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Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typi-
cal microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous infer-
ence. We consider one such experiment in which oligonucleotide arrays were employed to assess the genetic effects of ionizing
radiation on seven thousand human genes. A simple nonparametric empirical Bayes model is introduced, which is used to guide
the ef� cient reduction of the data to a single summary statistic per gene, and also to make simultaneous inferences concern-
ing which genes were affected by the radiation. Although our focus is on one speci� c experiment, the proposed methods can be
applied quite generally. The empirical Bayes inferences are closely related to the frequentist false discovery rate (FDR) criterion.

1. INTRODUCTION

Through the use of DNA microarrays, a novel technology,
it is now possible to obtain quantitative measurements for the
expression of thousands of genes present in a biological sam-
ple. DNA microarrays have been used to monitor changes in
gene expression during important biological processes (e.g.,
cellular replication and the response to changes in the environ-
ment), and to study variation in gene expression across col-
lections of related samples (e.g., tumor samples from patients
with cancer). A major statistical task is to understand the struc-
ture of the data from such studies, which often consist of mea-
surements on thousands of genes in dozens of conditions.

This article concerns the use of microarrays in a compara-
tive experiment, where it is desired to compare gene expres-
sion under Treatment versus Control conditions. We wish to
identify which of several thousand candidate genes have had
their expression levels changed, either positively or negatively,
by the Treatment. Answering this question requires an ef� cient
data reduction strategy, because microarrays deliver megabytes
of information, and also statistical inference techniques that
deal with the dif� culties of simultaneous inference on thou-
sands of genes. We discuss both problems here, working in
the context of an experiment on radiation sensitivity discussed
later.

The statistics literature for microarrays, still in its infancy
and with much of it unpublished, has tended to focus on
frequentist data-analytic devices such as cluster analysis,
bootstrapping, and linear models (see Li and Wong 2000;
Kerr and Churchill 2000; Black and Doerge 2000; Van del
Laan and Bryan 2000; Eisen, Spellman, Brown, and Botslein
1998). Parametric Bayesian modeling was featured in Newton,
Kendziorski, Richmond, Blatter, and Tsui (2000) and to a
less extent in Lee, Kuo, Whitmore, and Sklar (2000). Multi-
ple comparison techniques, designed to control error rates in
thousands of simultaneous hypotheses tests, were explored in
Dudoit, Yang, Callow, and Speed (2000). Tusher, Tibshirani,
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and Chu (2001) approached the simultaneity problem through
the method of false discovery rates (FDRs), as discussed later.

Our inferences here will be based on a simple nonpara-
metric empirical Bayes model. The model produces useful a
posteriori probabilities of effect for the individual genes, with
a minimum of prior assumptions. It also connects well with
Benjamini and Hochberg’s (1995) frequentist theory of FDRs,
as discussed in Section 5. Besides being useful in its own
right, the empirical Bayes model helps to select from among
competing data reduction schemes, a crucial point in dealing
with the massive datasets microarrays produce.

Here is some background on microarrays in general and the
speci� c experiment analyzed in this article. Virtually all liv-
ing cells contain chromosomes, large pieces of DNA contain-
ing hundreds or thousands of genes, each of which speci� es
the composition and structure of a protein (or sometimes sev-
eral related proteins). Protein polymers of amino acids are
the workhorse molecules of the cell, responsible, for exam-
ple, for cellular structure, producing energy and important
biomolecules like DNA and proteins, and for reproducing
the cell chromosomes. Every cell in an organism has nearly
the same set of chromosomes, and thus contains the same
repertoire of proteins. However, cells have remarkably distinct
properties, such as the differences between human eye cells,
hair cells and liver cells, distinctions that are the result of dif-
ferences in the abundance, distribution, and state of the cell
proteins. One of the seminal discoveries of molecular biology
was that these changes in protein abundance are determined
in part by changes in the levels of messenger RNA (mRNA),
small and relatively unstable nucleic acid polymers that shut-
tle information from chromosomes to the cellular machines
that synthesize new proteins. Thus, there is a logical connec-
tion between the state of a cell and the details of its protein
and mRNA composition.

Whereas it remains dif� cult to measure the abundances of a
cell’s proteins, the recently developed DNA microarray makes
it possible to quickly and ef� ciently measure the relative rep-
resentation of each mRNA species in the total cellular mRNA
population, or in more familiar terms to measure gene expres-
sion levels.

There are two major kinds of microarrays. In an oligonu-
cleotide array, the kind featured in this article, there are 20
probe pairs (pm, mm) for each gene. The perfect match (pm)
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probe is designed to match a small subsequence of the gene
about 25 bases long. The mismatch (mm) probe is a control,
being identical to pm except with the middle base � ipped to
its complement. An experimental sample is hybridized on the
microarray, and the RNA expression of the gene is estimated
by the difference in signal pm–mm averaged over the 20 probe
pairs. There is some concern that subtracting mismatch num-
bers may actually degrade the inferences, a question we con-
sider in this article.

In a spotted cDNA microarray, the other major variety, one
base sequence matching all or part of a gene is printed on a
glass slide. The experimental sample is labeled with red dye
and hybridized on the slide. As a control, a reference sample
is labeled with green dye and hybridized on the same slide.
Using a � uorescent microscope, the log (red–green) intensi-
ties of RNA hybridization at each site are measured. The red–
green microarray is featured in much of the recent literature,
see Newton et al. (2001), Dudoit et al. (2000), and Lee et al.
(2001). Our discussion, like that in Li and Wong (2000) cen-
ters in the Affymetrix oligonucleotide microarray, but similar
analysis problems arise for both types of array. However, our
Empirical Bayes procedure, summarized in Algorithm 1, can
be applied quite generally. An example extending the empiri-
cal Bayes analysis to a cDNA microarray experiment appears
in Remark D of Section 6, showing how our methods can be
applied to other experimental situations.

