in the Biovision Hierarchy (BVH)

format (Meredith and Maddock 2001), in which a

human posture at each frame is represented only

with 3D Euler rotation angles. The BVH format also

defines the 3D positions of body joints (i.e., transla-

tions) in an initial pose (e.g., T-pose as shown in

Figure 4). This rotation and translation information

forms a transformation matrix allowing for the com-

putation of the 3D positions of all body joints in a

global coordinate system (Meredith and Maddock

2001). To re-calculate Euler rotation angles (e.g., ro-

tations in an order of x-, y-, and z-axes in this

study) with respect to the converted skeleton model,

an axis-angle between two body parts is first com-

puted, a quaternion is defined with the axis-angle

and axis vector, this quaternion forms a rotation

matrix, and lastly a rotation angle is computed based

on the rotation matrix (Han et al. 2012). Conse-

quently, the 3D positions and rotation angles of each

body part (Figure 4c) are compared to evaluate the

tracking performances of the two systems; Table 1

describes body joint IDs corresponding to body parts

in Figure 4c.

Results and discussion
To assess the performance of the Kinect as a motion

capture system, we compare it with the VICON in terms

of the results of: (1) 3D positions of body joints, (2) 3D

rotation angles, and (3) motion detection for the datasets

simultaneously collected through a lab experiment.

Based on the error analysis, the applicability of the

Kinect to the motion analysis of construction workers is

discussed.

3D Position evaluation

To compare the 3D positions of body joints tracked by

both systems, postures at each frame were iteratively

rotated about the y-axis in a global coordinate system

(Figure 2) over all of the temporally synchronized frames.

Figure 5 visualizes skeleton models extracted from both

systems at selected frames in the coordinate where two

datasets are mapped. In this manner, the inspection of en-

tire frames (i.e., animations) visually confirmed that the

data correspondence and synchronization were success-

fully carried out for the two datasets. Through the visual

investigation, we found that overall a Kinect model was

closely matched with aVICON model, while hands and feet

in particular were not exactly located in the same place.

For the quantitative assessment, RMSEs of body parts

are computed over the entire frame using Eq. (2).

Table 2 summarizes the RMSEs and standard deviations

on distance differences in x-, y-, and z-directions, as

well as in a 3D space; body part IDs refer to Figure 4

and Table 1. The temporal trajectories of the 3D posi-

tions of both systems in the first 500 frames are also

presented in Figure 6. Compared with a VICON, a

Kinect produces the discrepancy of 10.7 cm in a 3D co-

ordinate, and no significant disparity in each direction

was identified. The results show that the largest RMSEs

are caused by the tracking of both hands (i.e., IDs 9 and

12) among body parts, and the large standard deviations

of hands also indicate that the locations of such body

parts are inconsistently estimated over the frames. Yet,

Figures 6i and 6l imply that the patterns of a Kinect at

large are still similar with those of a VICON. In

addition, a large RMSE—the third greatest after that of

the two hands—is found in a neck (i.e., ID 13). However,

the standard deviation is relatively small, and most

Figure 7 Eigen-decomposition for the internal

dimensionality estimation.
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errors result from differences in a y-direction; this sug-

gests that the tracking positions of a neck by the two sys-

tems are slightly different, as shown in Figure 6m. Next,

relatively large RMSEs are caused by forearms (i.e., IDs 8

and 11), legs (i.e., IDs 2 and 5), and feet (i.e., IDs 3 and 6).

As observed with hands, the trajectories of those body

parts also similarly fluctuate over time with both a Kinect

and a VICON (Figures 6h, 6k, 6b, 6e, 6c, and 6f).

The results show that the discrepancy between the

Kinect motion capture system and a marker-based sys-

tem is 10.7 cm on average in 3D positions. However, the

estimated trajectories reveal that the Kinect sensor can

still capture patterns of movements well, even with only

one sensor. On the other hand, the use of one sensor

may introduce the issue of occlusions. In the experi-

ment, a Kinect sensor was positioned at the rear of a

performer (Figure 3), and hence the performer’s hands

were frequently occluded by the performer, himself/her-

self. Also, forearms and legs, which were sometimes oc-

cluded as a performer climbed up and down a ladder,

caused larger errors than other body parts. This implies

that occlusions may have been a major source of errors

in this experiment.

