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Abstract

Gene microarray technology is often used to compare the expression of thousand of genes

in two different cell lines. Typically, one does not expect measurable changes in transcription

amounts for a large number of genes; furthermore, the noise level of array experiments is rather

high in relation to the available number of replicates. For the purpose of statistical analysis,

inference on the “population” difference in expression for genes across the two cell lines is

often cast in the framework of hypothesis testing, with the null hypothesis being no change in

expression. Given that thousands of genes are investigated at the same time, this requires some

multiple comparison correction procedure to be in place. We argue that hypothesis testing,

with its emphasis on type I error and family analogues, may not address the exploratory nature

of most microarray experiments. We instead propose viewing the problem as one of estimation

of a vector known to have a large number of zero components. In a Bayesian framework, we

describe the prior knowledge on expression changes using mixture priors that incorporate a

mass at zero and we choose a loss function that favors the selection of sparse solutions. We

consider two different models applicable to the microarray problem, depending on the nature

of replicates available, and show how to explore the posterior distributions of the parameters

using MCMC. Simulations show an interesting connection between this Bayesian estimation

framework and both false discovery rate (FDR) control, and misclassification minimizing pro-

cedures. Finally, two empirical examples illustrate the practical advantages of this Bayesian

estimation paradigm.

1 Statistical analysis of microarray experiments

The development of gene expression array (microarray) technology opened the possibility to study,

on a genome scale and in systematic fashion, how the information statically coded in DNA trans-

lates in the dynamic of cell life. The scientific community’s sizeable interest in the opportunity

opened by this line of research spurred the development of statistical methodology to analyze the
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measured data appropriately. Starting from the initial contributions appearing in 2000 to date (end

of 2004), there has been a growing body of statistical literature devoted to the analysis of microar-

ray data. There are a variety of questions in this area that statistics can help to address; in the

present work we limit our consideration to the analysis of datasets obtained comparing transcrip-

tion levels of genes in cells grown in baseline conditions with those in cells that represent one

experimental condition of interest (for example, a specific growth media, a cell line where a gene

has been knocked out, or a cancerous cell line). In such experiments—which can be conducted

both with one channel as well as two channel arrays—the object of inference are the changes in

expression of the assayed genes.

Without any presumption of accounting for all the contributions, it appears to us that two areas

of statistical methodology have emerged as particularly relevant in this context: empirical Bayes

procedures and corrections for multiple comparisons. To our knowledge, the first work using an

empirical Bayes procedure to analyze gene expression array data is due to Newton et al. [23] in

2001. Since then a number of authors have used empirical Bayes procedures for microarray data,

for example Baldi and Long [3], Ibrahim et al. [15], Tseng et al. [27], and Ishwaran and Rao

[16]. Indeed, in a context where the number of observations per genes is typically very limited

and the number of genes very large, empirical Bayes procedures that allow “borrowing” strength

across genes appear to be a very effective tool to channel the little information available on a large

number of genes.

While the cited papers propose an analysis of microarray within the estimation framework,

other groups adopt a test-of-hypothesis approach: the question of relevance appeared to be which

genes actually undergo a change in expression and which do not, and the framework of hypothe-

sis testing was selected. It is immediately evident that if one intends to conduct separate tests on

thousand of genes, it is necessary to correct for the large number of tests. The analysis of microar-

ray experiments offered fertile ground for the analysis of novel approaches to this problem: the

usefulness of measuring global error in terms of false discovery rate (FDR) has been argued, and
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multiple methods to estimate FDR, and local FDR, under a series of hypothesis on the test statistics

have been proposed, for example Tusher et al. [28], Efron et al. [10], Storey and Tisbshirani [26],

Sabatti et al. [25], and Reiner et al. [24]

These two trusts of the statistical analysis of microarray experiments have also been combined:

the work by Efron et al. [10], for example, provides an interpretation of the FDR criteria in terms of

nonparametric empirical Bayes procedure; moreover, a sizeable portion of the empirical Bayesian

approaches focus on the problem of testing the hypothesis that each gene may not experience a

change in expression in the experiment under study, while they often differ in how to deal with the

problem of multiple comparisons. As an example, Newton et al. [23] define a Bayesian version of

FDR.

