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Abstract

Background: Advances in mass spectrometry-based proteomics have enabled the incorporation of proteomic data into
systems approaches to biology. However, development of analytical methods has lagged behind. Here we describe an
empirical Bayes framework for quantitative proteomics data analysis. The method provides a statistical description of each
experiment, including the number of proteins that differ in abundance between 2 samples, the experiment’s statistical
power to detect them, and the false-positive probability of each protein.

Methodology/Principal Findings: We analyzed 2 types of mass spectrometric experiments. First, we showed that the
method identified the protein targets of small-molecules in affinity purification experiments with high precision. Second, we
re-analyzed a mass spectrometric data set designed to identify proteins regulated by microRNAs. Our results were
supported by sequence analysis of the 39 UTR regions of predicted target genes, and we found that the previously reported
conclusion that a large fraction of the proteome is regulated by microRNAs was not supported by our statistical analysis of
the data.

Conclusions/Significance: Our results highlight the importance of rigorous statistical analysis of proteomic data, and the
method described here provides a statistical framework to robustly and reliably interpret such data.
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Introduction

Recent advances in mass spectrometry (MS)-based proteomics

technology have enabled the investigation of proteomes at a

systems level [1]. In particular, the ability to quantify relative

protein abundance in 2 samples has made possible a plethora of

proteome-wide studies including characterization of proteins or

phospho-proteins that differ between 2 phenotypic states [2],

measurement of changes in response to extracellular stimuli [3] or

microRNA over-expression [4,5], and analysis of sub-proteomes

detected by affinity capture methods to study protein-protein

interactions [6], protein phosphorylation dynamics [7–9], or

identification of small-molecule targets [10]. Despite the immense

potential and increasingly widespread application of quantitative

proteomics, comparably little attention has been devoted to the

analytical challenges of accurately interpreting the data and

understanding the capabilities and limitations of experiments.

While several alternative approaches exist, in this work we focus

on SILAC experiments [11], in which isotopically-labeled amino

acids enable peptides arising from 2 different samples to be

distinguishable by MS (Figure 1). A quantitative measure of

differential peptide abundance is then calculated as the ratio of

extracted ion intensities (XICs) between the 2 samples. A number

of analytical challenges must be addressed to reliably interpret

such data. In particular, analysis of mass spectra to identify peaks

and map peptide sequences to proteins has been well-studied in

traditional proteomics applications, and good software packages

exist for generating peptide XIC ratios [12–14]. Moreover, several

methods have been proposed for data normalization [15] and

summarization of protein ratios, including averaging [13] or

intensity-weighted averaging [16] of ratios for peptides identifying

the same protein. However, a critical issue that remains less well-

addressed is the development of statistical models to identify

biologically relevant proteins based on SILAC ratio values

summarized at the protein level (e.g. the median XIC ratio for

all peptides identifying a protein, generally log transformed to treat

over- and under-abundance symmetrically) [17,18]. Such statisti-

cal estimates are critical since variations in relative abundance

measurements arise from confounding factors such as spectral

background noise, interfering signals from co-eluting peptides,

differential lysis efficiencies, isotope impurities, and incomplete

incorporation of the isotope label. Moreover, changes in detection
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Figure 1. Schematics of SILAC-based experiments analyzed in our study. (A) Small-molecule target identification workflow, as described in
[30]. HeLa S3 cells were cultured in ‘‘heavy’’ medium, containing amino acids enriched in stable isotopes (13C and 15N), and ‘‘light’’ medium
containing forms of natural isotope abundance. Both the heavy and light lysates were incubated with small-molecule loaded beads (referred to as the
affinity matrix) while the light lysate contained the addition of a soluble form of the small-molecule that competed with the affinity matrix for binding
to target proteins. The red ovals represent a target protein that was bound to all 3 small-molecule loaded beads shown in this schematic for the
heavy lysate, but was competed off of 2 of the 3 beads in the light lysate. The green pentagons represent a protein that bound non-specifically to the
beads in both the heavy and light lysates. Proteins bound to the affinity matrix were enriched by affinity pull-down, their relative abundances were
quantified by LC-MS/MS, and targets were identified by analyzing the resulting abundance ratios, XICheavy

�
XIClight, using the empirical Bayes

framework described in the text. (B) microRNA workflow, as described in [4]. HeLa cells were transfected with microRNAs or mock-transfected, and
pulse-labeled after 8 hours with ‘‘medium’’ or ‘‘heavy’’ amino acid isotopes. After 24 hours, samples were combined and analyzed by LC-MS/MS. The
red ovals represent a protein regulated by the microRNA that was depleted in the medium lysate, and the green pentagons represent an unregulated
protein of equal abundance in both lysates. (C) Two affinity pull-down experiments performed at different soluble competitor concentrations of the
protein kinase inhibitor k252a displayed distinct variances of log2 SILAC ratio distributions. Applying a commonly used threshold of 1.5-fold (log2
threshold of .58) to identify significant proteins inferred 66 non-kinases (indicative of false-positives) for the high-variance experiment compared to
11 for the low-variance experiment, suggesting the necessity of experiment-specific models. (inset) The red curve represents the same k252a
experiment, performed at .25x concentration, as displayed in the main plot, and the grey curve represents a replicate performed on the same cellular
lysate with the same k252a concentration. This replicate experiment displayed a shift in the overall distribution due to non 1-to-1 mixing of heavy and
light samples, which should be accounted for by appropriate normalization.
doi:10.1371/journal.pone.0007454.g001
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instruments, experimental designs, or differential handling of

samples may produce differences in technical or experimental

variation (Figure 1c). Such quantitative errors must be appropri-

ately modeled to identify ratio values attributable to true

differential abundance.

Previous studies analyzing quantitative proteomics data often

rely on techniques such as applying a universal fold-change

threshold [7,11], which does not account for experiment-specific

differences (Figure 1c), or fitting a distribution to all ratio values

[19,20], which does not appropriately isolate only the null

distribution statistics. Standard methods such as Bonferroni

correction or q-value calculation have been applied to correct

for multiple tests [14,21,22], but have been observed to be overly

conservative, often computing no observations as statistically

significant. Other methods require large numbers of replicates to

calculate t-test p-values or to determine binding response curves at

a range of soluble competitor concentrations [10]. Other methods,

based on spectrum counting [23], are limited in their ability to

detect low abundance proteins.

In this work, we explored the application of empirical Bayes

modeling of SILAC experiments. We began by testing previously

proposed methods. These include Gaussian mixture models, a

type of empirical Bayes method that has been applied to

quantitative proteomics data [24–27], as well as the approaches

developed by Efron [28,29] in the context of gene expression

analysis. We found that these methods could not robustly model

experimental data that contained non-Gaussian tails or regions of

data sparsity, and therefore proposed a new method that more

robustly fit the SILAC experimental data analyzed in our study.

We then proposed multivariate statistics that integrate the results

from multiple replicate experiments to compute false discovery

rates, the total number of differentally abundant proteins, and

statistical power.

In summary, our method models log2 SILAC protein ratio

values from 1 or multiple replicate experiments and infers the full

shape of class-conditional probability distributions for biologically

relevant proteins (i.e. those that differ in abundance between the 2

samples) versus background. In addition to inferring the false-

positive probability of each protein, the method also provides a

framework to reason about inference problems not previously

addressed in quantitative proteomics, such as the total number of

proteins likely to be of biological relevance and the experiment’s

statistical power to detect them. We applied the method to detect

protein targets of small-molecules based on affinity pull-down

experiments and to identify differentially regulated proteins after

microRNA over-expression or repression.