3D Rotation angle evaluation

In this experiment, rotation angles were the outcomes of

both motion capture systems. However, other types (e.g.,

joint angles) of motion data—which can efficiently

characterize human postures—can be obtained from

motion capture systems and used as a feature for motion

analysis. Taking into account that the selection of dis-

criminating features significantly affects the classification

performances (Mangai et al. 2010), we compared three

data types in our previous study: rotation angles, joint

angles (i.e., horizontal and vertical joint angles between a

body part and x-y and x-z planes in a global coordinate

system), and position vectors (i.e., normalized vectors of

body parts) (Han, Lee, and Peña-Mora: Comparative

study of motion features for similarity-based modeling

and classification of unsafe actions in construction, sub-

mitted). The result reveals that, in the experiment, rota-

tion angles outperformed the other two data types in

applying the motion detection framework, which is also

adopted in this paper. In this respect, 3D rotation angles

used as inputs for motion analysis are compared to

evaluate the accuracy of the Kinect and its impact on ac-

tion recognition.

For the assessment, rotation angles were computed

according to the converted skeleton model in Figure 4c.

A rotation angle at a particular joint is defined as the

angle rotating a vector of the joint (i.e., a vector from

the joint to its child joint) from a corresponding vector

in an initial pose. Thus, end-joints such as body part IDs

3, 6, 9, 12, and 14 are excluded from the comparison as

not defined. Thus at the available joints, RMSEs of

rotation angles in the x-, y-, and z-directions, as well as

mean RMSEs of the three directions, were computed

Figure 8 Dimension reduction results of (a) a VICON and (b) a Kinect (axis: eigen-vector; and unit: eigen-value).

Table 3 Rotation angle comparison (degree) at body

joints between a Kinect and a VICON

ID 1 2 4 5 7 8 10 11 13 Mean

3D 5.1 5.6 6.2 8.2 13.9 34.2 18.9 49.0 4.4 16.2

(Std.) (5.2) (5.1) (4.9) (6.2) (7.8) (29.6) (15.4) (40.0) (3.8) (18.0)

X 6.6 7.3 6.7 8.1 12.1 31.2 18.7 38.6 6.0 15.1

(Std.) (6.2) (7.3) (6.1) (8.1) (6.3) (27.7) (15.6) (34.5) (2.0) (16.5)

Y 3.3 3.5 3.9 7.2 6.3 21.9 5.2 48.3 0.2 11.1

(Std.) (3.2) (2.9) (2.7) (5.1) (5.5) (19.6) (5.2) (33.8) (0.2) (13.5)

Z 5.6 5.9 7.9 9.2 23.4 49.5 32.9 60.0 7.0 22.4

(Std.) (5.6) (4.1) (5.1) (5.1) (10.6) (38.4) (21.0) (49.7) (6.3) (22.7)

(Unit: degree).
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through all of the frames, and the results are presented

in Table 3 (extended from Han et al. 2012). Compared

to a VICON, overall the mean difference of 16.2 degrees

and the standard deviation of 18.0 degrees were ob-

served for the average of the three directions. For each

direction, large errors occur in an order of z-, x-, and y-

axis rotations (the z-axis has the largest error). In par-

ticular, the largest errors of up to 49 degrees were

caused by forearms (i.e., IDs 8 and 11), which define the

hand position. This implies that position errors at fore-

arms and hands, which determine the rotation angles at

forearms, can heavily magnify errors of rotation angles

as combined. This phenomenon also explains the large

errors of arms (i.e., IDs 7 and 10). The position errors of

arms and forearms were not relatively large, but the

combination of errors produces the second largest errors

of rotation angles at the arms. Except for forearms and

arms, the rotation angle errors of other body parts were

less than 10 degrees.

Performance evaluation for motion analysis

To evaluate the performance of the Kinect for motion

analysis, we applied a motion detection method (Han

et al. 2013) to motion capture datasets from a Kinect

and a VICON, and compared the results of detection

based on conventional measures of classification perfor-

mances (i.e., accuracy, precision, and recall). For motion

analysis, dimensionalities of motion datasets were first

reduced using kernel PCA. To determine the dimension

to be reduced, eigen-decomposition was performed for

the estimation of internal dimensionality in the datasets.