In this manuscript, we suggest adopting an empirical Bayes framework for the analysis of mi-

croarray experiments, effectively abandoning the hypothesis testing framework. We do so on the

grounds that type I error may not represent the best description of the loss for scientists involved in

gene expression studies with microarray screens. Nevertheless, the procedure we propose, based

on the estimation of a sparse vector, bears substantial resemblance to the results of test of hypoth-

esis controlling FDR at some levels. This allows us to underline yet another connection between

empirical Bayes procedures and FDR, and also to make some suggestions on the level at which it

may be reasonable to control FDR in microarray experiments.

2 To test or not to test?

We are interested in the comparison of expression values for N genes across two experimental

conditions. In the present paper, we assume that the measurements come from cDNA-spotted

microarrays (also variously referred to as slides or chips) , but many of the methodological aspects

translate directly to other types of experimental devices. For convenience, we introduce the vector

parameter θ = (θ1, . . . , θN), representing the true population change in expression of genes i =
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1, . . . , N between two compared conditions. Associating to each gene a single θi is rather arbitrary

as, even if we could measure it with no error, the expression change of a given gene will be different

in each cell. With θi, then, we refer to an abstract “population” value that is differently realized

at each cell. The nature of gene expression array experiments is such that, for any pair of cell

conditions that are compared, one expects only a certain fraction of the genes on the screen to

change expression. This is trivially true for the large number of genes that are not expressed in

neither of the two conditions. Moreover, the changes in experimental conditions experienced by

the cells are such that they are expected to generate a relatively small number of changes; it would

be of little scientific worth to compare radically dissimilar cellular conditions. In terms of the

introduced parameter θ, this amounts to the knowledge that a large portion of the θi are effectively

zero.

The data available to make inferences on the θi are measurements of fluorescent intensity

at discrete locations on a microarray, each location being associated with a specific gene i. The

exact functional relationship between increases in expression and increases in intensity levels is

not known, and the number of replicates for a given experiment is typically rather small. Given the

outlined characteristics of the parameter of interest and the data available for inferential purposes,

both the scientists generating the data and the statisticians analyzing it have found that the most

basic use of array data is simply addressing the question of which genes experience a change

in expression; that is, for which genes i does θi 6= 0. Most commonly, this question has been

addressed casting the problem in the test of hypothesis framework: the null hypotheses are taken

to be Hi : θi = 0 (reflecting the knowledge that zero is the most common value for the parameter),

a test is performed for each hypothesis, and a procedure for correcting for multiple comparisons is

implemented.

Certainly, a test of hypothesis framework allows one to consider θi = 0 as a special and

common value and deflects emphasis from the estimation of a precise value for θ, which may

be rather difficult in this case. By adopting this inferential framework, however, one buys into
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much more: the type I error (and its family analogues) becomes the primary element of interest

in the sense that a false rejection of the null hypothesis Hi : θi = 0 is considered more serious

than a false non-rejection. It is not clear to us that this is really an appropriate choice in the

context of microarray. On the one hand, microarray experiments are not considered by the scientific

community as means to test, but as instruments to generate, hypotheses: that a gene appears up-

regulated in a condition on the basis of microarray experiments is not taken as solid evidence for

this to be the case, no matter how small the p-value or strong the estimated effect. Only when

other experimental techniques (such as in situ hybridization, etc.) are able to verify the change

in expression is the hypothesis considered corroborated. And while it is clear that one does not

want to try to replicate the change in expression of thousands of non-changing genes, one has to

consider that the cost of investigating suspicious genes with other experimental techniques is not

extremely high. On the other hand, the failure to identify from the thousand of genes in the screen

the ones that change expression represents a very serious loss for the researcher. Based on this

consideration, we think that other inferential frameworks may be more appropriate. In particular,

we would like to point the reader’s attention to three approaches that are available to the statistician

and that, not surprisingly, are all quite related to testing and correcting for multiple comparisons.