From either type of microarray, we obtain several thou-
sand expression values, one or many for each gene. Microar-
rays in current use measure anywhere from 1,000 to 25,000
genes; larger ones will soon be available. In a typical study, a
number of experimental samples are each hybridized to a dif-
ferent microarray to learn about gene expression differences
across different conditions. For example Alizadeh et al. (2000)
studied gene expression patterns from tissue samples from a
number of lymphoma patients and related gene expression to
patient survival. Clustering methods (Eisen et al. 1998) were
the main tool used in that article, and in a number of other
similar studies. Here we will be interested in the more famil-
iar statistical task of comparing Treatment and Control arrays,
though carried out in a novel setting.

Our particular dataset comes from a set of eight oligonu-
cleotide microarrays in an experiment designed by Professor
Gilbert Chu of the Stanford Biochemistry Department to study
transcriptional responses to ionizing radiation. Some cancer
patents have severe life-threatening reactions to radiation treat-
ment. It is important to understand the genetic basis of this
sensitivity, so that such patients can be identi� ed before the
treatment is given. The eight microarrays were labeled

4U 1A1 U1B1 I1A1I1B1 U2A1U 2B1 I2A1I2B51 (1.1)

the labels indicating the following experimental design: RNA
was harvested from two wild-type human lymphoblastoid cell
lines, designated “1” and “2,” growing in an unirradiated
state “U,” or in an irradiated state “ I.” RNA samples were
labeled and divided into two identical aliquots for independent
hybridizations, “A” and “B.” Each microarray provided expres-
sion estimates for 6,810 genes. Further experimental details
appear in Remark A of Section 6.

Here is the article’s plan: the data structure of the radiation
experiment is described in Section 2. This sets up the main
thrust of the article, the ef� cient reduction of microarray data
(320 numbers per gene in this case) to a single summary statis-
tic “Zi” for each gene, followed by an appropriate simultane-
ous inference for the activity of each gene based on all the Z

scores. Section 3 presents the simple nonparametric empirical
Bayes model used to make our simultaneous inferences. The
model is presented in algorithmic form, suggesting how it can
be applied to other microarray comparative experiments, both
oligoneucliotide and cDNA types. (Another such experiment
is brie� y discussed in Section 6.)

Section 4 concerns the ef� cient reduction of the data to
a single score Zi per gene. The reduction makes use of the
empirical Bayes model, essentially selecting mappings that
maximize the amount of Bayesian information preserved in
Zi . Frequentist justi� cation of the empirical Bayes approach
appears in Section 5, where it is related to Benjamini and
Hochberg’s (1995) theory of FDR. Section 6 closes with a
summary and some detailed remarks, including a comparison
of our analysis with a “gold standard” assay of some of the
genes.

2. THE DATA

Microarray experiments produce enormous amounts of data,
more than two million feature numbers in the relatively small
experiment we are discussing here. The statistical task is to
ef� ciently reduce these numbers to simple summaries of the
genes’ activities. One goal in this article is to provide a method
for comparing the statistical ef� ciency of different data reduc-
tion strategies.

Here is a description of the data in the radiation experiment,
and the notation we will use to describe it. Expression levels
were recorded for 6,810 different genes,

genes: i D 1121 : : : 1 n D 618100 (2.1)

(There were actually 7,129 genes, 319 of which had some
missing data. For convenience, this article considers only
the 6,810 genes having complete data. The various analyses
were also carried out on all 7,129 genes, with nearly identi-
cal results.) Each gene on each plate was represented by 20
oligonucleotide “probes,”

probes: j D 1121 : : : 1 J D 200 (2.2)

Finally there were eight plates, (the individual microarrays)
representing the eight experimental conditions of the exper-
iment described in section 1, (U1A, U1B, I1A, I1B, U2A,
U2B, I2A, I2B),

plates: k D 11 21 : : : 1 K D 80 (2.3)

Two features were recorded for each probe of each gene on
each plate, a “perfect match number” pmijk and a “mismatch
number” mmijk , the latter referring to a deliberately distorted
version of the oligonucleotide included as a control. Table 1
shows the 20 pairs of numbers for gene i D 21715 on plate
k D 1.

We will investigate three separate stages of data reduction:
“probe reduction”, the mapping that takes the 20 probe pair
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Table 1. The 20 Pairs of Perfect Match and Mismatch Feature Numbers for Gene i D 2, 715 on Plate k D 1 (U1A)

Probe 1 2 3 4 5 6 7 8 9 10

pm 11054 31242 11470 41050 11356 11476 561 606 11307 11057
mm 793 21333 826 11912 561 558 942 526 699 11060

Probe 11 12 13 14 15 16 17 18 19 20
pm 974 11584 802 11399 11670 21514 21096 61592 51662 21244
mm 829 11771 601 569 840 950 700 81717 11484 668

numbers into a single expression value “Mik” for gene i on
plate k,

probe reduction: 84pmijk1mmijk51 j D 1121 : : : 1209 ! Mik1

(2.4)

“gene reduction,” the mapping that takes the K D 8 expression
values Mik for gene i into a single expression score “Zi ,”

gene reduction: 8Mik1 k D 1121 : : : 189 ! Zi1 (2.5)

and � nally an inference mapping that re-expresses Zi in terms
of a statistical inference concerning i activity of gene. The
nonparametric empirical Bayes analysis of Section 3 will pro-
vide inferences of the form Prob 8Eventi—Zi9, where Eventi is
an event of interest such as “gene i’s activity was affected by
radiation.” Section 5 connects these probabilities with the fre-
quentist FDR criteria of Benjamini and Hochberg (1995).

