
Empirical Software Engineering manuscript No.

(will be inserted by the editor)

Empirical Assessment of Machine Learning-Based Malware

Detectors for Android

Measuring the Gap between In-the-Lab and In-the-Wild
Validation Scenarios

Kevin Allix · Tegawendé F. Bissyandé ·

Quentin Jérome · Jacques Klein · Radu

State · Yves Le Traon

Abstract To address the issue of malware detection through large sets of applications,

researchers have recently started to investigate the capabilities of machine-learning

techniques for proposing effective approaches. So far, several promising results were

recorded in the literature, many approaches being assessed with what we call in the

lab validation scenarios. This paper revisits the purpose of malware detection to dis-

cuss whether such in the lab validation scenarios provide reliable indications on the

performance of malware detectors in real-world settings, aka in the wild.

To this end, we have devised several Machine Learning classifiers that rely on a

set of features built from applications’ CFGs. We use a sizeable dataset of over 50 000

Android applications collected from sources where state-of-the art approaches have se-

lected their data. We show that, in the lab, our approach outperforms existing machine

learning-based approaches. However, this high performance does not translate in high

performance in the wild. The performance gap we observed—F-measures dropping from

over 0.9 in the lab to below 0.1 in the wild—raises one important question: How do

state-of-the-art approaches perform in the wild?

Keywords Machine Learning, Ten-Fold, Malware, Android

1 Introduction

The momentum of malware detection research is growing, stimulated by the rapid

spread of mobile malware. Indeed, the increasing adoption of smartphones and elec-

tronic tablets has created unprecedented opportunities of damages by malicious soft-

ware which are hidden among the millions of mobile apps available, often for free,

on application markets (Felt et al 2011). This reality is currently witnessed on the

Android platform, where more and more users of Android-enabled smartphones and

other handheld devices are able to install third party applications from both official

K. Allix · T. F. Bissyandé · Q. Jérome · J. Klein · R. State · Y. Le Traon
Interdisciplinary Center for Security, Reliability and Trust, University of Luxembourg, 4 rue
Alphonse Weicker, L-2721 Luxembourg, Luxembourg
E-mail: {firstname.lastname}@uni.lu

2 Kevin Allix et al.

and alternative markets. In such a context, the security of devices as well as the se-

curity of the underlying network have become an essential challenge for both the end

users and their service providers. Malware pose various threats that range from simple

user tracking and leakage of personal information (Enck et al 2011), to unwarranted

premium-rate subscription of SMS services, advanced fraud, and even damaging par-

ticipation to botnets (Pieterse and Olivier 2012). Although these threats are equally

important in both the desktop computing world and the mobile computing world, most

users of handheld devices fail to realize the severity of the dangers these devices expose

them to. This situation is further exacerbated by the fact that Antivirus vendors have

not yet achieved the same kind of performance that they have achieved for personal

computers, nor will they be given the time to do so by developers of mobile malware.

Machine learning techniques, by allowing to sift through large sets of applications

to detect malicious applications based on measures of similarity of features, appear to

be promising for large-scale malware detection (Henchiri and Japkowicz 2006; Kolter

and Maloof 2006; Zhang et al 2007; Sahs and Khan 2012; Perdisci et al 2008b). Un-

fortunately, measuring the quality of a malware detection scheme has always been a

challenge, especially in the case of malware detectors whose authors claim that they

work “in the wild”. Furthermore, when the approach is based on machine learning,

authors often perform a 10-Fold cross validation experiment on small datasets to as-

sess the efficiency of the approach. This combination of 10-Fold Cross Validation and

small dataset is what we call an in the lab scenario. However, we claim that, in the

field of malware detection, all the underlying hypotheses associated with an in the lab

experiment must be outlined to allow a correct interpretation of the results. Indeed,

validation experiments of malware detection approaches are often controlled and the

datasets used may not be representative, both in terms of size and in terms of quality,

of the targeted universe.

The present paper is both an illustration and a complement to the study published

by Rossow et al (2012) and called "Prudent Practices for Designing Malware Experi-

ments: Status Quo and Outlook". Our work focuses on realistic empirical assessment,

one of the many issues raised by Rossow et al. In their introduction, they state:

[. . .] we find that published work frequently lacks sufficient consideration of ex-

perimental design and empirical assessment to enable translation from proposed

methodologies to viable, practical solutions. In the worst case, papers can vali-

date techniques with experimental results that suggest the authors have solved

a given problem, but the solution will prove inadequate in real use.

Indeed, while most of the studies presented in our related work section (7) were

published after the paper of Rossow et al., they all present this very shortcoming in

their validation methodology.

This paper. We discuss in this paper a new machine learning-based malware de-

tection approach that is effective when assessed with the in the lab validation scenario.

However, our work aims at shedding light on whether a high performance recorded with

a typical in the lab experiment guarantees even a good performance in realistic malware

detection use-cases. To this end, we proceed to compare the performance of machine

learning classifiers when they are being validated in the lab and when they are used

in the wild (i.e., the way they are intended to be used). Due to the scarcity of author

data and the lack of sufficient implementation details to reproduce approaches from

the state-of-the art literature, we base our investigation on our newly designed malware

detection approach. We have devised several machine learning classifiers and built a

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 3

set of features which are textual representations of basic blocks extracted from the

Control-Flow Graph of applications’ bytecode. We use a sizeable dataset of over 50 000

Android applications collected from sources that are used by authors of state-of-the

art approaches.

The contributions of this paper are:

– We propose a feature set for machine-learning classifiers for malware detection.

– We show that our implemented classifiers yield a high malware discriminating power

when evaluated and compared with state of the art techniques from the literature.

This in the lab evaluation is based on the 10-Fold cross validation scheme which is

popular in the machine learning-based malware detection community.

– We demonstrate limitations of this validation scenario that is performed in the

literature of malware detection. In particular, we show with abundant experimental

data that 10-Fold validation on the usual sizes of datasets presented in the literature

is not a reliable performance indicator for realistic malware detectors.

This paper is organised as follows. Section 2 discusses malware detection in the wild

and highlights the associated challenges. We provide in Section 3 various information on

the datasets of our experiments, the investigated research questions as well as the used

evaluation metrics. Section 4 describes our approach of malware detection, exploring

the variables that can be parameterized to tune the output of the machine learning

process. Section 5 presents the assessment of our approach, highlighting its performance

against state of the art approaches, but also showing its counter-performance in the

wild. Section 6 discusses potential threats to validity. Related work is discussed in

Section 7. Section 8 concludes and enumerates future work.

2 Malware Detection in the Wild

The market share of Android and its open source architecture has made it a primary

target for malware attacks among mobile operating systems. In the official Android

application store, Google Play, up to 40 000 new applications are registered in a month

according to AppBrain (2013b). In this context, especially for alternative markets, it

is important to devise malware detection approaches that are efficient in: (1) quickly

identifying, with high precision, new malware among thousands of newly arrived appli-

cations, (2) classifying a large set of applications to expose its entire subset of suspicious

ones.

Machine learning is a tool used in Artificial Intelligence to provide computers with

capabilities for automatically improving themselves in the recognition of patterns.