1. One can describe loss as the number of misclassifications, that is, the total number of false

positives and false negatives, and choose a procedure aimed at minimizing that loss. This

approach is rather straightforward in a Bayesian context, but has not typically been explored

in a frequentist setting, a recent exception being the work of Genovese and Wasserman [11].

2. It is possible to cast the question in a model selection framework, discussing which param-

eters θi 6= 0 need to be introduced to maximize a criterion such as AIC, BIC, or MDL. The

literature on model selection is extensive; particularly relevant for our setting is the work

of Casella and George [6] and George and McCulloch [13], which illustrates how to carry

out model selection in a Bayesian setting and use a Markov chain Monte Carlo (MCMC)
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algorithm for exploration of the prior, and Ishwaran and Rao [16], who suggest using this

framework for gene expression array analysis.

3. Yet another approach is to estimate θ as a sparse vector, that is, using the knowledge that

most of its elements are zero. This methodology has been developed primarily in the context

of wavelet thresholding. There, the choice of an appropriate basis (as wavelets) has the effect

of transforming the observations in a sparse vector that it is known to have, on theoretical

grounds, only a small number of non-zero components: denoising of the original observa-

tions can be achieved by thresholding the coordinates of the transformed vector that are not

significantly different from zero. Donoho and Johnstone [8] provides an introduction to this

area, and Abramovich, Sapatinas, and Silverman [2] illustrates how to set up a Bayesian

model for this framework.

All three of the described approaches have clear links with each other and with hypothesis test-

ing. The manuscript by Abramovich, Sapatinas, and Silverman [2] illustrates particularly well the

connections between estimation of a sparse vector and test of multiple hypotheses with corrections

for multiple comparisons, exploring both Bonferroni-type procedures and FDR procedures. In this

manuscript, we illustrate how the framework of estimation of sparse vectors can be applied to the

microarray context and what its connection to the more common multiple testing approaches are.

We devote attention to this particular approach because it aims to estimate the entire vector θ, both

identifying the zero components and denoising the remaining ones, thus providing the biologist

with a rich set of information. Additionally, it offers a framework through which to understand and

improve the thresholding rules that biologists have typically used in analyzing microarray data.

The remainder of the manuscript is organized as follows. Section 3 introduces a Bayesian

framework to estimate sparse vectors by identifying appropriate priors and loss functions and de-

scribes the form of the estimator with a simple data model. Section 4 shows how the same princi-

ples can be applied to more general data model and introduces a hierarchical Bayesian framework
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for the estimation of unknown parameters; connection with FDR-controlling procedures in the

context of microarray are explored using a simulation study. Section 5 presents the analysis of

two datasets and illustrate how our inferential framework can be applied to general models for

microarray data.

3 Bayesian estimation of a sparse mean vector

We introduce into the Bayesian inferential framework the knowledge that the vector of parameters

θ is sparse by 1) defining a prior distribution on θ that gives substantial weight to the zero value

and 2) selecting a loss function that penalizes non-sparse estimates. In particular, we specify:

θi ∼ ωN (0, p) + (1− ω)δ0(θi), θi iid (1)

L(θ̂) =
N∑

i=1

|θi − θ̂i| (2)

The prior distribution assumes independence between the θi (conditional on p and ω) and assigns a

positive probability to θi = 0, which indicates that there is no functional change in expression for

gene i between the baseline and experimental conditions. Notice that this translates, irrespective

of the probability model linking the θi to the observed data, to a posterior distribution of the θi

that also has point mass at zero. Mixture prior distributions of this nature are typically used in a