There are of course an unlimited selection of possible data
reductions from the original data, 320 numbers per gene in the
radiation experiment, to the expression scores Zi . For reasons
explained in Section 4, the empirical Bayes analysis will lead
us to prefer the following choices: For the probe reduction let

Mik
D mean8log4pmijk5 ƒ 05 ¢ log4mmijk51 j D 11 21 : : : 12090

(2.6)

For the gene reduction, � rst compute the four differences
4Di11Di21Di31Di45 between the irradiated and unirradiated
values within the same wild-type sample and aliquot, for
example

Di1 D Mi3 ƒ Mi11 (2.7)

the difference between the I1A and U1A values Mik. Then
take

Zi
D SDi=4a0 C Si51 (2.8)

where SDi is the average of the four differences, Si is their
sample standard deviation, and a0 is the 90th percentile of the
6,810 S values. Speci� cations (2.6)–(2.8) will be used as a
comparison point in all of our numerical examples. They will
be compared with other choices in Section 4, including the
current one included in the Affymetrix software.

3. EMPIRICAL BAYES INFERENCES

Besides analyzing the radiation data, our goal here is to pro-
vide data analytic techniques useful in a variety of microarray
situations. With generality in mind we will avoid highly spec-
i� ed models, relying instead on a simple inference model that

is likely to apply to most comparative experiments: that a gene
is either affected on unaffected by the treatment of interest,
radiation in our case, giving two possible distributions for the
expression score “Z,” (2.5). Lee et al. (2000) used a normal
theory version of this idea, as, less directly, did Li and Wong
(2000). Newton et al. (2000) focused on Gamma models. Here
we will avoid parametric assumptions. The resulting nonpara-
metric empirical Bayes analysis, which provides a posteriori
probabilities of effect for the various genes, is further justi� ed
in Sections 4–6.

Let

p1
D probability that a gene is affected1

p0
D 1 ƒ p1

D probability unaffected1 (3.1)

and

f14z5 D the density of Z for affected genes

f04z5 D the density of Z for unaffected genes0 (3.2)

Then

f 4z5 D p0f04z5C p1f14z5 (3.3)

is the mixture density of the two populations. In our situation,
we can estimate f4z5 directly from the 6,810 expression scores
Zi obtained from the data reduction (2.4) and (2.5).

In the absence of strong parametric assumptions such as
normality, model (3.3) is useless without an estimate of the
“null density” f04z5. Fortunately, it is easy to obtain such esti-
mates. What follows is the method we used to estimate f04z5

in the radiation experiment. Section 6 discusses variants of
this method that are applicable more generally.

The 61810 � 8 matrix M of expression values (2.4), one
value for each gene on each plate, gives a 61810� 4 matrix D
of differences between the irradiated and unirradiated expres-
sion values, as in (2.7). Let Mk indicate the kth column of M,
a 6,810 vector. With the plates ordered as before, (U1A, U1B,
I1A, I1B, U2A, U2B, I2A, I2B), the “difference matrix” D is

D D 4M3
ƒ M11M4

ƒ M21M7
ƒ M51 M8

ƒ M650 (3.4)

Symbolically, the vector Z of expression scores (2.5) is
obtained via

[original data] ! M ! D ! Z0

61810� 20� 2� 8 61810� 8 61810� 4 61810

(3.5)
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Now let the “null difference matrix” d be the 61 810 � 4
matrix obtained by differencing within the aliquot splits,

d D 4M2 ƒ M11M4 ƒ M31M6 ƒ M51M8 ƒ M751 (3.6)

so for example the � rst column of d records differences
between the B and A splits of the unirradiated wild-type 1
experiments. We de� ne “null scores” z D 4z11 z21 : : : 1 z618105

0

by

[original data] ! M ! d ! z1 (3.7)

with the understanding that except for the substitution of d for
D, the arrows in (3.7) indicate the same mappings as in (3.5).

We will use the empirical distribution of the null scores 8zi9

to estimate the null density f04z5 in (3.3). One could just as
well take M1

ƒ M2 as M2
ƒ M1 in (3.6), etc., and in fact our

numerical algorithm employs random sign permutations of the
columns of d to improve the estimation of f0. The basic idea
here, that we can recover the “null hypothesis” from differ-
ences that negate treatment effects, shows up in one form or
another in many of the microarray references, being essentially
unavoidable in a comparative experiment. Further discussion
appears in Section 6, which describes strategies that might be
used for estimating f0 in situations less intricate than the radi-
ation experiment.

An application of Bayes’ rule to the mixture model (3.3)
gives the a posteriori probabilities p14Z5 and p04Z5 that a gene
with score Z was affected or unaffected by the treatment:

Bayes’ Rule: p14Z5 D 1ƒ p0f04Z5=f 4Z5

and

p04Z5 D p0f04Z5=f 4Z50 (3.8)

The ratio f04Z5=f 4Z5 can be estimated directly from the
8Zi9 and 8zi9 empirical distributions. The probabilities p0

and p1 D 1 ƒ p0 are unidenti� able without strong parametric
assumptions, but this will turn out to be less problematic than
it might seem. The constraint that p14Z5 be nonnegative for

Figure 1. Solid curve: Bayesian Inference Mapping Prob{Eventi —Zi } From Data Reductions (2.6), (2.8); Eventi is “Gene i Affected by Radiation.”
Symbols show Z values for 18 genes separately analyzed by Northern Blot: “+ ” positively affected; “ - ” negatively affected”; “o” not affected.
Dotted curve is lower bound (3.10).

all Z does restrict p0 and p1,

p1 ¶ 1ƒmin
Z

8f 4Z5=f04Z59

and

p0 µ min
Z

8f 4Z5=f04Z59 (3.9)

A more stable bound for p1 and po is given in Remark F of
Section 6.