Machine-learning algorithms rely on selected features and training data to infer the

commonalities that a group of searched items share and that discriminate them from

the rest of the universe. The success of these algorithms therefore depend on the rel-

evance of the features for discrimating between the group of searched items and the

rest, and on the quality of training data for being unbiased and representative of the

universe of items. In machine learning-based malware detection, there is a challenge to

meet both requirements. Indeed, in the wild, i.e., in real-world scenarios, there are much

more goodware than malware, and it is yet difficult to build a set of “perfect” goodware

that does not contain a single malware. Consequently, validation of the performance

of malware detectors should reflect these specificities. Indeed:

4 Kevin Allix et al.

– Using small datasets of goodware and malware of similar size cannot guarantee

a realistic assessment of a malware detector that is intended to be used in the

wild.

– Blindly using a goodware set without properly validating that it does not contain

malware will significantly bias the yielded results

3 Data Sources, Research Questions and Metrics

In this section, we mainly present the datasets that are used to assess our malware

detection approach as well as the different aspects that are evaluated.

3.1 Datasets

For our experiments we have used two sources of Android applications that are often

used by researchers and practitioners of machine learning-based malware detection

for Android. However, to the best of our knowledge our dataset is the largest ever

presented in the Android malware detection literature. We make it available to the

research community.

Building an Android market dataset. Google Play1 is the main Android applications

market available, and thus constitutes a unique source of relevant applications that

are used and that reflects the state of Android application development. We have

built a tool that automatically crawls and downloads free applications available in this

source. Due to limitations in the implementation of our tool and to restrictions set

by Google regarding automatic crawling, we could not retrieve all free applications.

Nonetheless, in the course of six (6) months, we have collected a sizeable dataset of

nearly 52 000 unique applications. Although Google use various tools to keep Google

Play free of malware, we found, after investigation with antivirus, that our collected

dataset includes malware.

Collecting known malware. For training needs, we must have access to a reliable and

representative set of Android malware. To this end, we leverage a dataset released

in the course of the Genome project by researchers from the North Carolina State

University (Zhou and Jiang 2012). The Genome dataset contains over 1 200 Android

malware samples.

3.2 Research Questions & Metrics

We now discuss four important research questions that we have formulated to assess

the effectiveness of our machine learning-based malware detectors.

RQ1. What is the sensitivity of the malware detector when the Goodware/Malware

ratio changes in training data? Because training data is an important element of a

machine learning process, we investigate the impact of the composition of this data on

the output of the malware detector.

1 Google Play was formerly known as Google Market

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 5

RQ2. How does the number of selected features influence the performance of the

tool? We study the correlation between the number of features used to discriminate

malware and the performance of the malware detection scheme.

RQ3. What is the impact of the underlying machine learning algorithm? With this

research question we want to assess that the algorithm that is used for the implemen-

tation of our approach does not significantly bias our findings.

RQ4. What is the sensitivity of the tool towards the quality of training data? In the

wild, the supposed goodware dataset may be imperfect and contain unknown malware,

hence adding noise to the training phase. We investigate the impact that such misrep-

resentations in training data can have to the final output of the malware detector.

Those four research questions contribute to the common goal of determining the

performance of a malware detector for several sets of parameters. Indeed, evaluating

a malware detector for one fixed set of parameters only tells the experimenter how it

would perform under the exact same conditions.

Malware labeling. For the purpose of guaranteeing a reliable assessment of our ap-

proach, we undertake to label all applications by classifying them beforehand as mal-

ware or goodware, thus building the ground truth. To construct a reference independent

classification to which we can compare the predictions yielded by our machine learning-

based approach, we collected from VirusTotal2 the analysis report of each application

in our datasets. VirusTotal is a service that allows security practitioners to readily ob-

tain information on antivirus products which have identified a given application sample

as malware. At the time of writing, VirusTotal supported around 40 different antivirus

products which are continuously updated both in terms of software release version and

in terms of malware databases. Several thousands of the malware in our datasets were

unknown to VirusTotal before we submitted them.

Assessment metrics. To quantitatively evaluate the efficacy of our approach, we pro-

pose to use standard metrics from the field of Information Retrieval, namely the Pre-

cision, Recall, and F-measure metrics.

– Precision, as captured by Equation (1), quantifies the effectiveness of the tool

to identify suspicious applications that are actually malware. When the tool

reports applications as malware and all turn out to be as such, its Precision

amounts to 1.

Precision =
|{labeled malware} ∩ {malware inferred by tool}|

|{malware inferred by tool}|
(1)

– Recall on the other hand explores the capability of the tool to identify most of

the malware. Equation (2) provides the formula for its computation. A Recall

evaluated to 0 indicates that no actual malware in the test set has been identified

as such by the tool.

Recall =
|{labeled malware} ∩ {malware inferred by tool}|

|{labeled malware}|
(2)

2 https://www.virustotal.com

https://www.virustotal.com

6 Kevin Allix et al.

– Finally, we compute the F-Measure, the harmonic mean between Recall and

Precision. We consider that both Precision and Recall are equally important and

thus, they are equally weighted in the computation of F-measure in Equation

(3).

F-Measure = F1 = 2 ·
Precision×Recall

Precision+Recall
(3)

4 Experimental Setup

Malware detection shares a few challenges with other field of computer science such as

natural language processing where information retrieval techniques can be leveraged to

isolate and retrieve information that is hard to see at first glance. For text classifica-

tion (Jacob and Gokhale 2007), researchers often rely on approaches based on n-grams,

which, given a string of length M, are all the substrings of length n (with n < M) of

this string. The difficulty in malware detection consists in recognizing, for classification

purpose, the signature of a malware. Already in 1994, Kephart at IBM has proposed

to use N-grams for malware analysis (Kephart 1994). More recently a large body of

research in malware detection based on machine learning have opted for n-grams to

generate file/program signatures for the training dataset of malware (Henchiri and

Japkowicz 2006; Kolter and Maloof 2006; Santos et al 2009). Despite the high perfor-

mance claimed by the authors for very small datasets, between 500 and 3 000 software

programs, we believe that a malware detector based on n-grams, because of its vulner-

ability to obfuscation, could be trivially defeated by malware authors. For the Android

platform, Sahs and Khan (2012) recently proposed to use a combination of Android

permission and a representation of programs’ control-flow graphs. However, since all

malware are not related to a permission issue, we believe that their approach will yield

poor results for other various types of malware.

In this paper we propose a different approach to extract, from an application pro-

gram, data blocks that are semantically more relevant for executed software. These

blocks are elements of applications’ Control Flow Graphs which should capture, in a

more meaningful way than n-grams, the implementation of a malicious behavior inside

program code.

4.1 Our Feature Set for Malware Detection

As detailed in previous sections, machine learning-based malware detection relies on a

training data that is analyzed to learn what could suggest that a given application is

a potential malware. To that end, the learning algorithm must be “told” what features

are relevant in each piece of data of the dataset. Indeed, Machine Learning algorithms

cannot work directly on Android applications; Each application must be represented

with an ordered list of properties—called a Feature vector in the context of Machine

Learning. Several sets of features designed to characterize executable code have been

introduced in previous approaches (Cf. section 7).

Features are often extracted from program metadata or program code (binaries,

bytecode, source code). In the case of the Android Operating System, features can be

extracted from application bytecode using static analysis. Indeed, Android applications

are distributed in the form of .apk files which are packages containing the application’s

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 7

Dalvik3 bytecode, assets such as images, and metadata specific to the Android platform.