Results

Evalutation of previous empirical Bayes methods
Empirical Bayes methods have been used in several quantitative

proteomics studies, as well as in the related field of gene expression

analysis. In particular, Gaussian mixture models are a standard

and straightforward approach that has been used to model

quantitative proteomics experiments [24–27]. However, by

assuming that the data arise from a mixture of Gaussian

distributions, this approach is not robust to outlier data points,

and we found that such methods failed to generate plausible

statistical models of the experiments considered in our study

(Figure 2), which contained significantly non-Gaussian tails. We

therefore motivated our approach by extending the empirical

Bayes framework of Efron [28,29], which was developed in the

context of gene expression analysis and overcomes the constraints

of the Gaussian mixture model by allowing more flexible modeling

of the data. Briefly, this method begins by estimating the empirical

marginal distribution of all data, and then estimating the portion

of this distribution inferred to arise from technical and

experimental variation (i.e. the null distribution). We found that

proposed methods for inferring the marginal distribution,

including Poisson regression models or natural splines [28],

tended to over-fit the data considered in our study, which

contained regions of data sparsity at the tails (Figure S1). We

therefore implemented an approach that fits a flexible model to the

dense central data region, but constrains the tails to be fit by a

parametric model (see Methods). We then further extended the

method of Efron by developing a multivariate model able to

handle replicate experiments. That is, the method of Efron was

developed to model a summarized test statistic (e.g. z-scores)

derived from multiple experiments. For quantitative proteomics

data, where each experiment measures ratio values from paired

case-control samples, it is more appropriate to model each

experiment separately and subsequently integrate the statistics.

We therefore developed an approach in which experiment-specific

models are combined to compute false discovery rates, the total

number of differentially abundant proteins, and statistical power

given the results of multiple experiments (see Methods).

Application to small-molecule protein target
identification

We first evaluated our methodology’s ability to accurately

identify the protein targets of small-molecules based on liquid

chromatography tandem mass spectrometry (LC-MS/MS) relative

protein abundance measurements derived from affinity pull-downs

using SILAC-labeled HeLa S3 lysates (Figure 1a) [30]. We

analyzed experiments using 2 different kinase inhibitor com-

pounds and a control experiment in which ‘heavy’ and ‘light’

labeled cells were processed under identical conditions. For each

experiment, the accuracy of our analytical method in recovering

known targets was assessed. We note that, as with most discovery

methods, gold standards are inherently imperfect as it is likely that

not all target proteins of each compound have been characterized.

However, we attempted to select kinase inhibitors that have been

well-studied in the literature, providing as objective an evaluation

framework as we could devise.

To assess the false-positive rate of our analysis procedure we first

performed a control experiment, in duplicate, in which both

samples were incubated with an affinity matrix loaded with the

immunophilin-modulating compound AP-1497, but no soluble

competitor was added. For each protein, we calculated the false-

positive probability (see Methods), also called the local fdr (by

convention, we write local fdr in lowercase to distinguish it from

the more commonly used FDR, which is calculated based on tail

areas). The local fdr calculation correctly predicted no specifically

bound targets in these control experiments (all proteins were

assigned a local fdr of 1), suggesting the high precision of the

method. We benchmarked our method against 2 commonly used

analysis strategies, not including the Gaussian mixture model

approach [24–27], which produced uninterpretable results for our

experiments (Figure 2). The first benchmark method used a

universal fold-change threshold for determining significance. Two

studies evaluated reproducibility using a number of analytical and

experimental approaches to determine that fold-change cut-offs of

1.3 [6] or 1.5 [7] in either replicate experiment reliably eliminated

analytical errors. We used the 1.5 ratio cut-off, which produced

better results for our experiments. This approach identified 5

proteins passing the fold-change criteria, suggesting that such

methods likely incur false-positives. The second benchmark

method used a Gaussian error model to determine significance

Empirical Bayes for Proteomics
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[19,20]. We note that several studies have used Bonferroni

correction and other conservative approaches to correct for

multiple hypotheses, and we observed that such approaches often

eliminated all proteins as being non-significant, consistent with

previously reported findings [21]. To avoid such overly-conserva-

tive corrections and to enable direct comparison with our method,

we computed false-positive probabilities for each log2 SILAC ratio

based on q-values [31] computed from the Gaussian error model

(see Methods). The Gaussian method also correctly predicted zero

significant targets in the control experiments.

We next tested our ability to identify the protein targets for

broad-specificity compounds. We performed replicate experiments

at soluble competitor concentrations of 0.025x, 0.25x, 2.5x, 5x,

and 10x of k252a, a staurosporine analog that binds broadly to

protein kinases. In this experimental design, the soluble competitor

should compete proteins specifically bound by k252a off of the

affinity matrix in the light sample, but non-specific binders should

remain, causing k252a target proteins to be distinguishable by high

SILAC ratios (Figure 1a). We evaluated our predictions with

respect to known human protein kinases [32]. This analysis

indicated that our method achieved high precision in discrimi-

nating kinases from non-kinases (Figure 3 and Table 1). For each

of the 4 experiments performed at higher soluble competitor

concentrations, over 86% of the inferred targets (local fdr cut-off

.01) were protein kinases, with up to 41 kinases inferred as targets

(Table 1). In addition, the validity of multiple non-protein-kinases

inferred as targets was supported by additional evidence. For

example, 4 non-kinases were identified as targets in the 10x

experiment: TPRKB and CCNB1 form complexes with the

protein kinases TP53RK and CDC2, respectively, both of which

were identified as k252a targets; a third non-kinase inferred target,

the oxidoreductase NQO2, has recently been demonstrated to

bind specifically to the kinase inhibitor imatinib [10]; and the

fourth non-kinase target, OSGEP, is a novel prediction, and was

identified at both the 5x and 10x soluble competitor concentra-

tions, suggesting that this was a reproducible finding. The

complete list of predicted targets for each experiment using each

analysis method is given in Table S1.

In comparison, the Gaussian model identified only the highest

confidence interactions, yielding a maximum of 5 predicted targets

in any of the experiments (cut-off .01). We note that even relaxing

the cut-off to .2 would produce only 12 and 21 predicted targets

for the 5x and 10x experiments, respectively. Interestingly,

although the proteins identified as significant by our method for

the 5x and 10x experiments were largely in agreement with the 1.5

ratio threshold determined by Blagoev et al. [7], the 1.5 threshold

yielded dramatically more false-positives for the 3 experiments at

lower concentrations (Figure 4a and Table S1). Empirical Bayes

Figure 2. Statistical models of single-replicate experiments. For representative experiments corresponding to the 2 data modalities
considered in our study (affinity pull-down and microRNA), we display the results of applying a Gaussian mixture model (following the approach of
Marelli et al. [26]) and our empirical Bayes method. (A) Comparative models of an affinity pull-down experiment. The left panel displays an idealized
representation of the desired modeling result, which distinguishes separate distributions corresponding to unenriched proteins (log2 ratio around 0)
and enriched proteins (positive log2 ratios). The Gaussian mixture model failed to generate a plausible model of the experimental data (white bars)
and instead represented enriched proteins using a very high-variance Gaussian (green curve) to explain the large number of data points that were
not explained by the central Gaussian (red curve). Using this model, negative-ratio proteins were erroneously inferred to have a higher probability of
being enriched than positive-ratio proteins. By contrast, our model correctly inferred a distribution of positive ratio values corresponding to enriched
proteins, with the null distribution correctly accounting for the unenriched proteins. (B) Comparative models of a microRNA experiment. The left
panel displays an idealized model that distinguishes separate distributions corresponding to proteins that are non-regulated, up-regulated, or down-
regulated upon microRNA over-expression. The Gaussian mixture model failed to generate a plausible model, and instead inferred 2 distributions
centered around zero, with a third high-variance distribution to explain the outliers (distributions are labeled as down-regulated, non-regulated, and
up-regulated in order of their means). By contrast, our method generated a model consistent with the desired 3 distributions of down-regulated,
non-regulated, and up-regulated proteins. The modeling results shown here are representative of all experiments considered in our study.
doi:10.1371/journal.pone.0007454.g002

Empirical Bayes for Proteomics
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models of the 2 higher concentration experiments predicted sharp

discriminatory boundaries near a ratio of 1.5; however, the 3 lower

concentration experiments, which were performed on a different

set of lysates from a separate culture of cells, displayed more

experimental variability (Figure 1c), and our model predicted a

corresponding increase in the significance thresholds (Figure 3).