Bayesian framework when researchers want to test a point hypothesis (see Berger [4]). They have

been used in regression variable selection (Mitchell and Beauchamp [21], George and McCulloch

[13]) and are becoming increasingly popular in microarray analysis (Newton [22], Ishwaran and

Rao [16], Ibrahim et al. [15]), although in these three papers the Bayesian model is used within

a hypothesis testing framework. Abramovich, Sapatinas, and Silverman [2] describe their use in

conjunction with the `1 loss function in the context of wavelet coefficient denoising. We will

initially review their model, in order to provide some insight in the nature of these assumptions.

A crucial difference between the setting of Abramovich, Sapatinas, and Silverman [2] and ours
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is that ultimately we do not assume ω known, while these authors do. In this respect, our prior

assumptions are closer to those of Johnstone and Silverman [17], even if our data model differs

substantially.

The proposed `1 loss function has the following notable characteristics: 1) it is a global loss

(that is, the error is evaluated across all the θi) so that it naturally leads to a control of global error,

and 2) being based on absolute rather than squared difference, it does not discount small errors—

which are the ones most likely to be made when estimating a parameter that is truly equal to zero.

Abramovich, Sapatinas, and Silverman [2] state that `1 loss is the “natural measur[e] for spatially

inhomogeneous functions”; to see why this is so, it is useful to observe how this loss function

behaves with respect to sparsity. A vector with small `1 norm tends to be sparser than a vector with

the same `2 norm. For example, the n-dimensional vector (1/n, . . . , 1/n) has `2 norm 1/n, but

`1 norm equal to 1. The `1 loss function, then, favors sparser error vectors and therefore behaves

more like a misclassification rate than the `2 loss function does. Coupling this observation with the

knowledge, embedded in our prior choice, that the parameter vector is likely to contain a sizeable

number of zeroes, one gets an inferential procedure that tends to select zero as a point estimate

when there is a substantial probability that this is the true value and no error is made.

This is readily apparent if one considers what happens to Bayesian inference under this prior

and loss function. Under `1 loss, Bayesian risk is minimized by choosing the posterior median,

not mean, as the estimator for θi. As stated above, the posterior distribution of each θi will have

mass at zero, and its median will be zero whenever this mass is larger than 1/2 or when the

difference between the probabilities of the two tails is small enough. Under `2 loss, on the other

hand, the Bayes estimator is the posterior mean and therefore will never equal zero. To make

this point explicit and illustrate further properties, we consider a specific data model that was

originally considered in Abramovich, Sapatinas, and Silverman [2], mindful that it represents an

oversimplification of microarray data.

Suppose that M slides are hybridized and the observed microarray data are represented by
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{yik}, k = 1, . . . ,M . These data are assumed (and will be for the rest of the paper) to be quality-

controlled, channel-normalized, and log-transformed differences between experimental cells and

control cells. Tseng et al. [27] and Yang et al. [29] describe rank-invariant normalization methods

applicable to the experiments described here. Let us then assume that

yik = θi + εik, (3)

where the εik
iid∼ N (0, π). Throughout this paper, Gaussian distributions are specified by their

mean and precision, defined as the reciprocal of variance. Under these conditions, an analytical

solution for the posterior median can be derived:

θ̂i = med(θi|{yik}) = sign(ȳi•) max(0, ζi)

where

ζi =
ȳi•

p/π + 1
− 1

π
√

p/π + 1
Φ−1

{
1 + min(ξi, 1)

2

}
and ξi is the posterior odds ratio for the component at 0, namely

ξi =
1− ω

ω

√
π/p + 1 exp

{
− πȳi•

2(p/π + 1)

}
.