Android applications are generally written in Java. The program is then compiled to

Java bytecode which is converted into Dalvik bytecode. Unlike the typical binary code,

Dalvik bytecode retains most of the information contained in Java bytecode. Thus,

such code can be fed to Static Analysis tools that support Dalvik bytecode or after

converting it back to Java Bytecode for which many analyzers exist. In our work, the

static analysis was performed using AndroGuard.

We perform static analysis of Android applications’ bytecode to extract a represen-

tation of the program control-flow graph (CFG). The extracted CFG is expressed as

character strings using a method devised by Pouik et al. in their work on establishing

similarity between Android applications (Pouik et al. 2012). This method is based on

a grammar proposed by Cesare and Xiang (2010). This derived string representation

of the CFG is an abstraction of the application’s code that retains information about

the structure of the code, but discards low-level details such as variable names or regis-

ter numbers. In the context of malware detection, this is a desirable property. Indeed,

two variants of a malware may share the same abstract CFG while having different

bytecode. Thus, using an abstract representation of the code could allow to resist to

basic forms of obfuscation, a threat to validity that n-grams-based approaches cannot

readily overcome.

Given the abstract representation of an application’s CFG, we collect all basic

blocks that compose and refer to them as the features of the application. A basic block

is a sequence of instructions in the CFG with only one entry point and one exit point.

It thus represents the smallest piece of the program that is always executed altogether.

By learning from the training dataset, it is possible to expose, if any, the basic blocks

that appear statistically more in malware.

Let us note BBi a basic block and BBall the set of the n basic blocks encountered

at least in one application.

BBall = {BB1, BB2, · · · , BBn} (4)

For every application App, we build a list, FeaturesApp, of binary values (0, 1) that

codifies all basic blocks from BBall that appear in the App and those that do not.

FeaturesApp = (bApp,1, bApp,2, · · · , bApp,n) (5)

In Equation 5, bApp,i is set to 1 if the basic block BBi is present in the abstract CFG

of App, and 0 otherwise.

Experimental analysis with all applications from our datasets have shown that

with this method, we could extract over 2.5 millions different basic blocks, each ap-

pearing once or more in the CFGs of applications. The basic block representation used

in our approach is a high-level abstraction of small parts of an Android application.

Depending on its position inside a method, one sequence of instructions may lead to

different bytecode because of register renumbering. Our abstract basic block represen-

tation however will always produce the same string for one sequence of instructions

of a basic block, hence providing a higher resistance to code variations than low-level

representations such as n-grams computed on bytecode. For reproducibility purposes,

and to allow the research community to build on our experience, the feature matrices

that we have computed for both the Genome and the Google Play dataset are publicly

available for download4.

3 Dalvik is a virtual machine that is included in the Android OS
4 https://github.com/malwaredetector/malware-detect

https://github.com/malwaredetector/malware-detect

8 Kevin Allix et al.

4.2 Classification Model

Classification in machine learning-based approaches is the central phase during which

an algorithm assigns items in a collection to target classes. In our case, the classification

phase aims at predicting if a given application should be assigned to the malware class.

In preparation to the classification phase, we must build a dataset in which the class as-

signments, i.e., goodware or malware, are known for the application. The classification

model is then built by a classification algorithm which attempts to find relationships be-

tween the features of the applications and their class assignments. This process is known

as the training phase of the algorithm. In our approach we rely on four (4) well-known

classification algorithms, namely Support Vector Machine (SVM) (Cortes and Vapnik

1995), the RandomForest ensemble decision-trees algorithm (Breiman 2001), the RIP-

PER rule-learning algorithm (Cohen 1995) and the tree-based C4.5 algorithm (Quinlan

1993).

We now discuss the different steps, illustrated in Figure 1, for building the classi-

fication model.

Step 0: Set composition Our complete dataset contains over 50 000 applications that

we divide into two distinct sets, one significantly smaller than the other, for the purpose

of assessment. The first set, Setα, contains all known malware, i.e., all items in the

Genome dataset. To complete this set, we randomly select a subset of the Google Play

dataset to add as the goodware portion of the dataset. The second set, Setδ, is then

composed of the remaining subset of the Google Play dataset. Setδ is always used as

a testing set, whereas Setα can be used as training set (in the wild) or as the entire

universe (10-Fold), i.e., testing and training sets combined (cf. Fig. 1).

Step 1: Feature Evaluation Once the sets of an experiment are defined, a feature eval-

uation step is performed to measure the discriminating power of every feature. This

measure is computed using the InfoGain Feature evaluation as implemented in the

Machine Learning software Weka5 (Hall et al 2009).

Step 2: Feature Selection For practical reasons, given the large sizes of the datasets,

hence the high number of features to process, we must improve computation efficiency

by reducing the number of features. Indeed, reducing the number of features considered

for the classification will decrease the working size of the sets, leading to lowered I/O,

memory and CPU consumption for the subsequent processing steps. In our approach

we only retain, after the evaluation step, the best N features, i.e. those with the highest

InfoGain values. The number of features is reduced in both the training set and the

testing set. For every built training set, we derived about 2.5 millions features, and

over 99% of them had a null (0) InfoGain measure. We thus discard those features

whose null discrimination power implies that they are “irrelevant”. Previous work has

already demonstrated that removing such irrelevant features may, beyond computation

efficiency gain, improve classifiers’ ability to generalize its model (Tahan et al 2012),

which in turn could lead to a better detection of previously unknown malware.

5 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 9

Google

Play

Genome

Random

Selection

selectedunselected

Feature

Evaluation

Feature

Selection

(feature, InfoGain)

Feature

Selection

10-Fold

Cross-Validation

Accuracy

Metrics

Training

Classificati

on Model

Classification

Validation

Accuracy

Metrics

VirusTotal

Labelling

Large scale ("in the wild")

In the lab

S

T

E

P

0

S

T

E

P

1

S

T

E

P

2

Set
!

Setα

n best

features of

Set
!

S

T

E

P

3

S

T

E

P

3

n best features
of Setα

Fig. 1 The steps in our approach

Step 3: Classification validation scenarios We propose to use two distinct scenarios to

validate our malware detection approach.

10 Kevin Allix et al.

Validation in the lab Traditionally, machine learning-based approaches are assessed

in a cross validation scenario that validates the classification model by assessing how

the result will generalize to an independent dataset. To estimate how the prediction

model will perform in practice, a cross-validation scenario partitions the sample data

into 2 subsets. The first subset is used for learning analysis, i.e., building the model

during the training phase. The second subset is used to validate the model. However,

to reduce variability of the results, multiple rounds are performed and the results are

averaged over the rounds. A well-known type of cross-validation is the 10-Fold cross

validation (McLachlan et al 2005) which randomly partitions the sample data into 10

subsamples, 9 of which are used for training and 1 for validation. The process is then

repeated with each subsample being used exactly once for validation. This method

enables to consider all elements in the original sample for training but to have each

element validated only and exactly once. For assessing our malware detection approach

with the 10-Fold cross validation scheme we consider Setα, which was defined in Step

0, as the dataset where both training and testing data will be drawn. This dataset

contains both malware and goodware. Every Android application of this dataset will

then be classified exactly once, allowing us to easily determine the performance of our

approach in this setting.

Another common aspect of in the lab validation is the size of the dataset, usually

a few thousands applications at most as can be seen in table 1 in appendix.