Figure 1 displays the Bayesian inference curve p14Z5 D
Prob8Event—Z9 obtained from the probe and gene data reduc-
tions (2.6), (2.8). It was constructed as follows (skipping some
technical details that appear in Section 6):

Algorithm 1: Empirical Bayes analysis for microarrays

(a) Compute the scores 8Zi9 according to (3.5), using probe
reduction (2.6) and gene reduction (2.8).

(b) Compute the null scores 8zi9 in the same way, beginning
with (3.7). Generate 20 versions of the 8zi9, based on
20 independent row-wise sign permutations of d (see
Remark D).

(c) Use logistic regression to estimate the ratio f04z5=f 4z5

based on the relative densities of the 8Zi9 to the 8zi9
(see Remark C).

(d) Use relationship (3.9) to obtain an estimated upper
bound for p0: here p0 D 0811 (See Remark F.)

(e) For each gene compute Prob8Event—Z9 from (3.8), with
f0=f estimated from the logistic regression, and p0

equaling its estimated maximum value (or more conser-
vatively with p0

D 1.)

We have focussed on our particular experimental setup, but
Algorithm 1 is quite general. It can be applied to any two-
class situation, for example two sets of unpaired samples. All
that changes is the generation of null scores zi in step (b).
For instance, for unpaired samples the values of zi would be
generated by random permutations of the column labels “1”
and “2.” Remark E of Section 6 gives another example.

Our Bayesian analysis is actually “empirical Bayes” in the
sense that the crucial ratio f04Z5=f 4Z5 in (3.8) is estimated
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from the data rather than from a priori assumptions. Newton
et al. (2000) carried out a similar analysis, but using speci� c
Bayesian modeling assumptions beyond (3.1)–(3.3).

In Figure 1, the a posteriori probability of being affected
is seen to increase as Z or ƒZ grows large. The positive end
of the Z-axis corresponds to genes turned on by the radiation,
with their expression values increased, while negative values
of Z indicate decreased expression under radiation. Out of the
6,810 genes 127 genes had p14Z5 exceeding .90, more on the
negative than positive end of the Z scales.

Eighteen of the 6,810 genes were independently assessed
by a Northern Blot analysis, a pre microarray assay that serves
here as a gold standard for gene expression. Seven of these,
indicated by “C” in Figure 1, were deemed “affected posi-
tively by radiation,” � ve indicated by “ƒ” were “affected neg-
atively,” and six indicated by “o” were “not affected.” There is
good agreement between the Northern Blot assessments and
the probabilities assigned in Figure 1. The full results, given
in Section 6, show a high correlation between the gold stan-
dard and our results.

In comparing different data reductions, it is convenient to
always have the same marginal distribution for Z. To this
end, the raw scores 8Zi9 from (2.8) were monotonically trans-
formed to have a nearly perfect N 40115 distribution, say by
transformation m4Z5, and then the null scores were trans-
formed according to the same m4z5. Notice that the crucial
ratio f04z5=f 4z5 remains the same under such transformations,
so that p14Z5 and po4Z5 in (3.8) are transformation invariant.
We will always make the empirical distribution of the 8Zi9

almost perfectly N 401 15, using a normal scores transforma-
tion, implying for example that 42 D 61810 ¢ 41 ƒ ê420555 of
the 6,810 genes have Zi > 205, with ê the standard normal
cumulative distribution function.

Figure 2 shows the estimates of f01 f11 and f contributing to
Figure 1; f 4Z5 is a standard N 401 15 density, by construction,
while f04z5 is a less dispersed density. This is what we hoped
for of course: the values of Z should be more dispersed than
the values of z because they re� ect the disturbing effects of the
radiation treatment. The large values of Prob8Event—Z9 in the
tails of Figure 1 come from (3.8), and the small ratio of f04z5
to f 4Z5. A good choice of data reductions makes f04z5=f4z5

small for —z— large, and we will use this criterion to guide our
choices of the probe and gene reductions in Section 4.

Looking again at (3.8),

p14Z5 ¶ 1ƒ f04Z5=f 4Z51 (3.10)

Figure 2. Estimates of f( ¢) , f0( ¢) and f1( ¢) for the Situation of
Figure 1, Model (3.1)–(3.3); p0 D .811, its Estimated Maximum From
(3.9), Used in the Construction of f1.

because this corresponds to p0
D 1, the largest possible value.

The dotted curve in Figure 1 is 1 ƒ f04Z5=f 4Z5. This is not
much less than the solid curve for large values of —Z—, giving
106 genes with p14Z5 ¶ 090.

4. EFFICIENT DATA REDUCTIONS FOR
MICROARRAY EXPERIMENTS

The empirical Bayes analysis of Section 3 depends on a
drastic data reduction: from the full vector vi of data for gene
i, a 320-vector in the radiation experiment, to a single number
Zi (and its null counterpart zi .) Information is bound to be
lost in the mapping from vi to Zi , but the less we lose the
more powerful will be the analysis, and better our chance of
detecting genuinely affected genes.

To state things more exactly, we can imagine applying
model (3.1)–(3.2) to the 320-dimensional densities of v,

f v
1 4v5 D density of v for affected genes, (4.1)

f v
0 4v5 D density of v for unaffected genes1

and

f v4v5 D p0f
v
0 4v5 C p1f

v
1 4v51 (4.2)

the mixture density; p0 and p1 have the same meaning here
as in (3.1). De� ning the likelihood ratio statistic Rv4v5 D
f v4v5=f v

0 4v5, Bayes theorem gives

pv
14vi5 D 1ƒ p0=Rv4vi5 D Prob8gene i affected—vi91 (4.3)

compared to p14Zi5 D 1 ƒ p0=R4Zi5 in (3.8), where R4Zi5 D
f 4Zi5=f04Zi5.