This analytic expression allows us to point out some features of the `1 estimator. It is a continuous

thresholding rule, with a thresholding level that depends on the noise variance, the sparsity level,

and the precision of the Gaussian component of the prior. When θ̂i is not zero, it is a shrunk version

of the data average. Figure 1 shows how the threshold changes under three different levels of noise

variance. With ω set to .05 and p set to 1, the noise variance 1/π is variously set at 1/4, 1/16, and

1/64. Asymptotically, the function approaches a slope of 1/(p/π + 1). The right-hand graph plots

θ̂i as a function of ȳi•
√

π, which is the mean scaled by the standard deviation: while changes are

minor, it is clear that the threshold is not linear in the noise variance 1/π. The relationship between

noise variance, sparsity, and threshold is shown in greater detail in figure 2. In the right-hand plot,
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noise variance is held constant and the threshold is plotted as a function of (constant and known)

sparsity. The threshold is highest for the most sparse data, while the threshold shrinks to zero for

well-populated data.

We have already discussed at length the attractiveness of thresholding estimators in the con-

text of gene expression array studies, underscoring how they lead to inferential results that reflect

practitioners’ beliefs on the nature of changes in transcription levels, in particular, that the change

will be zero for a large proportion of genes. Thresholding estimators lead to a result that is also

connected to the one of hypothesis testing. Abramovich et al. [1] shows how the universal thresh-

old of Donoho and Johnstone [8] can be related to a Bonferroni correction of Gaussian tests. In

the same paper, the authors stress how FDR-controlling procedures correspond to a thresholding

that is adaptive to the unknown level of sparsity. The Bayesian thresholding estimator presented

above depends on the level of sparsity in the data, but so far this has been assumed known. In

the following section, we will illustrate how it is possible, in a hierarchical Bayesian model, to

estimate the level of sparsity and obtain a thresholding estimator that is adaptive to unknown spar-

sity. This property appears particularly appealing in the microarray context, where the advantage

of FDR-controlling procedures has been repeatedly argued. Moreover, the connection between

hierarchical Bayes models and FDR-controlling procedures, underscored by Efron et al. [9] in a

non-parametric context, is of additional interest.

4 Hierarchical Bayes and adaptive thresholding

In this section, we start considering a more realistic model for gene expression and make more

appropriate assumptions on the identity of unknown parameters. In practice, there are a variety

of models for gene expression that one may consider, and the inferential framework we are de-

scribing can be applied, with comparable implications, to any such model as long as it includes a

population change-in-expression parameter θ. When presenting some data analysis results in the
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next section, for example, we will use the model proposed by Tseng et al. [27]. For the time being,

we intend to focus on basic properties of our Bayesian inferential framework and illustrate them

with a comparative analysis.

Our setting is as follows. The experiments involve N genes and M slides. We assume that the

observed expression value for gene i in slide k is distributed as

yik = θi + εik, (4)

where εik
ind∼ N (0, πi), with a different variance for each gene. On the noise precision πi we place

a gamma prior with shape ai and rate bi, notated πi ∼ Gamma(ai, bi). Notice that not only the

πi but also the ai and bi are free to vary from gene to gene. The ai and bi are considered fixed

and known, although in practice their values will be estimated from a separate set of calibration

slides, in which mRNA extracted from comparable cells lines are oppositely dyed and hybridized

to the same slide, or from the the comparison data yik, or from a combination of both. Using the

data yik to estimate prior parameters follows an empirical Bayes paradigm. While we attempt to

avoid overtapping the data, there are situations where using the data to estimate certain nuisance

parameters is both appropriate and robust.

It is possible to place a gamma prior on the expression precision p, although in practice we

found that it may be convenient to choose one specific value of p to mimic the average effect

size of the changes in expression in the dataset. We describe here the case where p is assumed to

follow the prior distribution p ∼ Gamma(α, β). The weight parameter ω receives a beta prior,

ω ∼ Beta(c0, c1). The parameters α, β, c0, and c1 are specified to yield diffuse, essentially

noninformative, distributions.