Validation in the wild. Unfortunately, the 10-Fold cross validation scenario as it is

described above does not quite capture the real-world settings in which the malware

detector is intended to be used. Indeed, by splitting a dataset in 10 parts, 9 of which

are used for training, a 10-Fold cross-validation implicitly assumes that 90% of the

domain knowledge is known beforehand—a condition that contradicts the very idea of

in the wild.

A 10-Fold cross-validation experiment only serves to validate that a given classi-

fier performs well in this one set of conditions, and not that its performance can be

generalised outside the scope of these datasets. In the wild, the malware detection tool

will only know a size-constrained sample of malware. It could also know a few true

goodware, the majority of applications being of an unknown class. To detect malware

in this last category, the malware detection tool must be able to perform at large.

We perform large-scale experiments where the classification algorithm of our ap-

proach is trained on Setα. To investigate the impact of the quality of the training set,

we perform two rounds of experiments where the randomly selected “goodware” from

the Google Play dataset are alternatively just considered as such, or confirmed and

cleaned, as true goodware using antivirus products. The trained classifier obtained is

then used to predict the class, either malware or goodware, of every single application

from Setδ. Those predictions are finally compared to our reference malware classi-

fication obtained from VirusTotal to assess the performance of the approach in the

wild.

4.3 Varying & Tuning the Experiments

In this section we succinctly describe the parameters that are used in our experiments

to vary and tune the experiments to share insights in the practice of malware detection

with machine learning techniques. These parameters were selected in accordance with

the research questions outlined previously in Section 3.2.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 11

Goodware/Malware ratio We see a first parameter in the building of the datasets.

Indeed, given that the size of the malware set is fixed and known, what size of goodware

should be selected in the very large set of goodware available to yield a good ratio? We

performed various experiments to analyze the impact of the potential class imbalance

between in the dataset, tuning the ratio value to 1/2, 1, 2 and up to 3, representing

respectively 620, 1 247, 2 500 and 3 500 Android applications selected in the goodware

set. Having the vast majority of examples from one of the classes, aka class imbalance,

is a well-documented threat to Machine Learning performance in general (Van Hulse

et al 2007; He and Garcia 2009). This threat is even more severe in malware detection

because of the relative scarcity of malware in comparison to the number of available

benign applications. Yet, surprisingly, the literature of machine learning-based malware

detection often eludes this question in experiments (Cf. Section 7).

Volume of processed features Feature selection is an important step of the classification

model. However, it can bias the output of the classification depending on the threshold

that is set for defining best features. We investigate the role played by the number

of features considered as relevant for our malware detector. To this end, we vary this

number for the values of 50, 250, 500, 1 000, 1 500, 5 000.

Classification algorithm Last, as introduced in the description of the classification

model, our malware detectors are implemented using 4 different algorithms which are

well-known in the community of machine learning. For all algorithms, we have used ex-

isting implementations in Weka, namely RandomForest, J48, JRip and LibSVM, that

were already referred to in the literature. In all of our experiments, these algorithms

are used with the default parameters set by the Weka framework.

Overall, since the selection of Goodware performed in Step 1 of the classification

is performed randomly, we reduce variability of the results by repeating 10 times each

experiment with a given triplet of parameter values. In total, 4 (values for number

of Goodware) ×6 (values for number of features) ×4 (number of algorithms) ×10
= 960 runs were processed for our experiments. The entire process took over thirty

(30) CPU-days to complete.

5 Assessment

In this section we present an extensive assessment of our machine learning-based mal-

ware detection approach. We first validate the approach using a typical in the lab

validation scenario, while discussing the impact of the different parameters that are

involved in the process. Second, we compare the performance of our malware detector

with approaches in the literature to highlight the relevance of our feature set. However,

we take the experiments further to investigate the capability of malware detectors to

scale in the wild.

5.1 Evaluation in the lab

We run 960 10-Fold cross validation experiments with all combinations of parameter

values to assess the performance of our malware detection approach. Because in each

12 Kevin Allix et al.

experiment the goodware set is varied, computed features vary, and thus the classifi-

cation model leads to distinct classifiers. The validation thus assesses altogether the

960 classifiers that were built in the experiments. Figure 2 depicts the distribution of

precision, recall and F-measure that the validation tests have yielded. In each boxplot

diagram presented, whiskers go from the minimum value recorded to the maximum

value. The box itself is built as follows: the bottom line of the box represents the 25th

percentile; the top of the box represents the 75th percentile; the line inside the box

represents the median value.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Precision Recall F1

Fig. 2 Distribution of precision, recall and F-measure for the malware class yielded in all 960
in the lab experiments

Overall, the results indicate that the vast majority of our 960 built classifiers exhibit

a very high precision rate with a median value of 0.94. The median value of recall is

recorded at 0.91, meaning that half of the classifiers have recall values that are equal or

higher to 0.91. Although recall values are lower than precision values, a large portion of

the built classifiers exhibit a high recall rate. Given the precision and pecall rates, the

F-measure values obtained are globally high, going from 0.53 to 0.96, with a median

value of 0.91.

5.1.1 Impact of class imbalance

We now investigate in detail how class imbalance in the constructed dataset threatens

the performance of machine learning-based malware detectors, and thus, how a collec-

tion of unrealistic datasets can bias validation results. To this end, as announced in Sec-

tion 4.3, we perform in the lab experiments using datasets where the goodware/malware

ratio is varied between 1/2 and 3. All other parameters are varied across all their value

ranges.

Figure 3 shows that when the goodware/malware ratio is increasing in favor of

goodware, the precision of malware detectors increases, while its recall decreases. The

increase of the precision can be attributed to the fact that the classification model has

a better view of the universe and can discriminate more accurately malware against

goodware. However, at the same time, the classifiers can no longer recognize all malware

since most will be more similar to some of the too many goodware. This drop in recall

rate is so marked that the overall performance, measured with F-measure, decreases

as revealed by the boxplots of Figure 3. This observation is of particular importance

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 13

in the field of malware detection since, in real-world scenarios, there is much more

goodware than malware.

RQ1: The performance of the machine learning-based mal-

ware detector decreases when there are fewer malware than

goodware in the training dataset.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1/2 1 2 3

Goodware/Malware Ratio

In-the-lab: F measure Distribution

In-the-lab: Precision median

In-the-lab: Recall median

Fig. 3 Distribution of F-measure and evolution of precision and recall for various good-
ware/malware ratio values

5.1.2 Sensitivity to the volume of relevant features

We survey the effect that an implementation choice on the number of relevant features

to retain for classification can have on the performance of the malware detector. In

each experiment, about 2.5 millions distinct features are generated, most of which are

evaluated to being completely irrelevant. Using the remaining features, we successively

select between 50 and 5 000 to use as relevant features for the classifiers. Figure 4

shows that the overall performance, measured with F-measure, is improving with the

number of features retained. However the figure also shows that over a certain threshold

number, about 1 000, of features, the median value of F-measure is no longer affected.

The improvement is thus confined at the upper level.

RQ2: The more features are considered for the training

phase, the better the performance of the malware detector.