In our situation it is not practical to estimate the high-
dimensional densities f v4v5 and f v

0 4v5, at least not without
extensive modeling. However, we can easily estimate the cor-
responding densities f 4Z5 and f04Z5 for a one-dimensional
statistic Z. The goal is to choose a mapping Z D s4v5 that
does not lose much information. Information loss manifests
itself by reductions in the likelihood ratio R4Zi5, compared to
Rv4vi5, which reduces the number of genes having convinc-
ingly large values at p14Zi5.

4.1 Estimation of a0

With this background in mind we searched for mappings
Z D s4v5 that produced large values of R4Z5, i.e., good sep-
aration between f4Z5 and f04Z5 as in Figure 2. Figure 3
shows the part of the search relating to the choice of a0 in
the denominator of (2.8). The curve marked “90” is equiv-
alent to the dashed curve in Figure 1, the difference here
being that the vertical axis is plotted on the logit scale,
logp14Z5=41 ƒ p14Z55, to emphasize differences in the tails.
Keeping probe reduction (2.6) � xed, Figure 3 compares � ve
different choices of a0 in the gene reduction (2.8): a0 equal to
the 90th percentile of the 6,810 Si values; the 50th percentile;
the 5th percentile; a0

D 0; and a0
! ˆ. The choice a0

D 0
makes Zi in (2.8) proportional to the one-sample t-statistic
for the four differences 4Di11 Di21 Di31 Di45, whereas a0

! ˆ
makes Zi equivalent to the numerator SDi . The plotted curves
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Figure 3. Choice of a0 in the Gene Mapping Zi D SD i =(a0 + Si ) , (2.8);
Vertical Axis is Logit of Prob{Event—Z}, Estimated as in (3.8) With p0 D
1; “90” Indicates a0 Equaling 90th Percentile of the 6,810 Si Values,
etc.; “inf” is Limit as a0 ! ˆ. We see that 90 is the best choice in
terms of maximizing Prob{Event—Z} for large —Z —; a0 D 0 is worst. All
choices used probe reduction (2.6). The vertical axis is truncated at
lower bound Prob{Event—Z} D .20. N90 is the number genes having
Prob{Event—Z} ¶ .90.

are the logits of (3.10), the conservative lower bound for
p14Z5, (taking p0 D 1 in (3.8).)

Figure 3 shows that the best choice for a0 is the one we
used before, a0 the 90th percentile. This manifests itself as
higher values of Prob8Event—Z9 at both ends of the Z scale.
The density f04z5 in Figure 2 is more concentrated around
zero than it is say for the disastrous choice a0

D 0, raising
f 4Z5=f04Z5 in the tails and thus p14Z5, (3.10). The numbers
N90 in Figure 3 indicate the number of genes having lower
bound (3.10) for p14Zi5 greater than .90. These range down-
ward from 106 for a0 D 90 to 0 for a0 D 0. Larger values of
N 90 indicate less information loss in going from the full data
vector vi to the summary statistic Zi . (Efron, Tibshirani, Goss,
and Chu (2001) also use Kulback–Liebler distance to measure
information loss.)

Figure 4. Comparison of Various Probe Reductions (gene reduction ’ xed as in (2.8), a0 D 90th percentile). The solid curve in both panels
is the choice (2.6) used previously; constant “c” is multiple of mm level subtracted from pm level, for example. “c D 1 no logs” uses Mi k D
mean{pmi j k - mmij k }. “Affy” based on the probe reduction software provided with the Affymetrix Genechip.

4.2 Choosing the Probe Reduction

The GeneChip software distributed by Affymetrix uses a
simple average difference, (with some outlier rejection) to
estimate what we called the probe reduction in (2.4), the
expression for gene i on plate k 2 Mik

D meanj8pmijk
ƒmmijk9.

However, this choice is controversial, and some researchers
have suggested that ignoring the mismatch entirely might pro-
duce better expression estimates. We investigate the issue here.

Keeping the gene reduction � xed as in (2.6), a0
D 090,

Figure 4 compares probe reductions of the form

Mik
D meanj8s4pmijk5 ƒ c ¢ s4mmijk591 (4.4)

with s either the log function or the identity function. For
example curve 2 in the left panel uses Mik

D meanj8pmijk
ƒ

mmijk9 whereas the dotted curve in the right panel uses
Mik

D meanj8log4pmijk59. Our preferred choice (2.6)–(2.8) is
curve 1, “c D 05 & logs.” The “Affy” curve in the left panel
was based on the algorithm provided by Affymetrix, which is
similar to the “c D 1 no logs” choice, but with a provision for
removing apparent outliers among the 20 pmijk

ƒ mmijk dif-
ferences before averaging.

Figure 4 indicates a substantial advantage to taking logs,
and a mild advantage to using c D 05 rather than c D 1 or c D 0.
The comparison between c D 05 and c D 1 is close on the log
scale, but other comparisons, reported in Efron et al. (2000),
reinforce the superiority of c D 05. We also tried using various
L-estimators in (4.7), including trimmed means. When applied
on the log scale, this form of robusti� cation made almost no
difference to our results.

Some comments are in order, which apply to the whole
section:

¡ There is no claim that the mapping Z D s4v5 described by
(2.6), (2.8) is “correct,” only that it is relatively ef� cient
in preserving the information in v. The estimated curve
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p14Z5 still is meaningful as the a posteriori probability
of effect given the insuf� cient statistic Z, and also has
the FDR interpretation of Section 5. (Efron et al. (2000)
showed that in fact a better “s4v5” can be obtained in the
radiation experiment by removing plates U1A and I1A
from the dataset (1.1); a processing error appears to have
degraded the results from I1A.) Our tactic of choosing
the Z mapping to maximize p14Z5 is nearly equivalent to
minimizing FDR, which was the approach taken in Tusher
et al. (2000).