Indeed, the majority of proteins identified in the 3 lower

concentration experiments using the 1.5 ratio cut-off, but not

significant by our model, showed no evidence of being associated

with kinase biology, supporting the use of models such as ours to

capture experiment-specific variability.

Having demonstrated that the local fdr statistic reliably

produced a low false-positive rate for the k252a experiments, we

then evaluated whether statistical power diagnostics could be used

to reason about the expected false-negative rate. Our analysis

predicted that statistical power increased with increasing k252a

soluble competitor concentration, and, consistent with this

prediction, the percent of kinases detected by LC-MS/MS that

were statistically significant (recall) also increased (Figure 4b). For

the 5x and 10x experiments, we predicted near 100% statistical

power, in agreement with our gold standard comparison (Figure 3),

which showed that protein kinases (red diamonds) were well-

Figure 3. Empirical Bayes model applied to replicate k252a experiments. Scatter plots display log2 SILAC ratio values for replicate
experiments performed using k252a. Plots are arranged in order of increasing soluble competitor concentration. Contour lines display the predicted
probability of binding k252, Pr Z~1jX 1,X 2

� �
, ranging from 99.9% to 75% from outermost to innermost. Red diamonds represent protein kinases,

green squares represent proteins known to exist in complex with a protein kinase that was identified as a k252a target, and blue circles represent all
other proteins.
doi:10.1371/journal.pone.0007454.g003

Table 1. Evaluation of predicted small-molecule targets.

Small-molecule Concentration Total detected Known targets detected Total significant Known targets significant Precision Recall

k252a .025x 584 42 3 0 0% 0%

k252a .25x 697 55 15 13 87% 24%

k252a 2.5x 530 36 29 25 86% 69%

k252a 5x 637 47 46 41 89% 87%

k252a 10x 540 43 43 39 91% 91%

SB-202190 10x/100x 276 6 10 6 60% 100%

AP-1497 0x 514 0 0 0 N/A N/A

For each experiment we evaluated the list of targets inferred by our model compared to a list of known targets, defined for k252a as human protein kinases [32] and for
SB-202190 as those identified by Karaman et al. [33]. ‘‘Detected’’ refers to all proteins detected by LC-MS/MS and ‘‘significant’’ refers to those inferred as significant by
our model (local fdr threshold .01). Precision was calculated as the percent of proteins inferred as significant by our model that were also known targets, and recall was
calculated as the percent of known targets detected by LC-MS/MS that were also inferred as significant by our model. Because our lists of known targets were
incomplete, precision statistics were likely underestimated. Targets with additional evidence of binding each small-molecule are annotated in Table S1.
doi:10.1371/journal.pone.0007454.t001
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separated from non-protein-kinases (blue dots). Statistical power

decreased with decreasing soluble competitor concentration,

indicating that the SILAC ratio sub-distribution derived from

target proteins merged with the sub-distribution derived from non-

specific binding proteins, consistent with the observation that

SILAC ratios of protein kinases began to overlap with those of

non-protein kinases (Figure 3).

Interestingly, our model inferred roughly the same total number

of targets in the 2.5x experiment as for the higher concentrations

(Table S1), but predicted that the 2.5x experiment had reduced

power to reliably detect them, correctly describing the fact that

roughly the same total number of kinases were detected by

LC-MS/MS at each of these concentrations, but many of these

kinases could not be robustly separated from the background at

2.5x concentration. At the very low concentrations (.25x and

.025x) both the total number of inferred targets and statistical

power were reduced, as the SILAC ratios for some kinases showed

no enrichment towards positive values (Figure 3). Our model also

predicted that, for all experiments considered here, substantial

statistical power was gained by performing replicate experiments,

as the bivariate class-conditional probability distributions of

SILAC ratios from targets versus non-targets were more robustly

separated than those from single experiments (Figure 5).

Overall, these results suggested that the experimental method-

ology, and associated statistical model, provided high precision in

identifying small-molecule targets with a low false-positive rate.

Increasing the soluble competitor concentration led to identifica-

tion of more true targets without an associated increase in false-

positives. These conclusions were supported by comparison with

our list of protein kinases, but we stress that, absent a gold

standard list, the empirical Bayes methodology and power

diagnostic accurately described these features of the experiments

from statistical modeling of the data alone.

We next examined our ability to correctly detect targets of a more

specific small-molecule. We tested SB-202190, a kinase inhibitor of

MAPK14 (also known as p38). This compound was recently

evaluated in an in vitro competition assay against a panel of 287

distinct human protein kinases, representing ,55% of the predicted

human protein kinome [33], and the authors detected 39 targets of

SB-202190 with KD,10 mM. Based on our conclusions from the

k252a analysis, we performed single SILAC experiments using

soluble competitor concentrations of 10x and 100x and applied our

statistical model to assess the probability that each detectable protein

was bound by SB-202190 given these 2 SILAC ratios. Only 6 of the

39 targets reported by Karaman et al. were detectable by LC-MS/

MS in our pull-down experiments (including MAPK14), and all 6 of

these proteins were significant using the local fdr cut-off of .01

(Table 1). Four additional targets – TGFBR1, CSNK1A1, CHD6

and FAM83G – were also identified at this threshold. TGFBR1 was

tested in the study of Karaman et al. but not reported as bound by

SB-202190. However, it was reported as a low affinity (7.1 mM)

binder of the closely related and structurally similar SB-431542,

which showed an extremely similar binding profile to SB-202190 in

this experiment. It is therefore likely that TGFBR1 also binds with

low affinity to SB-202190 but was not detected at the threshold of

10 mM used in this study. CSNK1A1 was not tested by Karaman et

al., but 3 related proteins – CSNK1A1L, CSNK1D, and CSNK1E –

were tested and all found to bind SB-202190. CHD6 and FAM83G

are not kinases and therefore were not tested by Karaman et al.,

although CHD6 is known to bind ATP [34] suggesting that it may

also bind kinase inhibitors, which interact with ATP-binding

domains of protein kinases. The calculated power statistic for this

experiment was .99%, indicating that the inferred sub-distribution

arising from target proteins was completely separated from the

inferred null distribution, supporting our conclusion from the k252a

experiments at higher soluble competitor concentrations, and in

agreement with the statistical significance of all proteins identified by

Karaman et al. and also detected by LC-MS/MS. In comparison, the

Gaussian model eliminated all targets as non-significant, while the

fold-change method inferred the same 10 targets as our method, but

also inferred an additional 8 targets, none of which have evidence of

binding SB-202190 (Figure 4a and Table S1).

Application to microRNA experiments
Having demonstrated our method’s utility for small-molecule

protein target identification experiments, we sought to evaluate its

Figure 4. Evaluation of methods applied to affinity pull-down experiments. (A) For each experiment we calculated the total number of
errors (false-positives plus false-negatives) based on each analysis method, defining known targets for k252a as human protein kinases [32] and for
SB-202190 as targets identified by Karaman et al. [33]. Zero targets should be identified for the control experiment (AP-1497, no soluble competitor),
thus the total errors are the number of identified proteins. These comparisons consistently illustrated the superior performance of our method. (B)
Increased statistical power correlated with the percent of known targets identified as significant by our model (recall).
doi:10.1371/journal.pone.0007454.g004

Empirical Bayes for Proteomics
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application to an expanded range of quantitative proteomics

experiments. We therefore applied the statistical method to the

analysis of a recent study by Selbach et al. [4] that used pSILAC (a

variant of SILAC used to measure only newly synthesized

proteins, rather than total protein abundance) to identify proteins

differentially regulated upon microRNA over-expression or

repression (Figure 1b).