5.1.3 Effect of classification algorithm

Finally, we investigate the role played by the classification algorithm in the variation of

performance between classifiers. To that end we compare the performance of classifiers

after regrouping them by the underlying algorithm. Figure 5 represents the distribution

of F-measure for the 4 algorithms that are used in our experiments. RandomForest, the

RIPPER rule-learning algorithm, and C4.5 exhibit high F-measure rates. SVM on the

other hand provides results with a wider distribution and an overall lower F-measure.

14 Kevin Allix et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50 250 500 1000 1500 5000

Number of Features

Fig. 4 Distribution of F-measure for different volumes of the set of considered relevant features

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C4.5 RIPPER SVM RandomForest

Fig. 5 Distribution of F-measure for 4 different classification algorithms

Figure 6 plots the values of precision and recall for all classifiers built when using

each algorithm. We note that SVM leads to numerous classifiers with precision values

close to 1, but that present lower recall rates than the other algorithms. Although SVM

yields the best classifiers—the top 66 classifiers with highest precision and the top 42

with highest recall are based on SVM—it tends in our approach to yield few classifiers

that have both good precision and good recall.

RQ3: Four common classifications algorithms have led to

similar performance with our feature set, suggesting that the

approach is not tailored to a specific algorithm.

5.2 Comparison with Previous work

Table 1 in appendix summarizes a number of state-of-the-art machine learning-based

malware detection approaches for the Android platform. We indicate the features that

are used, the type of validation that were performed in the paper, the sizes and compo-

sition of the training set, the size of the testing set, if known, and an overall performance

comparison with our approach. Overall, we note that our cross validation experiments

have yielded at worst similar performance than state-the-art approaches, and at best,

our worst classifiers perform better than classifiers of approaches in the literature. All

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
c
is
io
n

Recall

C4.5

RIPPER

SVM

RandomForest

Fig. 6 Precision and recall values yielded by all classifiers for the 4 different classification
algorithms

comparisons were done on equivalent experiments, i.e., with similar training and testing

sets, and the same classification algorithms whenever possible.

We provide this comparison to provide a settings for a stronger, and more general,

discussion on the scope of 10-Fold cross validation for approaches that are meant to be

applied on datasets in the wild.

Finding: Our classifiers, when built with similar parameters

than existing approaches, and evaluated in the lab, are highly

performant.

5.3 Evaluation in the wild

Beyond simply demonstrating the performance of our malware detection approach us-

ing cross-validation, we explore in this section its performance in the wild. We perform

large-scale experiments on sizes of datasets that are unusually large for the literature

of malware detection, but that better reflect realistic use-cases. Two points should be

highlighted:

– 10-Fold cross-validation assesses the performance of a classifier by considering

90% of the dataset for training, thus supposing a prior knowledge of the mal-

ware class of each application in 90% of the dataset. Real-world datasets of

applications however present a contrasting specificity: the known malware set

is limited and is insignificant compared to the rest (i.e. goodware + unknown

malware).

– Performance assessment of malware detectors should be carefully performed so

as to expose the scope in which they can be of use in real-world settings. Thus,

large-scale experiments with varying parameters can help refine a methodology

for using, in realistic settings, a malware detection approach that was shown

successful with 10-Fold cross validation on controlled datasets.

The experimental protocol used in this evaluation is similar to that used in the

validation experiments of Section 5.1, except that we do not perform 10-Fold cross

validation. Instead, we use our entire Training data, i.e., the entire set of known malware

+ a randomly selected subset of the goodware, to build the classification model (cf.

16 Kevin Allix et al.

Figure 1). By varying the different parameters explicited in Section 4.3, we obtain again

960 classifiers that will be used to test the large remaining set of goodware containing

from 48 422 to 51 302 applications. Each experiment with a specific set of parameters is

repeated 10 times to stabilize the results. Indeed, since step 0 of our experimental setup

randomly selects parts of the training dataset, repeating experiments ten times, each

with a different training-set prevents the results from being biased by the possibility

that the randomly selected training set is particularly good or particularly bad.

The predictions of the malware detector are then checked against the independent

reference classification (cf. Section 3.2).

Figure 7 illustrates the distribution of precision, recall and F-measure values for the

960 classifiers that were built during the large-scale experiments. Overall, the classifiers

exhibit a very low precision rate with a median value of 0.11. We have enumerated 13

classifiers with the highest precision value of 1. However, these only classified between

5 and 7 applications, thus yielding an exceedingly low recall rate. Also, most of the

960 classifiers have a recall value close to 0. Even the unique classifier which provided

a 0.45 recall value had to classify half of the dataset as malware. Finally, with a low

precision and an even lower recall, the global performance of the classifiers severely

drops in large-scale experiments, with a majority of classifiers yielding a F-measure

value close to 0.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Precision Recall F1

Fig. 7 Distribution of precision, recall and F-measure values in “in the wild” experiments

Figure 8 shows that when the ratio of goodware/malware in the training set is

balanced in favor of the goodware set in training data, the precision rates increase

slightly while recall values decrease rapidly. This figure shows that a class imbalance

in favor of the goodware set leads to an overall performance drop, with the F-measure

values closer to 0.
Again, as in the case of in the lab experiments, we investigate the sensitivity of

the malware detector to the volume of relevant features. Figure 9, which depicts the

distribution of F-measure values for different experiments with varied number of fea-

tures that are kept as relevant, shows that, in the wild, their impact is not significant.

Indeed, aside from the first boxplot for a really small number, 50, of features, all other

boxplot show a compact distribution with similarly low median values.

Finally, Figure 10 presents the distribution of F-measure for classifiers built based

on the four different classification algorithms used in our experiments. The distributions

reveal that no algorithm significantly outperforms the others for our experiments in

the wild.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1/2 1 2 3

Goodware/Malware Ratio

In the wild: F measure Distribution

In the wild: Precision median

In the wild: Recall median

Fig. 8 Distribution of F-measure and evolution of precision and recall for various good-
ware/malware ratio values in “in the wild” experiments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50 250 500 1000 1500 5000

Number of Features

Fig. 9 Distribution of F-measure for different volumes of the set of considered relevant features
in “in the wild” experiments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C4.5 RIPPER SVM RandomForest

Fig. 10 Distribution of F-measure for different algorithms in “in the wild” experiments

Summary: In the wild, experiments have revealed a poor overall performance

of the malware detectors. Variations of goodware/malware ratio and classi-

fication algorithms yield the same evolutions as for in the lab experiments.

In contrast, increase in the volume of features lead to a drop in performance

during large-scale experiments.

18 Kevin Allix et al.

5.4 Discussion

In the lab experiments with the 960 different built classifiers have demonstrated that

our malware detection approach performs well in comparison with existing approaches

in the literature. However applying those classifiers to detect malware in very large

datasets have yielded very low performance. Figure 11 illustrates the contrasting F-

measure median values for both experimental scenarios with varying number of fea-

tures.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 500 1000 1500 5000

F
-m

e
a
s
u
re

Number of Features

In the wild

In the lab

Fig. 11 Comparison of F-measure median values

We now enumerate a few points that are relevant to discuss the performance of

Malware classifiers in the wild:

Size of training sets: Given the importance of the training phase, it could be argued

that the size of training set that we have used in large-scale experiments are too small

compared to the size of the testing set. Nonetheless, the gap between these sizes is

in respect with real-world scenarios as discussed in Section 2. Furthermore, our ex-

periments, illustrated in Figure 8, have shown that the Recall rates actually decreases

when the size of training set increases.