As shown in Figure 7, the first three eigen-vectors have

large eigen-values, which means that most information

can be represented with three dimensions. In this regard,

motion datasets were transformed onto a 3-dimensional

coordinate; Figure 8 illustrates the distributions of each

dataset in the low-dimensional space. In this space, a

data point represents posture information at one frame,

and hence the trajectories describe actions as changing

postures over time. In Figure 8, the minimum and max-

imum values of each system are slightly different; for ex-

ample, the ranges of x, y, and z values of Vicon are

[−8.5*1015, 1.1*1015], [−1.0*1015, 1.6*1015], and [−6.0*1014,

4.3*1014], while the ranges of x, y, and z values of Kinect

are [−4.9*1015, 0.9*1015], [−0.4*1015, 1.5*1015], and

[−3.5*1014, 3.2*1014], respectively. However, the results in-

dicate that the motion data captured by both systems

could be mapped onto the same space. More importantly,

despite large errors associated with body parts (e.g., arms

and forearms) in rotation angles, the result of mapping

(i.e., the transformation of high-dimensional data onto a

low-dimensional space) reveals that the patterns of motion

data can be preserved though dimension reduction; action

detection is based on the comparison of patterns (i.e., tra-

jectories) in a 3D space.

To compare the trajectories between actions, temporal-

spatial similarities are measured using the DTW. In this

experiment, one trial of datasets among 25 for each as-

cending and descending action was used as a motion

template to compare its similarity with testing data and

detect similar actions when the similarity is higher—or

the distance is smaller—than a threshold. To avoid a

Figure 9 Comparison of similarity measurements between a VICON and a Kinect; (a) ascending, and (b) descending actions.

Table 4 Detection error comparison

Data
source

Action
type

# of
actions
in data

# of correctly detected actions # of incorrectly detected actions
Acc.
(%)

Prec.
(%)

Rec.
(%)Template (TP) Other action (TN) Not detected (FN) Mis-detected (FP)

Vicon Ascending 25 25 25 0 0 100 100 100

Descending 25 25 25 0 0 100 100 100

Kinect Ascending 25 24 25 1 0 98 100 96

Descending 25 25 25 0 0 100 100 100
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biased assessment, a motion template from a Kinect

and a VICON were compared with the same testing

dataset (i.e., an entire frame of VICON data) for the de-

tection; for instance, consistent errors (e.g., constantly

estimating locations of a hand at a wrong but similar

place) caused by a Kinect over the frames can positively

affect the detection accuracy. The similarities measured

over all of the frames are illustrated in Figure 9. Not-

withstanding errors in Kinect data, the fluctuations of

both datasets behave similarly over time. This result

suggests that the errors of a Kinect system have not sig-

nificantly affected the motion analysis in this experi-

ment. Detection results (Table 4) also show that the

accuracy, precision, and recall of a Kinect system are

98%, 100%, and 96%, respectively; only one trial among

25 was not detected.

Conclusions
This paper evaluates the performance of an RGB-D sen-

sor (e.g., Kinect sensor) as a motion capture system

based on the accuracy in estimated 3D positions and

computed rotation angles, and the sensor’s impact on

action recognition. We conducted an experiment to col-

lect motion capture data for 25 trials of ladder climbing

actions, and we analyzed the accuracy on the datasets to

identify the sources of errors. In the experiment, a 3D

position RMSE and standard deviation were 10.7 cm

and 5.3 cm, compared with a VICON. In the case of ro-

tation angles, the RMSE and standard deviation were

16.2 degrees and 18.0 degrees, respectively. The rotation

angles were used for motion detection, and the results

show that among 25 trials, only 1 case of an ascending

action was incorrectly detected (i.e., accuracies of 98%

and 100% for ascending and descending actions, respect-

ively). The experimental study implies that the inaccur-

acy of the Kinect motion capture system, particularly on

occluded body parts, did not have a considerable effect

on action recognition. However, the Kinect system pro-

duces large errors in estimating the positions of body

parts, which can even increase errors as converted into

rotation angles. The relatively lower accuracy of the

Kinect system than that of marker-based systems can

thus limit its application to construction; for example,

the Kinect system may not be suitable for applications

requiring high accuracy such as hand-related ergonomic

analysis. Moreover, further investigation of Kinect per-

formance evaluation on various actions (e.g., walking,

running, lifting and carrying an object, and slipping) in

construction operations is required for the thorough re-

view of the feasibility of a Kinect for construction appli-

cations (e.g., productivity and safety). In addition,

occlusions by a performer or other moving objects might

be common in construction; thus a single Kinect motion

capture system may potentially produce noise in a field

setting. In this respect, further investigation on the use

of multiple Kinect sensors is required to collect reliable

motion information on a jobsite.
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