To evaluate whether proteins differentially regulated by

microRNA over-expression or repression could be accurately

identified using our empirical Bayes strategy, we applied our

model to assign a probability that each protein is differentially

regulated in the 6 experiments performed by Selbach et al. These

include over-expression of human microRNAs miR-1, miR-155,

let-7b, miR-16, and miR-30a and knockdown of let-7b,

performed in single replicate. Analogous to the small-molecule

target identification application, we assumed a 3-class model of

SILAC ratio values, in this case representing proteins up-

regulated, down-regulated, and not differentially regulated upon

microRNA over-expression or repression. In contrast to the

conclusion of Selbach et al. that each of the 5 tested microRNAs

regulated most of the &3,000 proteins detected in the

corresponding experiment, our analysis indicated that only

between 5 and 13 percent of proteins detected in each

experiment were down-regulated by microRNA over-expression

(or up-regulated by knockdown). The statistical power for each

experiment ranged from 63.8% to 76.5%, indicating that the full

range of differentially regulated proteins could not reliably be

detected (Table S2). We stress that even for underpowered

experiments, the total number of differentially expressed proteins

can still be inferred (see Eqn. (4) in Methods).

We evaluated the accuracy of our predictions by considering

microRNA seed sequence enrichments in the 39 UTRs of mRNAs

corresponding to predicted differentially regulated proteins.

Directly relating the accuracy of predicted targets to seed sequence

enrichments is challenging, because the presence of a seed

sequence is not directly predictive of microRNA regulation, and

differentially regulated proteins may contain a mixture of those

directly targeted by the microRNA as well as secondary effects. In

effect, the presence of a seed sequence is a noisy indicator of

differential expression upon microRNA over-expression or

repression. However, we may evaluate our predictions with

respect to this noisy indicator by using the strategy employed by

Margolin et al. [35]. That is, we may evaluate the enrichment of

seed sequences as a function of the local fdr threshold, compared

to a set of proteins unlikely to be regulated by the microRNA,

providing a standardized benchmark quantity for all experiments,

irrespective of background site enrichment. We expected that

proteins inferred as non-significant by our model would show no

enrichment in the corresponding microRNA seed sequence while

those identified with high-confidence as being differentially

regulated would be enriched in seed sequences, even if some

indirectly regulated proteins were included as well.

Our analysis indicated that, in general, empirical Bayes

predictions were in quantitative agreement with seed sequence

enrichment analysis, thus validating our findings (Figure 6a).

Proteins with ratio values predicted by our model to represent

experimental variation rather than true differential regulation (i.e.

those with near zero probability of significance), showed no

enrichment in microRNA seed sequences. As the predicted

probability of differential regulation increased, we observed a

Figure 5. Increased statistical power from replicate experiments. Modeling of class-conditional probability distributions allows statistical
reasoning about the power of an experiment. (A) Inferred distributions from individual replicate experiments of k252a at 2.5x concentration showed
that the distribution arising from target proteins (green curve), Pr(X|Z = 1)Pr(Z = 1), had significant overlap with the inferred null distribution (red
curve), Pr(X|Z = 0)Pr(Z = 0), corresponding to power statistics of 75.6% and 83.4%, respectively for the top and bottom plots. (B) Theoretical modeling
of the inferred bivariate class-conditional probability distributions from replicate experiments showed that the distribution arising from target
proteins (solid curve), Pr X 1,X 2jZ~1

� �
, was well-separated from the inferred null distribution (mesh curve), Pr X 1,X 2jZ~0

� �
, corresponding to an

increased power statistic of 91.5%. For ease of visualization, bivariate class-conditional probability distributions are not scaled by their prior
probabilities.
doi:10.1371/journal.pone.0007454.g005
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corresponding increase in the enrichment of seed sequences, with

all proteins in the high-confidence range being highly enriched. In

contrast, the Gaussian method and the fold-change method both

inferred as non-significant the majority target proteins. We

estimated that the 1.5 ratio cut-off eliminated at least two-thirds

of truly differentially regulated proteins in 5 of the 6 experiments

(Table S2). To obtain a larger list of putative targets, Selbach et al.

compiled a list of proteins with log2 SILAC ratios less than 2.1 (or

greater than .1 for the knockdown experiment). Our analysis

predicted that more than half of all proteins identified using this

threshold were likely to be false-positives (Table S2). Supporting

this observation, the 200 proteins with the largest log2 SILAC

Figure 6. Empirical Bayes analysis of microRNA experiments. (A) For single replicate models, microRNA seed sequence enrichments (blue
curve) corresponded with inferred probabilities of differential regulation computed by the empirical Bayes method (red curve), while Gaussian error
modeling (green curve) eliminated the majority of regulated proteins. Sequence analysis was performed using bins of fifty proteins (plotted at the
mid-point of each bin) sorted by ascending SILAC ratios, and computing the p-value of microRNA seed sequence (positions 2–8) enrichment, based
on the hypergeometric distribution, against a background of the one-third of proteins with the largest SILAC ratios (or lowest ratios for the let-7b
knockdown experiment). Similar results were obtained using different bin and background sizes, as well as different seed sequence definitions or
algorithmically predicted targets (Figure S5). (B) Log2 SILAC ratios from the let-7b over-expression experiment were plotted against log2 SILAC ratios
from the let-7b knockdown experiment. Colors indicate the percent of predicted targets, using the Target Scan algorithm [36], for each pair of ratio
values, averaged over the 100 nearest neighbors by Euclidean distance. Only proteins inferred as significantly down-regulated upon let-7b over-
expression and up-regulated upon let-7b knockdown (dotted blue curve) appeared enriched in let-7b target sites. (C) Data points display the same
scatter plot as in (B), with contour lines representing inferred probabilities of differential regulation (assuming significant proteins move in opposite
directions upon let-7b over-expression or knockdown). For each of the 225 regions in an evenly spaced grid over the plot’s domain, we randomly
selected a percent of proteins according to the inferred probability of differential regulation (red points). These proteins are representative of those
inferred to be regulated by let-7b. The overall data displayed a large negative correlation (t= 2.28), but the correlation based only on inferred non-
regulated proteins was reduced to t= 2.06. We used Kendall’s t rank correlation coefficient to provide robustness against potential outlier points
that would be eliminated only from the upper-left and lower-right quadrants of the plot, and therefore overstate our finding by reducing Pearson
correlation to near zero.
doi:10.1371/journal.pone.0007454.g006
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ratios less than 2.1 (or smallest ratios greater than .1 for the

knockdown experiment) were not statistically significantly enriched

in microRNA seed sequences (P..05 for all experiments).

Interestingly, the authors of this study observed an overall

negative slope of ratio values in the let-7b over-expression versus

repression experiments, suggesting that let-7b may globally

regulate the production of most of the &3,000 proteins detected

in the experiments, in contrast to our prediction that only several

hundred proteins are regulated in each experiment. We therefore

applied our model to assess the probability that each protein is up-

regulated upon let-7b knockdown and down-regulated upon let-7b

over-expression (or down-regulated upon knockdown and up-

regulated upon over-expression). Consistent with our observation

from the affinity pull-down experiments, when considering both

the over-expression and knockdown experiments together, statis-

tical power was increased to 88.4% (compared to 68.1% and

67.1% for each experiment considered individually). Moreover, in

agreement with our model, we observed that only proteins in the

statistically significant region were enriched in let-7b targets

predicted by the TargetScan algorithm [36](Figure 6b). While

the remaining proteins may indeed be regulated by non-seed

mediated mechanisms, we suggest an alternate possibility that a

limited number of differentially regulated proteins (including those

up-regulated upon over-expression and down-regulated upon

knockdown) may display ratio values that overlap with those of

non-regulated proteins, influencing the overall slope of the scatter

plot. Consistent with this hypothesis, computing the slope based

only on inferred non-regulated proteins (by eliminating data points

in proportion to their inferred probability of regulation) reduced

Kendall’s t correlation coefficient from .28 to .06 (Figure 6c).

Although suggestive, we recognize that sequence enrichment

analysis does not constitute proof of our hypothesis, and specific

follow-up experiments are necessary to validate the full range of

let-7b targets. However, our results, taken together, indicate that

the data may not support the contention that let-7b globally

regulates protein production, as previously suggested [4].