Quality of training sets: The poor performance of classifiers during experiments in the

wild could be attributed to some potential noise in the “goodware” set collected from

Google Play; i.e., some goodware in this set are actually unknown malware whose

features are biasing the classification model. Indeed, according to detection reports

from VirusTotal, 16% of the applications obtained from Google Play are malware. We

have then run experiments where the training data contained alternatively a goodware

set that were uncleaned and a goodware set that were cleaned with Antivirus products.

Figure 12 shows the slight improvement that cleaned dataset provides. Nonetheless,

the global performance remains significantly low. Furthermore, since, to the best of

our knowledge, there is no publicly available collection of known goodware that one

can rely upon, a good classifier should perform relatively well even in presence of noisy

training datasets.

RQ4: The machine learning-based malware detector is sen-

sitive to the quality of training data. A cleaned goodware set

positively impacts overall performance.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C4.5 RIPPER SVM RandomForest

F
-m

ea
su
re

With uncleaned goodware set

With cleaned goodware set

Fig. 12 Distribution of F-measure values with cleaned and uncleaned goodware sets for ex-
periments in the wild

6 Threats to Validity

Our study presents a number of threats to validity that we discuss in the following to

highlight their potential impact on our findings and the measures we have taken to

mitigate their bias.

6.1 External Validity

Datasets representativity: During collection of datasets from Google Play, we did not

consider downloading any paid application. However, free applications account for the

majority of Android applications available (AppBrain 2013a) and appear to be the

most affected by malware.

Furthermore, the malware from the Genome dataset that we have used may not

be representative enough of the malware corpus available in Google Play. However,

to the best of our knowledge, this is the most comprehensive collection of Android

malware available to researchers in the Security and Privacy field. Besides, malware

representativity is hard to define in practice, since it would require that one knows

beforehand all malware that are being looked for.

Google’s own malware detector: In February 2012, Google announced (Google 2012)

they were using Bouncer, their own Android malware detector, to prevent malicious

applications to reach the official Google Play market. While Bouncer still allows many

malware to enter Google Play (Allix et al 2014b), it may bias our dataset collection.

Since both our in the lab and in the wild experiments used apps collected from

Google Play, both validation scenarios should be affected by this bias. Bouncer there-

fore cannot play a significant role in the performance gap we observed. However, if

Bouncer had a negative impact on Android malware detectors, our results show that

this impact would be marginal in the lab, but significant in the wild, hence highlighting

the importance of in the wild experiments.

6.2 Construct Validity

Labeling methods: In our experiments, two different reference classification sources were

used as ground truth: in the lab experiments were based on the Genome project classi-

20 Kevin Allix et al.

fication alone while in the wild experiments used the Genome project for training and

were tested against VirusTotal classification. Although we verified beforehand that ev-

ery app from the Genome project is classified as malware by VirusTotal,

the use of two different labeling sources could be one possible explanation for the dif-

ferences in accuracy we found when comparing in the lab with in the wild experiments.

To investigate this hypothesis, we performed the same experiments again, this time

using only VirusTotal for both training and testing. As can be seen on Fig 13, using a

single, coherent reference classification does not result in significantly different results.

Hence, the performance gap between in the lab and in the wild experiments cannot be

explained by our usage of labelling sources.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Trained on Genome

Tested on VirusTotal

Trained on VirusTotal

Tested on VirusTotal

F
-m

e
a
s
u
re

In the lab

In the wild

Fig. 13 Distribution of F-measure for different classification references usages

Exhaustiveness of classification algorithms: Machine-learning algorithms perform differ-

ently depending on the context. It is thus possible that the four well-known algorithms

that we have selected were used in this study outside of their comfort zone. Nonethe-

less, we note that 3 very distinct algorithms exhibited similar patterns, suggesting that

our findings are not specific to a particular type of classification algorithm.

Relevance of feature set: Our experiments were performed with the same type of fea-

tures, which are based on basic blocks of CFGs. Possibly, this particular feature set is

incompatible with experiments in the wild. However, we have not found in the state-

of-the-art literature evidence suggesting that other feature sets with high performance

in in the lab validation actually perform well in large-scale experiments as well.

Limited experiments with 2-grams extracted from raw bytecode, resulted in the

same performance gap between in the lab and in the wild validation scenarios.

Furthermore, we note that if our feature-set was deemed unsound, or unsuitable for

this study, this would actually strengthen our argument. Indeed, it would demonstrate

that even an unsound feature-set can lead to high-performance in the lab, or in other

words, that high performance in the lab is not even a valid indicator of soundness for

a feature-set.

6.3 Internal Validity

Composition of training and testing sets: The size of training sets and the ratio between

goodware and malware sets take various values that appear to be unjustified since,

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 21

to the best of our knowledge, no survey has determined their appropriate values for

malware detection. However, we have ensured that the sizes that are used in our study

are comparable to other research work, and that they are representative of the data

available to the research community.

6.4 Other Threats

Specificity of Findings to the Android platform: Experiments in this study focused

on Android applications. We have not studied malware detection for other Operating

Systems. Although our feature set does not take into account any specificities, such as

Android Permissions scheme, we cannot rule out that the gap between in the lab and

in the wild scenarios could be narrower in other platforms.

7 Related Work

Previously, we have reported (Allix et al 2014a) preliminary findings of this work to

the Computer security community.

A significant amount of Machine Learning approaches to malware detection has

been presented to the research community. Although most of those approaches could

not be reproduced due to undisclosed parameters and/or undisclosed datasets, we try

to compare their evaluation metrics with our most-closely in the lab classifiers. None

of the approaches introduced by the literature discussed in this section provide a large

scale evaluation of their approach.

Android malware detection In 2012, Sahs and Khan (2012) built an Android malware

detector with features based on a combination of Android-specific permissions and

a Control-Flow Graph representation. Their classifier was tested with k-Fold 6 cross

validation on a dataset of 91 malware and 2 081 goodware. We obtained comparable

values of recall but much higher values for precision and F-measure. Using permissions

and API calls as features, Wu et al (2012) performed their experiments on a dataset

of 1 500 goodware and 238 malware. Many of our classifiers exhibit higher values of

both precision and recall than theirs. In 2013, Amos et al (2013) leveraged dynamic

application profiling in their malware detector. The evaluation metrics of their 10-

Fold experiment are slightly lowers than ours. Demme et al (2013) also used dynamic

application analysis to perform malware detection with a dataset of 210 goodware

and 503 malware. Many of our in the lab classifiers achieved higher performance than

their best classifier. Yerima et al (2013) built malware classifiers based on API calls,

external program execution and permissions. Their dataset consists in 1 000 goodware

and 1 000 malware. Many of our in the lab classifiers achieved higher performance than

their best classifier. Canfora et al (2013) experimented feature sets based on SysCalls

and permissions. Their classifiers, evaluated on a dataset of 200 goodware and 200

malware, yielded lower precision and lower recall than ours.