¡ There is also no claim that mappings (2.6) and (2.8)
enjoy general superiority. The equivalent of Figures 3 and
4 might point to a different choice of s4v5 in another
dataset. Section 6 discusses how our methodology can be
applied to other comparative microarray experiments.

¡ Over� tting is not a threat in a genuine Bayesian frame-
work, where results like those from Figures 3 and 4 can be
thought of as just computer-based attempts to numerically
solve a probabilistic maximization problem. However, in
our empirical Bayes framework, too much data-based
maximization could in fact lead to over� tting. Two forms
of bootstrapping were employed as a check on our results:
“gene resampling,” in which the rows of the 61810 � 8
matrix M were resampled to give M ü ; and “row resam-
pling” in which row i of M ü was obtained as the average
of 20 resampled rows from the 20 � 8 matrix xi having
entries

xijk
D log4pmijk5 ƒ 05 ¢ log4mmijk50 (4.5)

The bootstrap results indicated that the differences seen
in Figures 3 and 4 were much greater than the standard
errors of the curves, so that over� tting was not a threat.
For example, row resampling showed that the difference
between the a0

D 090 and a0
D 050 curves at Z D ƒ3,

which looks suspiciously small in Figure 3, had point esti-
mate and standard error 068 013.

Figure 5. Simulations Comparing Empirical Bayes Formula fdr, (5.1) With Actual FDR, as Explained in Text. Left panel: a0 D .90 in mapping
(2.8). Right panel: a0 ! ˆ.

5. FALSE DISCOVERY RATES

The empirical Bayes analysis of Section 3 is closely related
to Benjamini and Hochberg’s FDR criterion. For a collection
of simultaneous hypothesis tests, FDR is the expected propor-
tion of type I errors made using a given rejection rule. De� ne
the local false discovery rate to be

fdr4Z5 D p0f04Z5=f 4Z51 (5.1)

so fdr4Z5 is the a posteriori probability p04Z5, (3.8), that a
gene with score Z is unaffected. It will be shown that (6.1)
has a natural FDR interpretation. We begin with a numerical
example.

In the calculations for Figure 1, N D 74 of the 6810
genes had Z scores in the interval Z 2 61091 2017, whereas the
twenty permuted null score datasets 8zi9 had 676 falling into
610912017, an average of 3308 D 676=20 per set. Taking p0 to
be its estimated maximum .811, this suggests that among the
N D 74 binned Z values, the expected number of “unaffect-
eds” is 2704 D 0811 ¢ 3308. If we now declare all genes with Z
in 61091 2017 to be affected, our expected proportion of false
discoveries is

2704
74

D 37%0 (5.2)

Notice that (5.2) is an obvious estimator of (5.1) for Z D 2,

cfdr425D Op0
Of0425= Of 425

h
Op0 D 08111 Of0425D 3308

6810
1 Of425D 74

6810

i
0 (5.3)

In general, if we bin the genes into small intervals on the
Z scale, then a bin declared “affected” will have a FDR of
about fdr4Z5, (5.1), the equality becoming exact as the num-
ber of genes goes to in� nity. This last statement can be rigor-
ously veri� ed under modest ergodic conditions that preclude
extremely high correlations among the values fo Z or the z.

Figure 5 reports on a simulation experiment used to check
the accuracy of fdr4Z5 as an estimate of FDR. A 6810 � 8
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matrix M was constructed in a way that mimicked the radia-
tion experiment,

Mik
D ˆitk

C …ik 6…ik

ind
N 4012571 (5.4)

4t11 t21 : : : 1 t85 D 40101 11 11 01011115; 681 of the “gene
effects” ˆi were chosen from an N 4ƒ1051 15 distribution, 681
from N 41051 15, and the remaining 5448 set at zero. In other
words 80% of the genes were unaffected and 20% were
affected, 10% in each direction.

The matrix M was processed into a Z vector according to
(3.5), and also into twenty z vectors according to (3.7), using
(2.8) for the mappings from D ! Z and d ! z. Following the
same algorithm that lead to Figure 1, these gave an estimated
fdr4Z5 curve, (5.1), that in fact looked much like the one for
the actual experiment.

Figure 5 reports on two different choices of a0 in (2.8),
a0 D 090 in the left panel and a0 ! ˆ on the right. There are
100 points in each panel, corresponding to a binning of the
fdr axis in units of .01 from 0 to 1, with the jth point plotted
at fdrj

D j=100 and

FDRj
D proportion of jth bin with ˆi

D 01 (5.5)

the empirical FDR for that bin. The FDRj values are averages
over 50 simulations, each of the individual simulations being
noisy versions of the same picture. If formula (5.1) is actually
the local fdr, then the points should lie near the main diagonal
FDR D fdr as they do. The slight conservative bias FDRj µ
fdrj , came from the fact that the upper bound for p0 used in
(5.1) (calculated as in Remark F of Section 6) substantially
overestimated the true value p0

D 080.
In the arti� cial situation (5.4), taking a0

! ˆ in (2.8) gives
a more ef� cient choice of Zi than a0

D 090, doubling N 90.
Nevertheless, the inef� cient choice a0 D 090 is still accurately
calibrated: FDRj

PD fdrj .
FDRs are usually de� ned for an entire rejection region, for

example for

² D 8Z2 R4Z5 ¶ r09 6R4Z5 D f4Z5=f04Z57 (5.6)

rather than locally as in (5.1). We can think of this as replacing
our original choice of summary statistic Z D s(v) with

1 Z 2 ²1
eZ D if

0 Z 62 ²
(5.7)

Assuming that genes having eZ D 1 are declared affected,
the empirical Bayes formula (5.1) now becomes

ffdr415 D p0
Qf0415= Qf4151 (5.8)

with straightforward estimate

Op0

proportion8zi
2 ²9

proportion8Zi
2 ²9

0 (5.9)

The heuristic argument proceeding (5.2) is more obvious here:
(5.9) estimates the proportion of genes in the “affected” region
², which is actually unaffected, and in this sense estimates

Benjamini and Hochberg’s FDR. (Current work by the authors
strengthens this connection: choosing ² in (5.6) as large
as possible subject to keeping (5.9) below some � xed limit
exactly matches the Benjamini–Hochberg choice of rejection
region.)