Discussion

Modern high-throughput technologies in experimental biology

produce large-scale data sets consisting of hundreds or thousands

of measurements, presenting simultaneous inference challenges

not anticipated by classical statistical methods that were designed

for problems with small numbers of data points and limited

computational power. Commensurate advances in statistical

inference methods are required to maximally exploit the

information generated by this technological revolution. The past

decade has thus seen a flourishing of novel statistical and

computational methodologies (and resurrection of underdeveloped

methodologies) designed to tackle large-scale simultaneous infer-

ence tasks, as epitomized by gene expression micorarrays, but

extending to many other high-throughput technologies. Quanti-

tative proteomics methods are only recently becoming viable in

large-scale and can benefit from standardized analysis methods

built from the advances made in related statistical inference

problems.

Although empirical Bayes methods have been explored in

proteomics analysis, and have been well-studied in related fields

such as gene expression analysis, several modifications improved

their ability to model the SILAC experiments considered in our

study. In particular, the Gaussian mixture model approaches that

were previously used in proteomics applications were not robust to

experiments with non-Gaussian tails, whereas the density

estimation methods developed for gene expression analysis tended

to over-fit regions of data sparsity. We therefore modified the

method proposed by Efron to obtain more robust models of the

experimental data analyzed in this paper. We further extended the

method of Efron to facilitate its application to quantitative

proteomics experiments by developing multivariate statistics that

integrate the results of experiment-specific models of multiple

replicate experiments to compute false discovery rates, statistical

power, and the total number of differentially abundant proteins.

Overall, we believe that empirical Bayes methods, and the

particular novel aspects described in this work, will be a powerful

addition to the analytical approaches to quantitative proteomics

experiments. Empirical Bayes methods are designed to leverage

aspects of both Bayesian and frequentist statistical inference by

using the powerful and flexible reasoning tools of Bayesian

statistics, but exploiting the massively parallel structure of the data

to infer prior probability distributions in a frequentist-type setting.

This data-driven approach relies on minimal assumptions and

enables transparent and consistent inference of class-conditional

probability distributions, using a highly flexible model of the

marginal and a Gaussian model of the null distribution. While the

null distribution model may produce some inaccuracies for data

with significantly non-Gaussian tails, we note that the 2-class

model is unidentifiable without restrictions on the form of this

distribution [37], and Gaussian distributions are widely used in

error modeling. For the experiments considered here our analysis

indicated that use of a Gaussian model did not produce significant

errors, as zero proteins were significant in the control experiment

with no soluble competitor, and the models of the other affinity

pull-down experiments appeared to yield very low false-positive

rates.

The Bayesian construction enables a principled framework that

encompasses a number of inference tasks about the data and can

be used both to predict significant observations (e.g. small-

molecule targets) and reason about the capabilities and limitations

of an experiment (e.g. statistical power). We believe these tools can

be used to guide experimental design and inform follow-up

experiments in a cost-effective manner. We have demonstrated the

use of power analysis of various affinity pull-down experiments to

suggest high soluble competitor concentration and replicate

experiments as the optimal experimental design, predicted to

yield near 100% statistical power. Consistent with this prediction,

our models of the high-concentration replicate experiments for

both k252a and SB-202190 appeared to yield near optimal

discrimination of known targets versus non-targets that were

detected by LC-MS/MS. The prediction that nearly all detected

targets could be reliably identified as significant by our model

indicated that the dominant cause of false-negatives was likely

proteins not detected by LC-MS/MS. This analysis suggests that

further experimental improvements should focus on increasing the

number of detected proteins, for example by increasing the

amount of input protein, the amount of small-molecule loaded

onto the affinity matrix, or the sample fractionation.

Our statistical descriptions of the microRNA experiments were

different from those of the affinity pull-down experiments. We

predicted that several hundred proteins were differentially

regulated in each microRNA experiment. However, because the

magnitude of regulation was subtle, not all differentially regulated

proteins could be reliably separated from the experimental

variation, yielding sub-optimal power diagnostics. We believe that

such a precise description of an experiment has useful implications

for understanding the underlying biology. For example, our

observation that some microRNA targets were only subtly

regulated is significant considering recent evidence that such

subtle regulatory changes can have large phenotypic effects [38].
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This suggests that the full range of identified differentially

regulated proteins are important for follow-up investigation;

however, the underpowered nature of the microRNA experiments

indicated that all regulated proteins could not be identified without

encountering a large number of false-positives (as can be predicted

by the local fdr statistic). The Bayesian inference framework

enables natural incorporation of additional information, which we

suggest may be combined with the weak evidence provided by

underpowered experiments to increase the overall statistical

power. We demonstrated a simple example of increasing statistical

power by incorporating replicate experiments under the condi-

tional independence assumption, but additional data sources, as

well as prior information, may also be naturally integrated with

our methodology. For example, we suggest that our models of the

microRNA proteomics experiments may be integrated with

probabilistic models that predict microRNA targets based on

sequence analysis [39], into a unified probabilistic inference

framework that may achieve increased statistical power to reliably

discriminate the full range of microRNA targets. The power

diagnostic therefore provides a useful indicator of when incorpo-

ration of additional information may increase the utility of

predictions.

Although assessing the performance of an analytical method is

challenging when true gold standards are not known, several

criteria indicated the robust performance of our method for both

data types considered in our study. For the affinity pull-down

experiments our method correctly recovered kinase targets of

k252a, previously reported targets of SB-202190, and no targets in

the absence of soluble competitor. For the microRNA experi-

ments, our results were in agreement with seed-sequence

enrichment analysis. Finally, for both types of experiments, our

method produced more accurate models of the experimental data

than existing methods.

Although evaluation of our method’s general applicability will

require further studies, we believe that the minimal assumptions

and demonstrated robustness of our approach suggest that it

should generalize to other SILAC data sets similar to those

analyzed in our study. The strategy employed for the small-

molecule target identification experiments is similar to that of

several other applications that analyze affinity-purified sub-

proteomes from SILAC-labeled lysates, including to study

protein-protein interactions using recombinant protein baits [6];

protein-peptide interactions using synthetic peptide baits [12];

global kinome phosphoproteomics using kinase-selective baits [8];

or phosphotyrosine-dependent signalling using anti-phosphotyr-

osine antibody baits [7,9]. Moreover, the results obtained from

analysis of the microRNA experiments suggest that the method

should generalize to other experiments analyzing SILAC-labeled

lysates to identify proteins or phosphoproteins that differ in

abundance between 2 conditions, for example to compare

different phenotypes [2,24,40]; primary cells versus cell lines

[41]; or response to perturbation [3,42]. Although we only

considered SILAC-based experiments in this study, in principle

the method should also apply to analysis of experiments performed

using other stable isotope labeling strategies such as chemical

modification-based approaches using ICAT [43] or iTRAQ [44].

We believe that the analytical methodology developed here will

be a useful addition to the wealth of data that can be generated by

modern quantitative proteomics methods. In particular, the

coupling of quantitative proteomics with an appropriate statistical

framework appears to now make feasible the routine identification

of protein targets of small-molecules. This capability has the

potential to greatly enhance cell-based chemical biology screens,

where the protein targets of active compounds have often

remained unknown. More broadly, the availability of a general-

izable, statistically principled analytical framework for proteomic

analysis should facilitate the incorporation of proteomic data into

systems biology studies.

Methods

Statistical model
We describe our analytical method in the context of the affinity

pull-down experiments in SILAC labeled lysates (Figure 1a), but it

is applicable to any quantitative proteomics data set. The method

takes as input log2 SILAC protein ratio values, corresponding to

relative abundances, for 1 or multiple replicate experiments. In

our affinity pull-down data set we observed minimal increase in

the variance of ratio values at low intensities (Figure S2), and thus

summarize data at the protein level using the common strategy of

calculating the median log2 XIC ratio value across peptides

identifying the same protein [2], requiring at least 2 unique

peptide hits in any replicate experiment for confident protein

identification.