6 The value of k used by Sahs & Khan was not disclosed.

22 Kevin Allix et al.

Windows malware detection Kolter and Maloof (2006) performed malware classifica-

tion on Windows Executable files. Using n-grams extracted from those binary files, and

the Information Gain feature selection method, they obtained high performance met-

rics with 10-Fold experimentations on two collections: The first one consisting in 476

malwares and 561 goodware, the second one containing 1 651 malware and 1 971 good-

ware. Many of our in the lab classifiers achieved higher performance metrics. In 2006,

Henchiri and Japkowicz (2006) provided experimental results of a malware detector

based on a sophisticated n-grams selection algorithm. They evaluated their classifier

using 5-Fold7 on a dataset of 3 000 samples, of which 1 512 were malware and 1488

were goodware. The majority of our classifiers achieved better results than Henchiri &

Japkowicz best ones, even though we used a simple feature selection method. Zhang

et al (2007) leveraged a multi-classifier combination to build a malware detector. They

evaluated the quality of their detector with the 5-Fold method on three datasets, each

containing 150 malware and 423 goodware. The features they are using are based on

n-grams, and are selected with InfoGain. Zhang et al. mentions testing on a larger

dataset as a future work. Schultz et al (2001) performed malware detection using

strings and byte sequences as features. They obtained very high recall and precision

with 5-Fold Cross Validation on a dataset of 4 266 Windows executables (3 265 known

malicious binaries and 1 001 benign). Many of our classifiers performed similarly good

or better. Perdisci et al (2008a) built a packed executable detector that achieved near

99% accuracy. Their classifiers were trained on 4 493 labelled executables and then

tested on 1 005 binaries. The same authors leveraged their packed executable detection

method (Perdisci et al 2008b) and added two malicious code detectors, one of which

is based on n-grams. They first evaluated one of this detector with 5-Fold cross vali-

dation on 2 229 goodware and 128 malware and the other detector with 3 856 malware

and 169 goodware. Finally, their complete approach called “McBoost” was evaluated

with 5-Fold on 3 830 malware and 503 goodware. Tahan et al (2012) recently presented

“Mal-ID”, a malware detector that relies on high-level features obtained with Static

Analysis. Their experiments are performed with 10-Fold on a dataset built with 2 627

benign executables and 849 known malware.

8 Conclusion

We have discussed in this paper the validation of machine-learning malware detection

with in the lab and in the wild scenarios. A first contribution of our work is a Feature

set for building classifiers that yield high performance measures in in the lab evaluation

scenarios and in comparison with state-of-the-art approaches. Beyond this evaluation,

however, we have assessed the actual ability of our classifiers to detect Malware in a

significantly large dataset. The recorded poor performance has provided us with new

insights as to the limits to which an in the lab validation scheme is a reliable indicator

for real-world malware detectors. We have thus identified several parameters that are

likely to impact the performance of Malware Detectors. Finally, we make available to

the research community all our datasets to improve the research on Android malware

detection.

7 While 10-Fold is equivalent to testing 10 times on 10% while being trained on 90% of
the dataset, 5-Fold is equivalent to testing 5 times on 20% while being trained on 80% of the
dataset.

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 23

Our Argument. By presenting here an approach that exhibits high performance

in the lab and yet has little practical usefulness in the wild, we demonstrated that

there exists at least one approach for which this performance gap exists. While this

paper cannot demonstrate that the same gap exists for other published approaches, we

claim that until those approaches are tested in the wild, they cannot be supposed to

represent a significant improvement to the malware detection domain.

We also showed here that this issue of validation scenario is not merely a minor

bias in experimental results: in the lab results are not a slightly optimistic version of

results in the wild. Instead, they can be vastly different and tell widely different stories.

Hence, evaluating malware detector in the wild, with a sound empirical methodol-

ogy is of the utmost importance. In other words, we call for the Machine Learning-based

malware detection community to devise and agree on what would be sound, in-depth

and meaningful validation scenarios.

In future work, we plan to investigate the reasons of the observed performance

gap, and to formalise a methodology for sound, extensive, reliable and reproducible

empirical evaluation of malware detectors.

Acknowledgements We would like to thank VirusTotal for providing us the ability to lever-
age their infrastructure and detection report databases to build a reference classification as
described in section 3.2.

24 Kevin Allix et al.

9 Appendix

Table 1 Recent research in Machine Learning-based Android Malware Detection

Authors Features Algorithm Evaluation Datasets Training set Test Set Comment
Sahs and
Khan
(2012)

Permissions,
CFG sub-
graphs

1-class SVM k-fold 2 081 goodware
91 malware

Subsets of the
goodware set

91 malware
(and remain-
der of training
set?)

Sahs & Khan approach yielded
high recall with low precision. The
vast majority of our in the lab clas-
sifiers yielded both a high recall
and a high precision.

Amos et al
(2013)

Profiling
(Dynamic)

RandomForest,
C4.5, etc.

10-fold on
training
set and
evalua-
tion on a
test set

1 777 Apps 408 goodware
1 330 malware

24 goodware
23 malware

Our closest experiment (good-
ware/malware ratio: 1/2) yielded
dozens of classifiers with equivalent
or better performance

Yerima
et al (2013)

API calls,
external
tool execu-
tion, per-
missions
(Static)

Bayesian 5-fold 1 000 goodware
1 000 malware

?1 ?1 Our closest in the lab experi-
ment (goodware/malware ratio: 1)
yielded 74 classifiers with both
higher recall and higher precision
than Yerima et al.’s best classifier.

Demme
et al (2013)

Performance
Counters
(Dynamic)

KNN, Ran-
domForest,
etc.

?1 210 goodware
503 malware

?1 ?1 The majority of our in the lab

classifiers yielded higher recall and
higher precision than Demme et
al.’s best classifier

Canfora
et al (2013)

SysCalls,
Permis-
sions

C4.5, Random-
Forest, etc.

?1 200 goodware
200 malware

?1 ?1 In our closest experiment by
dataset size (goodware/malware
ratio :1/2), our worst classifier per-
forms better than Canfora et al.’s
best classifier. In our closest exper-
iment by goodware/malware ratio
(1), the vast majority of our clas-
sifier perform better than Canfora
et al.’s best classifier.

Wu et al
(2012)

Permissions,
API Calls,
etc.

KNN, Naive-
Bayes

?1 1 500 goodware
238 malware

?1 ?1 More than 100 of our in the lab

classifiers yielded both a higher re-
call and a higher precision than
their best classifier.

References

Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2014a) Large-scale machine
learning-based malware detection: Confronting the "10-fold cross validation" scheme with
reality. In: Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, ACM, New York, NY, USA, CODASPY ’14, pp 163–166, DOI 10.1145/2557547.
2557587, URL http://doi.acm.org.proxy.bnl.lu/10.1145/2557547.2557587

Allix K, Jérome Q, Bissyandé TF, Klein J, State R, Le Traon Y (2014b) A forensic analysis
of android malware: How is malware written and how it could be detected? In: Computer
Software and Applications Conference (COMPSAC)

Amos B, Turner H, White J (2013) Applying machine learning classifiers to dynamic an-
droid malware detection at scale. In: Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International, pp 1666–1671, DOI 10.1109/IWCMC.2013.
6583806

AndroGuard (2013) Apktool for reverse engineering android applications. URL https://code.

google.com/p/androguard/, accessed: 2013-09-09
AppBrain (2013a) Comparison of free and paid android apps. URL http://www.appbrain.

com/stats/free-and-paid-android-applications, accessed: 2013-09-09
AppBrain (2013b) Number of available android applications. URL http://www.appbrain.com/

stats/number-of-android-apps, accessed: 2013-09-09
Breiman L (2001) Random forests. Machine learning 45(1):5–32
Canfora G, Mercaldo F, Visaggio CA (2013) A classifier of malicious android applications. In:

Availability, Reliability and Security (ARES), 2013 eight International Conference on

1 We were unable to infer this information.

http://doi.acm.org.proxy.bnl.lu/10.1145/2557547.2557587
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

Empirical Assessment of Machine Learning-Based Malware Detectors for Android 25

Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: Pro-
ceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing -
Volume 107, Australian Computer Society, Inc., Darlinghurst, Australia, Australia, Aus-
PDC ’10, pp 61–70

Cohen WW (1995) Fast effective rule induction. In: Machine Learning-International Workshop
Then Conference, Morgan Kaufmann Publishers, Inc., pp 115–123

Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20(3):273–297, DOI
10.1007/BF00994018, URL http://dx.doi.org/10.1007/BF00994018

Demme J, Maycock M, Schmitz J, Tang A, Waksman A, Sethumadhavan S, Stolfo S (2013)
On the feasibility of online malware detection with performance counters. In: Proceedings
of the 40th Annual International Symposium on Computer Architecture, ACM, New York,
NY, USA, ISCA ’13, pp 559–570, DOI 10.1145/2485922.2485970

Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security.
In: Proceedings of the 20th USENIX conference on Security, USENIX Association, Berke-
ley, CA, USA, SEC’11, pp 21–21, URL http://dl.acm.org/citation.cfm?id=2028067.

2028088

Felt AP, Finifter M, Chin E, Hanna S, Wagner D (2011) A survey of mobile malware in the
wild. In: Proceedings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, ACM, New York, NY, USA, SPSM ’11, pp 3–14, DOI 10.1145/2046614.
2046618, URL http://doi.acm.org/10.1145/2046614.2046618

Google (2012) Android and security (bouncer announcement). http://googlemobile.

blogspot.fr/2012/02/android-and-security.html, accessed: 2014-06-14
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data

mining software: an update. SIGKDD Explor Newsl 11(1):10–18, DOI 10.1145/1656274.
1656278

He H, Garcia E (2009) Learning from imbalanced data. Knowledge and Data Engineering,
IEEE Transactions on 21(9):1263–1284, DOI 10.1109/TKDE.2008.239

Henchiri O, Japkowicz N (2006) A feature selection and evaluation scheme for computer virus
detection. In: Proceedings of the Sixth International Conference on Data Mining, IEEE
Computer Society, Washington, DC, USA, ICDM ’06, pp 891–895, DOI 10.1109/ICDM.
2006.4

Jacob A, Gokhale M (2007) Language classification using n-grams accelerated by fpga-based
bloom filters. In: Proceedings of the 1st international workshop on High-performance re-
configurable computing technology and applications: held in conjunction with SC07, Reno,
Nevada, USA, HPRCTA ’07, pp 31–37

Kephart JO (1994) A biologically inspired immune system for computers. In: In Artificial Life
IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, MIT Press, pp 130–139

Kolter JZ, Maloof MA (2006) Learning to detect and classify malicious executables in the wild.
J Mach Learn Res 7:2721–2744, URL http://dl.acm.org/citation.cfm?id=1248547.

1248646

McLachlan G, Do KA, Ambroise C (2005) Analyzing microarray gene expression data, vol 422.
Wiley. com

Perdisci R, Lanzi A, Lee W (2008a) Classification of packed executables for accurate
computer virus detection. Pattern Recognition Letters 29(14):1941 – 1946, DOI 10.
1016/j.patrec.2008.06.016, URL http://www.sciencedirect.com/science/article/pii/

S0167865508002110

Perdisci R, Lanzi A, Lee W (2008b) Mcboost: Boosting scalability in malware collection and
analysis using statistical classification of executables. In: Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pp 301–310, DOI 10.1109/ACSAC.2008.22

Pieterse H, Olivier M (2012) Android botnets on the rise: Trends and characteristics. In: Infor-
mation Security for South Africa (ISSA), 2012, pp 1–5, DOI 10.1109/ISSA.2012.6320432

Pouik, G0rfi3ld (2012) Similarities for fun & profit. Phrack 14(68), URL http://www.phrack.

org/issues.html?id=15&issue=68

Quinlan JR (1993) C4. 5: programs for machine learning, vol 1. Morgan kaufmann
Rossow C, Dietrich C, Grier C, Kreibich C, Paxson V, Pohlmann N, Bos H, van Steen M

(2012) Prudent practices for designing malware experiments: Status quo and outlook. In:
Security and Privacy (SP), 2012 IEEE Symposium on, pp 65–79, DOI 10.1109/SP.2012.14

Sahs J, Khan L (2012) A machine learning approach to android malware detection. In: Intel-
ligence and Security Informatics Conference (EISIC), 2012 European, IEEE, pp 141–147,

http://dx.doi.org/10.1007/BF00994018
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://doi.acm.org/10.1145/2046614.2046618
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://dl.acm.org/citation.cfm?id=1248547.1248646
http://dl.acm.org/citation.cfm?id=1248547.1248646
http://www.sciencedirect.com/science/article/pii/S0167865508002110
http://www.sciencedirect.com/science/article/pii/S0167865508002110
http://www.phrack.org/issues.html?id=15&issue=68
http://www.phrack.org/issues.html?id=15&issue=68

26 Kevin Allix et al.

DOI 10.1109/EISIC.2012.34
Santos I, Penya YK, Devesa J, Bringas PG (2009) N-grams-based file signatures for malware

detection. In: ICEIS, pp 317–320
Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data mining methods for detection of new

malicious executables. In: Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE
Symposium on, pp 38–49, DOI 10.1109/SECPRI.2001.924286

Tahan G, Rokach L, Shahar Y (2012) Mal-id: Automatic malware detection using common
segment analysis and meta-features. J Mach Learn Res 98888:949–979

Van Hulse J, Khoshgoftaar TM, Napolitano A (2007) Experimental perspectives on learn-
ing from imbalanced data. In: Proceedings of the 24th international conference on Ma-
chine learning, ACM, New York, NY, USA, ICML ’07, pp 935–942, DOI 10.1145/1273496.
1273614

Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection
through manifest and api calls tracing. In: Information Security (Asia JCIS), 2012 Seventh
Asia Joint Conference on, pp 62–69, DOI 10.1109/AsiaJCIS.2012.18

Yerima S, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection
approach using bayesian classification. In: Advanced Information Networking and Ap-
plications (AINA), 2013 IEEE 27th International Conference on, pp 121–128, DOI
10.1109/AINA.2013.88

Zhang B, Yin J, Hao J, Zhang D, Wang S (2007) Malicious codes detection based on ensemble
learning. In: Proceedings of the 4th international conference on Autonomic and Trusted
Computing, Springer-Verlag, Berlin, Heidelberg, ATC’07, pp 468–477

Zhou Y, Jiang X (2012) Dissecting android malware: Characterization and evolution. In: Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy, IEEE Computer So-
ciety, Washington, DC, USA, SP ’12, pp 95–109, DOI 10.1109/SP.2012.16, URL http:

//dx.doi.org/10.1109/SP.2012.16

http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16

	Introduction
	Malware Detection in the Wild
	Data Sources, Research Questions and Metrics
	Experimental Setup
	Assessment
	Threats to Validity
	Related Work
	Conclusion
	Appendix