The global de� nition of FDR has the advantage of being
easier to estimate. We can use the totally nonparametric esti-
mator (5.9) rather than having to estimate the local ratio
f04Z5=f 4Z5 in (5.1). On the other hand (5.8) is a composite
measure that assigns the same FDR to all the genes in ² even
though some of them have Prob8Event—Z9 much greater than
others. Comparing (5.1) with (5.8) it is easy to see that ffdr415

is the conditional expectation of fdr4Z5 given Z 2 ²,

ffdr415 D Ef 8fdr4Z5—²9 (5.10)

so that fdr4Z5 is more precise than ffdr415. More on the con-
nection between FDR and fdr appears in Storey (2001).

6. SUMMARY AND REMARKS

The Empirical Bayes procedure described in this article pro-
vides an effective framework for studying the relative changes
in gene expression for a large number of genes. It uses a
simple nonparametric mixture prior to model the population
of affected and unaffected genes, thereby avoiding parametric
assumptions about gene expression. We establish a close con-
nection between the estimated posterior probabilities and a
local version of the FDR, thereby allowing for the analyst to
handle multiple testing issues that arise when dealing with a
large number of simultaneous tests. As we have detailed in
Algorithm 1 and Remark D, the proposed procedure can be
applied quiet generally to other kinds of comparative microar-
ray experiments.

We conclude with a number of remarks, giving important
practical details for the proposed methods.

(A) The Experiment. Lymphoblastoid cell lines GM14660
and GM08925, (Coriell Cell Repositories, Camden,
New Jersey) were seeded at 205 � 105 cells/ml. The treat-
ment consisted of 5 Gy of ionizing radiation. After 24 hours,
RNA was isolated, labeled, and divided into two aliquots that
were independently hybridized to the HuGeneFL Genechip
microarray, Affymetrix Corporation.

(B) Northern Blot Analysis. Northern Blot Analysis pro-
duced a quantitative score “Gi” for each of the 18 genes
indicated in Figure 1, G standing for gold standard. Fol-
lowing previous biomedical convention, G scores exceeding
1.30 were taken to indicate a positive effect of radiation on
gene activity, the “C” symbols in Figure 1; likewise “ƒ” for
Gi < 070 and “o” for 070 µ Gi µ 1030. Figure 6 compares the
Zi scores from Figure 1 with logGi for the 18 test genes. We
see a strong monotone relationship, correlation .87.

The agreement in Figure 6 is impressive, especially con-
sidering the magnitude of the sampling errors in the individ-
ual expression values. Our gold standard, the Northern Blot
score, is not pure gold, itself being subject to experimental
error. There is only one � agrant disagreement in Figure 6, the
“ƒ” gene at Zi

D ƒ031. The vector of differences (3.4) was
Di

D 4ƒ10591 0551 1881ƒ0835 for this gene, so that both wild
types yielded aliquots of opposing signs. In contrast the “o”
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Figure 6. Comparison of Z Scores From the Analysis in Figure 1
With the Logarithm of the Northern Blot Results. Correlation .87. Z val-
ues outside the two vertical lines have Prob{Eventi — Zi } ¶ .90.

point at Zi
D 2051, lying just below the “C” cutoff value G D

1030, was consistently positive, Di
D 440541208111064120655,

strengthening our belief that this gene was positively affected
by the radiation.

(C) Debrightening and Desumming. Some microarray plates
are “brighter” than others in that they produce systematically
larger expression levels. Following probe reduction (2.4) we
debrightened the data by separately standardizing the columns
of M. That is, each column of M was linearly transformed to
have mean 0 and empirical standard deviation 1.

“Desumming” corrects for another type of data inhomo-
geneity. Corresponding to D (3.4), let

S D 4M3 C M11 M4 C M21 M7 C M51M8 C M650 (6.1)

A gene with larger S values tended to have larger values of
D, which undercut the exchangeability across genes implicit
in our empirical Bayes analyses. (Newton et al. 2001 adjusted
their data for a similar problem.) After debrightening, the indi-
vidual columns of D were desummed as follows: a linear
regression —Dik

— D a0 C a1—Sik
— C error was � t individually to

each column, and then each Dik was transformed to

Dik=4 Oa0 C Oa1—Sik
—50 (6.2)

Similar transformations were made on the columns of d,
(3.6). It was the transformed D and d matrices that were
used to compute the scores Z and z via (2.8). Desumming
made almost no difference to the results in Figure 1, but the
exchangeability issue is an important general point of concern
for the empirical Bayes analysis, see Remark F.

(D) Logistic Regression Estimate of f04z5=f 4z5. The ratio
f04z5=f 4z5 in (3.8) was estimated by logistic regression. Given
B D 20 replications of z, all n ¢ 41 C B5 D 61810 ¢21 scores Zi

and zi were plotted on a line, with values of Zi considered
as “successes” and values of z1 as “failures”. The probability
� 4z5 of a success at point z is given in terms of the densities
(3.2),

� 4z5 D f 4z5=4f4z5C Bf04z551 (6.3)

so that (3.8) becomes

p14Z5 D 1ƒ p0

1ƒ � 4Z5

B� 4Z5
0 (6.4)

With n D 61810 genes, the normal scores transformation
resulted in max8Zi9 D ƒ min8Zi9 D 3080, whereas the null
scores 8zi9 were con� ned to a smaller range, as in Figure 2.
Our algorithm divided the range 6ƒ4147 into 139 equal inter-
vals, counted the number of values of Zi and zi in each inter-
val, and estimated � 4z5 by logistic regression, for use in (6.4).
The regression function was a natural spline with 5 degrees
of freedom, called by the Splus command ns4x1 df D 55, x
being the 139 center points of the intervals. The choice of
B D 20 z replications was based on an analysis like that
in Figure 3, which showed considerable improvement for B

increasing from 1 to 10, but little gain past 20. Other methods
of estimating f04z5=f4z5 are possible, and in fact the details
of the logistic regression method made little difference to our
results. The “global” estimate (5.9) avoids regression entirely,
at the expense of providing less-speci� c results.