We formulate the inference task as one of binary classification

between small-molecule targets and non-targets (we assume non-

targets have low enough affinity for the soluble competitor to have

negligible effect on the SILAC ratio). We thus seek to compute the

Bayes posterior probability that a protein is not bound by the test

compound given the measured SILAC ratios from 1 or multiple

experiments. For a single experiment, this posterior probability is

called the local fdr [45]:

Pr Z~0jXð Þ~ Pr X jZ~0ð ÞPr Z~0ð Þ
Pr Xð Þ ð1Þ

where Z is a binary variable taking the value of zero if the protein is

not bound by the compound, and X is a measured log2 SILAC

ratio. In this 2-class model, the probability that a protein is bound by

the test compound given the SILAC ratio is simply calculated as

Pr Z~1jXð Þ~1{Pr Z~0jXð Þ. In the empirical Bayes framework,

the local probability models in Eqn. (1) are estimated from the data,

under the assumption of exchangeability. That is, that all proteins

have the same prior probabilities of being bound or unbound.

Pr(X), the denominator of Eqn. (1), defined as the marginal

distribution of all X’s, is estimated using all of the data in the

experiment. Approaches for estimating this distribution, proposed in

the context of microarray analysis, include fitting maximum likelihood

estimates of high-order polynomials [28] or mixture models [46,47].

However, it is difficult to apply these methods to the data considered

here since very few proteins may be bound by the compound, yielding

sparse data at the tails of the histogram, which tend to be over-fit by

models that allow too much flexibility (Figure S1). By contrast, data

arising from the unbound proteins are tightly centered around the

mixing ratio (log2 ratio close to zero), and can be estimated accurately

using flexible parametric or non-parametric methods. We therefore

infer the central part of the distribution using a Gaussian kernel

estimator, and fit the tails with generalized Pareto distributions.

Although other heavy-tail distributions could reasonably be applied as

well, generalized Pareto distributions were developed based on

theoretical arguments to accurately model the tails of a large number

of distributions [48], and we observed that this approach could

robustly model the different experiments considered in our study. In

this work, we fit the Pareto tails using log2 ratios +:5 from the mode

of the data, corresponding to the region where data was sparse.

Although this choice is arbitrary, we found that variations in this

parameter had negligible effect on the inference results, as the method

was robust over a large range of parameter choices (Figure S3). After
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calculation of the central distribution and Pareto tails, we then smooth

the resulting piecewise distribution using a cubic spline to infer a

functional estimate of the complete marginal, Pr(X).

The numerator of Eqn. (1), Pr X jZ~0ð ÞPr Z~0ð Þ, represents

the contribution to the marginal distribution arising from the

unbound proteins. Before describing estimation of this quantity,

we consider 2 differences between the data presented here and the

data used in empirical Bayes analysis of microarray experiments.

First, in the small-molecule target identification application, values

of interest only manifest as positive log2 ratios, requiring 1-tailed

significance tests. Second, values for unbound proteins may be

affected by several different processes. The majority of unbound

proteins have log2 ratios near zero, with deviations caused by

technical and experimental variation. There is often an additional

class of proteins, with distributions clearly separated from the first

class, that have negative log2 ratio values (Figure 7a, red box).

While the cause of these negative values is not fully known, they

may be due to proteins that precipitate out once the soluble

competitor concentration becomes too high. This hypothesis is

supported by our observation that these negative values corre-

spond to visual precipitation in the sample with soluble competitor

added. We note that they are not generally due to mass

spectrometry carryover and contaminants as they localize to

specific bands in our GeLCMS analysis, indicating that these

proteins were resolved in SDS-PAGE. Furthermore, differential

abundances of corresponding molecular weight proteins were also

observed in unmixed gel visualizations of the same pull-down

samples. Therefore, although we retain the form of Eqn. (1) for

consistency with the local fdr literature, in this application we

hypothesize a 3-class model (shown schematically in Figure 7a) in

which the numerator of Eqn. (1) is separated into 2 components:

Pr X jZ~0ð ÞPr Z~0ð Þ~Pr X jZ~0,Y~0ð ÞPr Z~0,Y~0ð Þ

zPr X jZ~0,Y~1ð ÞPr Z~0,Y~1ð Þ

where Y is a binary variable taking a value of zero if the

corresponding protein arises from the component of the null

distribution representing technical and experimental variation, and

a value of 1 if it arises from the component of the null distribution

with negative log2 ratio values not explained by technical and

experimental variation. We note that the same 3-class model also

applies to experiments designed to detect both significant positive

and negative ratio values, for example, the microRNA experiments

in which the 3 classes represent proteins up-regulated, down-

regulated and not differentially regulated. In this application, down-

regulated proteins would correspond to the class (Z = 0, Y = 1).

We next estimate each of these components. The term

Pr X jZ~0,Y~0ð ÞPr Z~0,Y~0ð Þ corresponds to the null distri-

bution typically inferred in microarray local fdr applications and

can be estimated by making the ‘‘zero assumption’’ that the data

around the central peak of the histogram arises mostly from

proteins in this class (i.e. Z = 0, Y = 0). Assuming a Gaussian

distribution for the log2 ratio values of this class, we fit a quadratic

function to the central region of log Pr Xð Þð Þ [49]. Based on

previous estimates of experimental variability [50], in this work we

defined this central region as log2 ratios +:3 from the mode of the

data, and because the central region of the data was well fit by a

Gaussian (Figure 7b), we found that the fit was robust to the

amount of data used (Figure S3). For the microRNA experiments,

the null distribution was calculated using the central 50% of the

data (mean window size .22), and results were again robust over a

large range for this parameter (Figure S3). By construction, the

data around the central peak is assumed to arise from. Therefore,

the other 2 sub-distributions, Pr X jZ~0,Y~1ð ÞPr Z~0,Y~1ð Þ
and Pr X jZ~1ð ÞPr Z~1ð Þ are assumed to be completely separate

and arise, respectively, from data on the left and right side of the

central peak. Because the 3 sub-distributions are mutually

exclusive and exhaustive:

Pr X jZ~0,Y~1ð ÞPr Z~0,Y~1ð Þ~

Pr Xð Þ{Pr X jZ~0,Y~0ð ÞPr Z~0,Y~0ð Þ,

Xƒ argmax
X

Pr X jZ~0,Y~0ð Þ
ð2Þ

Figure 7. Schematic of empirical Bayes model for single replicate experiments. (A) Example scatter plot of log2 peptide XIC1 versus XIC2
values with colored boxes schematically representing our formulated 3-class model. The green box represents peptides corresponding to small-
molecule-specific target proteins. The majority of ratios (blue box) were clustered along the diagonal of the plot and represent peptides
corresponding to proteins that were pulled down in the experiment but did not bind specifically to the small-molecule. A third group of peptides
(red box) had negative log2 ratio values and were visually separated from the cluster of peptides along the diagonal. These negative ratios were likely
caused by proteins that precipitated out in the light sample due to excess concentration of the soluble competitor small-molecule. (B) The blue curve
represents a histogram of protein ratio values for a k252a experiment performed at .25x concentration (y-axis in log scale, histogram bins with zero
counts are shown as missing data points). The green curve represents the inferred marginal distribution of all data, Pr(X), and the red curve represents
the inferred sub-distribution corresponding to non-targets, Pr(X|Z = 0)Pr(Z = 0). (C) Using data from the same experiment as in (B), the posterior
probability, Pr(Z = 1|X), was plotted as the dotted cyan curve (y-axis linear scale). The blue bars represent a histogram of the data. The red curve
represents the inferred sub-distribution corresponding to non-targets, Pr(X|Z = 0)Pr(Z = 0), and the green curve represents the inferred sub-
distribution corresponding to targets, Pr(X|Z = 1)Pr(Z = 1).
doi:10.1371/journal.pone.0007454.g007
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and

Pr X jZ~1ð ÞPr Z~1ð Þ~

Pr Xð Þ{Pr X jZ~0,Y~0ð ÞPr Z~0,Y~0ð Þ,

Xw argmax
X

Pr X jZ~0,Y~0ð Þ
ð3Þ

and are set to zero for values of X not specified in the arguments of

Eqns. 2 and 3. The proportion of unbound proteins can then be

inferred by integration of the numerator of Eqn. (1):

Pr Z~0ð Þ~
ð

Pr X jZ~0ð ÞPr Z~0ð ÞdX ð4Þ

and the proportion of bound proteins is calculate as

Pr Z~1ð Þ~1{Pr Z~0ð Þ.
For replicate experiments we assume that the data are

conditionally independent given the class, Z, and compute the

Bayes posterior probability that a protein is unbound by the test

compound given M SILAC measurements as:

Pr Z~0jX 1 . . . X M
� �

~
1

1z
P

M

i~1 Pri X ijZ~1ð ÞPri Z~1ð Þ
P

M

i~1 Pri X ijZ~0ð ÞPri Z~0ð Þ

ð5Þ

where Pri represents the probability model inferred in the ith

experiment. The probably that a protein is bound by the test

compound given M SILAC measurements is calculated as

Pr Z~1jX 1 . . . X M
� �

~1{Pr Z~0jX 1 . . . X M
� �

.

Power diagnostics. The probability distributions inferred in

the previous section can be used to reason about the statistical

power of an experiment, defined as the probability that the

experiment will not make a Type II error (i.e. reject a protein that

is truly bound by the small-molecule). In Bayesian terms, a

measure of statistical power is 1 minus the expected local fdr under

the inferred class conditional probability distribution given that the

protein is a target [49]. In our application we compute this

measure of statistical power as:

1{power~E Pr Z~0jX 1 . . . X M
� �

Pr X 1 ...X M jZ~1ð Þ

� �

~

ð?

{?

. . .

ð?

{?

Pr Z~0jX 1 . . . X M
� �PM

i~1Pr X i jZ~1
� �

LX 1 . . . LX M
ð6Þ

Gaussian Error Model
To enable direct comparison between our local fdr values and

Benjamini Hochberg tail-area FDR values [51] calculated based

on standard Gaussian error modeling, we transform the tail-area

FDR values to probability estimates at each data point using the

procedure described here. Although derived in a frequentist

context, the Benjamini Hochberg FDR can also be written in

Bayesian form [52]:

FDR xð Þ~Pr Z~0jXƒxð Þ~ Pr XƒxjZ~0ð ÞPr Z~0ð Þ
Pr Xƒxð Þ ð7Þ

The term Pr XƒxjZ~0ð Þ is the familiar p-value, which we

estimate using a Gaussian error model, and Pr Z~0ð Þ is set to 1.

The Benjamini Hochberg procedure then estimates the denomina-

tor of Eqn. (7) using the empirical CDF, Pr Xƒxð Þ~
PN

j~1
g Xjvxð Þ
N

,

where g .ð Þ returns a value of 1 if the argument is true, and zero

otherwise. A local estimate of the false discovery rate for a given

value of Z can then be computed as

fdr xð Þ~ Pr Xƒ xzdxð ÞjZ~0ð ÞPr Z~0ð Þ{Pr XƒxjZ~0ð ÞPr Z~0ð Þ
Pr Xƒ xzdxð Þð Þ{Pr Xƒxð Þ ð8Þ

Because the empirical CDF in the Benjamini Hochberg FDR

calculation is only evaluated at the data points, we evaluate Eqn. (8)
using the continuous estimate of Pr Xð Þ described in our formulation

of the empirical Bayes procedure. The calculation is then equivalent

to the local fdr, calculating the null distribution based on a Gaussian

model and setting the prior null probability to 1.

Materials and reagents
L-arginine-13C6 and L-lysine-13C615N2 were from Sigma

Isotec (St. Louis, MO). The cell culture media, Roswell Park

Memorial Institute-1640 (RPMI) deficient in arginine, lysine and

methioine, was a custom media preparation from Caisson

Laboratories (North Logan, UT). All other L-amino acids were

obtained from Sigma. Dialyzed serum was obtained from SAFC-

Sigma. Cell culture reagents were from Invitrogen, unless

otherwise specificed. Trypsin was from Promega (Madison, WI).

All other reagents and chemicals used were of the highest grade

available. HeLa S3 was a kind gift from Dr. James Bradner.

Preparation of affinity matrices
The solid-phase beads used in small-molecule immobilization

and affinity chromatography is Affigel 102 (Bio-Rad) with a

loading level of 12 mmol/mL suspension. Small-molecules used in

this study were: k252a (Biomol, Plymouth Meeting, PA), SB-

202190 (Sigma), and AP-1497 (synthesized in-house [53]). Small-

molecules (1 eq.) in acetonitrile were combined with di(N-

succimidyl)carbonate (3 eq.), before triethylamine (4 eq.) was

added. The reaction solution was stirred at 50uC for 1 h and the

activation efficiency was monitored by LC-MS. The amount of

activated compound was adjusted accordingly and added to

Affigel beads as needed, depletion of free activated bait molecule

was monitored by LC-MS. After immobilization, vials were

centrifuged, the supernatant was removed and the beads were

washed with DMF (362 mL) and H2O (362 mL). The beads

were subsequently suspended in 1x PBS (0.8 mL) and stored at

4uC before use. Beads loaded with 12% compound loading had

approximately 18.5 nmoles of compound with the remaining bead

surface underivatized and bearing the original free amine.

SILAC labeling and affinity enrichments
The suspension cell line, HeLa S3, was grown in RPMI SILAC

labeling media, prepared as previously described [54], supple-

mented with 2 mM L-glutamine, and 5% dialyzed fetal bovine

serum (SAFC-Sigma) plus antibiotics, in a humidified atmosphere

with 5% CO2 in air. Cells were grown for at least 6 cell divisions

in labeling media, and expanded in spinner flasks to obtain about

35 mg protein in each state.

Separate cultures of HeLa S3 cells SILAC labeled either with L-

arginine and L-lysine (light) or L-arginine-13C6 and L-lysine-

13C6-15N2 (heavy) were lysed in ice-chilled ModRIPA buffer (low

stringency buffer LS) containing 1% NP-40, 0.1% Na deoxycho-

late, 150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.5, and

Empirical Bayes for Proteomics

PLoS ONE | www.plosone.org 12 October 2009 | Volume 4 | Issue 10 | e7454



protease inhibitors (CompleteTM tablets, Roche Applied Science,

Indianapolis, IN). Chilled lysates were vortexed intermittently and

clarified by spinning at 14,0006g. Protein concentrations of light

and heavy lysates were equalized using the Protein Assay Dye

Reagent Concentrate (Biorad, Hercules CA).

In soluble competitor experiments, the appropriate amount of

small-molecule (dissolved in DMSO with stocks at 110 nmoles/mL)

was added to 2 mg of light HeLa S3 lysate. An equal volume of

DMSO was then added to 2 mg of heavy HeLa S3 as a control.

25 mL of 50% of small-molecule-bead was added to both light and

heavy pull-down tubes in soluble competitor experiments.

Affinity enrichments were incubated overnight on an end-over-

end rotator at 4uC. Beads were collected by centrifugation at

10006g, and washed twice with ModRIPA buffer before beads

were combined and washed together in the third wash. Proteins

enriched in SILAC affinity pull-downs were reduced and alkylated,

on bead, in 2 mM DTT and 10 mM iodoacetamide respectively

before adding sample buffer and heating at 70uC for 10 minutes.

Proteins were resolved on a 4–12% gradient 1.5 mm thick Bis-Tris

gel with MES running buffer (Nupage, Invitrogen) and Coomassie

stained (Simply Blue, Invitrogen). Gel lanes were excised into 6

pieces and then further cut into 1.5 mm cubes, and proteins

digested overnight with trypsin following standard protocols.