(E) Estimating the Null Distribution. The null density f04z5

is supposed to describe the distribution of expression scores
for genes unaffected by the treatment of interest. Basing f0 on
d in (3.6) seems natural for the radiation experiment, but other
choices are possible and may be necessary for other exper-
imental designs. Table 2 shows a small portion (5 of 2,638
genes) of the data from a microarray study comparing two
different types of liver cancer, 36 Type I patients versus 36
Type II, with Type II having worse prognosis. Spotted cDNA
arrays were used, the “red–green” variety, the tabled values
being 103 ¢ log (red/green) intensity ratio. The full table cor-
responds to matrix M in (3.5), now 21638� 72. Probe reduc-
tion (2.8) is very simple here, (red, green) ! log(red/green),
though more ef� cient reductions may be possible as shown
in Dudoit et al. (2000). The analog of Figure 3 indicated a
preference for a0

D 0, i.e. for taking Z to be the two-sample
t-statistic between the Types.

We obtained the null scores zi and the null density f04z5

by randomly splitting the Type I patients into two groups of
18 each, say “A” and “B,” and likewise “C” and “D” for the
Type II patients, and de� ning the values of z as t-statistics
between groups A[ C versus B[ D. In other words, we used
balanced permutations that put equal numbers of those of Type
I and Type II into each of the two permuted groups; using
unbalanced permutations would add an unwanted component
of variance to the null scores. The empirical Bayes analysis
produced results similar to those in Figure 2, with Type II
playing the role of the Treatment group.

As a simple, but informative, model for the radiation exper-
iment, suppose that Mik in (3.5) can be expressed as

Mik
D Œi

C � iwk
C ˆitk

C …ik1 (6.5)
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Table 2. Some Data From a Microarray Study Comparing two Types of Liver Cancer

TYPE I TYPE II

pat1 pat2 pat3 pat4 pat5 : : : pat37 pat38 pat39 pat40 pat41

GENE1 23000 ƒ11350 ƒ1158000 ƒ400 ƒ760 : : : 970 110 ƒ50 ƒ19000 ƒ200
GENE2 47000 ƒ850 ƒ08 ƒ280 120 : : : 390 ƒ11730 ƒ11360 ƒ08 ƒ330
GENE3 ƒ92000 ƒ11070 1136000 ƒ510 ƒ11120 : : : 70 ƒ11150 340 ƒ40000 580
GENE4 01 380 73000 180 ƒ90 : : : 11040 180 11070 25000 1880
GENE5 39000 ƒ11960 ƒ21000 200 230 : : : 530 ƒ11170 670 07 890

where t0 D 40101 11110101 11 15, w0 D 4ƒ11 ƒ11ƒ11 ƒ111111

11 15, and …ik is an independent noise term. Here ˆi represents
the treatment effect whereas � i is the differential response for
gene i between the � rst and second wild types. Then Zi in
(2.8) is

Zi
D 4ˆi

C ei5=4a0 C Si51 Si
D

"
4X

`D1

4ei`
ƒ ei5

2=3

#1=2

1 (6.6)

where each ei` is the difference of two values of …ik and ei is
the average of the four values of ei`. The values of zi have the
same expression except that ˆi

D 0 in (6.6). We can see that
f04z5 is a legitimate null hypothesis comparator for f 4Z5.

Suppose we had de� ned null scores by differencing across
wild types instead of across aliquots: d D 4M5

ƒ M11M6
ƒ

M21 M7 ƒ M31M8 ƒ M45 replacing (3.6). Then zi would pick
up an additional term due to the gene/wild-type interaction
� i in (6.5), adding a component of variance to f04z5, and
decreasing the likelihood ratio f4z5=f04z5. Models like (6.5)
are helpful in guiding the choice of the Z and z mappings,
even if we do not need them for the data-based estimation of
f and f0.

The additive model (6.5) gives every column of d the same
distribution, but we might not trust the Treatment differences
to really have the same distribution as the Control, I2B–I2A
compared to U2B–U2A for example. Empirically this turned
out not to be a problem for the radiation experiment, but if it
had we might have used only the � rst and third columns of d
in (3.6).

(F) Better Upper Bound Estimates for “p0.” The upper
bound (3.9), p0 µ min8f 4Z5=f04Z59, can be poorly estimated
by the choice min8 Of4Z5= Of04Z59 used in Figure 1. More sta-
ble upper bounds can be constructed by integrating over an
interval “¡” near Z D 0,

p0 µ
R

¡
6f 4Z5=f04Z57f04Z5R

¡
f04Z5

D
R

¡
f 4Z5R

¡
f04Z5

0 (6.7)

Simulation showed that the choice ¡ D 6ƒ051 057 performed
better than min8f 4Z5=f04Z59, particularly when the true p0

was near 1. The upper bound (6.7) is directly estimated by
proportion8values of Zi in ¡9=proportion8values of zi in ¡9,

avoiding the logistic regression estimate for f4Z5=f04Z5. This
gave p0 µ 0825 in the context of Figure 1, not much different
than the previous estimate p0 µ 0811. [Received 8 November,

2000. Revised 4 September 2001.]
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