Peptides from each gel slice were extracted with 0.1% TFA and

cleaned up on C18 StageTips [55]. Peptides were eluted in 50 mL of

80% acetonitrile/0.1% TFA and dried down in a evaporative

centrifuge to remove organic solvents. The peptides were then

resuspended by vortexing in 7 mL of 0.1% TFA and analyzed by

nanoflow-LC/MS with an Agilent 1100 with autosampler (HP, Palo

Alto, CA) and a LTQ-Orbitrap (Thermo, Bremen Germany).

Peptides were resolved on a 10 cm column, made in-house by

packing a self-pulled 75 mm I.D. capillary, 15 mm tip (P-2000 laser

based puller, Sutter Instruments) column with 3 mm Reprosil-C18-

AQ beads (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany)

with an analytical flowrate of 200 nL/min and a 58 min linear

gradient (,0.57%B/min) from 0.1% formic acid in water to 0.1%

formic acid/90% acetonitrile.

MS data pre-processing
We used an MS method with a master Orbitrap full scan

(60,000 resolution) and data dependent LTQ MS/MS scans for

the top 5 precursors (excluding z = 1) from the Orbitrap scan.

Each cycle was approximately 2 secs long. MS raw files were

processed for protein identification and quantitation using

extract_msn.exe (Thermo, Bremen Germany), Mascot (Ver.

2.1.03 Matrixscience, London UK), and open-source academic

software, DTASupercharge and MSQuant (CEBI, http://

msquant.sourceforge.net) (Figure S4). MS/MS peak lists in Mascot

Generic Format were generated using extract_msn.exe and

DTASupercharge (ver. 1.17, default settings) and searched with

Mascot using IPI human ver.3.32 (http://ebi.ac.uk) with a

concatenated decoy database containing randomized sequences

from the same database [56]. Common contaminants like bovine

serum albumin, trypsin etc. were also added to the database.

Variable modifications used were oxidized methionine, argini-

ne-13C6, lysine-13C6
15N2, and carbamidomethyl-cysteine was a

fixed modification. The precursor mass tolerance used in the

search was 15 ppm and fragment mass tolerance was 0.7 Da. The

Mascot result file in the appropriate format (http://msquant.

sourceforge.net) was parsed by MSQuant with the following

settings: bold and checked red, and parenthesized peptides were

included in the list of preselected peptides, of these, peptides with

score .20 were quantified. Proteins with a minimum Mascot

score of 66 (at least 1 peptide with score .66) were exported to

data files by MSQuant and these text files (included in Data Set

S1) were used as input for our statistical analysis. Only proteins

with a minimum of 2 quantifiable peptides in either replicate

experiment were included in our data set. The false-positive rate

for protein identification was ,1% and ,5% at the peptide level,

as determined using the decoy database strategy.

Supporting Information

Figure S1 Comparison of methods for estimation of the

marginal probability distribution. The plots display the results of

3 different methods for inferring the marginal distribution of log2

protein ratio values from a k252a experiment at 2.5x and 5x

concentrations. Using a seventh-order Poisson regression model

(dotted red curve) (Efron, 2002) yielded an over-fit model of the

tails of the distribution. Other similar methods proposed by (Efron,

2002) (e.g. natural splines) produced highly similar results to the

Poisson regression model. Our density estimation method (green

curve) yielded a more accurate model of the data. We also tested

the ability to fit the data using a T distribution (dotted cyan curve),

but observed that this approach in general produced overly heavy

tails and therefore over-estimated the significance of data points

with high (or low, where applicable) ratio values.

Found at: doi:10.1371/journal.pone.0007454.s001 (0.14 MB

PDF)

Figure S2 Magnitude versus amplitude plot of peptide values of

a k252a experiment performed at .25x concentration. We suggest

that quantitative proteomics datasets should be tested for intensity-

dependent variance in ratio values in order to choose a method of

summarizing values for multiple peptides identifying the same

protein. Because our datasets displayed minimal intensity-

dependent variance, we used the median across peptide values,

but for datasets displaying intensity-dependence we suggest using

an intensity-weighted average instead.

Found at: doi:10.1371/journal.pone.0007454.s002 (0.12 MB

PDF)

Figure S3 Robustness of inferred distributions to inference

parameters. The robustness of inferred distributions to estimation

parameters was demonstrated for an affinity pull-down experiment

performed using k252a at .25x concentration and a miR-16 over-

expression experiment. (a) The class-conditional probability

distribution of log2 SILAC ratio values, Pr(X|Z = 0), was

estimated using a fixed-sized window around the central peak of

the data. The size of this window should be chosen such that it

includes few values thought to be significant, although it has been

shown that if Pr(Z = 0) ..9, the null distribution can be fit with

negligible bias, even though some values in the window may not

belong to the null distribution (Efron, 2004). The choice of this

parameter may be based on prior knowledge regarding the

expected variability of the experiment, or the percent of proteins

expected to be significant. However, because the central portion of

the data was well modeled by a Gaussian distribution, our results

were robust over a large range of values for this parameter. (b) The

marginal distribution, Pr(X), was modeled using kernel density

estimation with generalized Pareto distributions fit to the tails. The

percent of data used to model the generalized Pareto distributions

should be chosen to reflect the region where the data becomes

sparse and cannot be accurately modeled using kernel density

estimation. In this work we fit the generalized Pareto distributions

from 2.5 to +.5 from the central peak, but have also found that

estimation is extremely robust over a large range of this parameter.

Although we suggest that our parameter choices are reasonable for

other data sets that demonstrate similar experimental variance, an
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improved automated procedure may be appropriate to choose

these parameters in an experiment-specific manner, for example

by testing for deviations from normality to estimate the null

distribution, or by testing for data sparsity to estimate the marginal

distribution. In the current work, our suggested heuristics appear

to perform well, with the inference results being robust to different

choices for these parameters.

Found at: doi:10.1371/journal.pone.0007454.s003 (0.13 MB

PDF)

Figure S4 SILAC target ID data pre-processing workflow.

Found at: doi:10.1371/journal.pone.0007454.s004 (0.09 MB

PDF)

Figure S5 microRNA seed enrichments compared to predicted

local fdrs for different parameter choices and binding site

definitions. Each plot (A–F) corresponds to Figure 6a from the

main text. (A–E) Seed enrichments were calculated based on 4

alternate binding site definitions, as used by (Selbach et al, 2008),

as well as using predicted targets from the Target Scan database

(Lewis et al, 2005), and using a bin size of 100 proteins. (F) The

result from Figure 6a in the main text was reproduced using a

background size of one-fifth rather than one-third.

Found at: doi:10.1371/journal.pone.0007454.s005 (0.25 MB

PDF)

Table S1 Small-molecule target identification. This table

contains lists of target proteins inferred in each affinity pull-down

experiment. The 3 first pages each present the results from 1 of the

analysis methods described in our study. For each experiment

(listed in the first row), we provide a list of proteins identified as

targets, followed by 2 columns of binary numbers listing whether

the protein is a known target or a secondary interactor, followed

by a ‘‘Notes’’ column annotating any additional evidence

suggesting that an unknown target may in fact interact with the

tested small-molecule. The fourth page provides a summary of the

results of each analysis method, with predictions evaluated with

respect to our lists of known targets.

Found at: doi:10.1371/journal.pone.0007454.s006 (0.07 MB

XLS)

Table S2 microRNA statistics. This table contains a statistical

description of each microRNA experiment, based on the empirical

Bayes model. A description of each data column is included in the

table.

Found at: doi:10.1371/journal.pone.0007454.s007 (0.04 MB

XLS)

References S1 List of publications referenced in the supple-

mentary figure and table legends.

Found at: doi:10.1371/journal.pone.0007454.s008 (0.07 MB

PDF)

Data Set S1 MSQuant output files for small-molecule target

identification experiments analyzed in this study.

Found at: doi:10.1371/journal.pone.0007454.s009 (38.94 MB

ZIP)
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