Figure 3 diagrams the described model, showing its hierarchical structure. For notational con-

venience, let zi = 1(θi 6=0), indicating whether or not gene i experiences any expression change

between experimental and control conditions. With this in mind, we can write an expression pro-
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portional to the joint posterior likelihood of the parameter set {ω, p, θ, π}:

p(ω, p, θ, π|y) ∝ ωc0(1− ω)c1pα−1e−βp

N∏
i=1

ωzi(1− w)(1−zi)f(θi|zi)π
ai−1
i e−biπi

N∏
i=1

M∏
k=1

π
1/2
i e−πi(yik−θi)

2/2 (5)

Unlike what is illustrated in the previous section, it is not possible to derive analytical expression

for the posterior medians of θi. We describe an MCMC routine for exploration of the posterior dis-

tributions. It is a collapsed Gibbs sampler (see Liu, Wong, and Kong [19]), based on the following

conditional distributions:

πi|ω, p, θ, π−i ∼ Gamma(ai + M/2, bi +
∑M

k=1
(yik − θi)

2/2) (6)

p(zi = 0|ω, p, π) ∝ ω0 exp
{
−πi

∑M

k=1
y2

ik/2
}

(7)

p(zi = 1|ω, p, π) ∝ ω1

√
p

p + Mπi

exp

{
M2π2

i ȳ
2
i•

2(p + Mπi)
− πi

∑M

k=1
y2

ik/2

}
(8)

θi|ω, p, π, zi = 0 ∼ δ0 (9)

θi|ω, p, π, zi = 1 ∼ N (ȳi•πiM/(p + πiM), p + πiM) (10)

ω|p, θ, π ∼ Beta(c0 + Ω0, c1 + Ω1) (11)

p|ω, p, θ, π ∼ Gamma(α + Ω1/2, β +
∑

i:zi=1
θ2

i /2), (12)

where Ωj =
∑N

i=1 1(zi = j) for j = 0, 1.

4.1 Simulations

In order to explore the performance of our MCMC procedure and the characteristics of our in-

ferential framework, we conducted a simulation study. To interpret results, it is useful to analyze

the same simulated datasets with another procedure for benchmarking purposes. Given that FDR-

controlling procedures have been repeatedly proposed for the analysis of this type of dataset and
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that they are, like ours, adaptive to unknown sparsity, we decided to use them as our benchmark. In

particular, because we wanted to compare the performance of the `1 estimator to those of another

estimator (rather than a hypothesis testing procedure) we considered the following FDR-based

thresholding estimator, as described in Abramovich et al. [1] We indicate with q the desired level

of FDR, which represents a tuning parameter for this thresholding estimator. Let ti be the t-statistic

corresponding to gene i, resulting in a p-value pi. We notate the ordered vector of p-values by

(p(1), . . . , p(N)). Let k be the largest i for which p(i) < q(i/N), and tk the corresponding t-statistic.

Then the FDR thresholding estimator of level q sets θ̂i = 0 if ti ≤ tk, otherwise θ̂i = ȳ.

Each simulated data set is comprised of N = 1000 genes, with M = 4 slide replicates per

gene. Given ω, which specifies the degree of sparsity, ωN randomly selected genes are assigned

a non-zero θi generated from N (0, 1), while for all other genes θi = 0. In different simulations,

ω varies among 1, 2.5, 5, 10, 15, and 25%. Given the θi, noise variance is added according to the

hierarchical model. Namely, gene-specific precisions πi are generated from Gamma(a, b), where

a = 2 and b varies among 1/10, 4/10, and 16/10 in different simulations, each increase in b

representing a doubling of the average noise deviation. For both the MCMC and FDR-controlling

procedures, a and b are considered fixed and known. Therefore, t-statistics for FDR control are

computed using an adjusted variance estimate incorporating the prior gamma distribution,

σ̂2
FDRi =

σ̂2
i (M/2) + b

(M/2) + a
, (13)

where σ̂2
i is the usual variance estimate computed from the M = 4 data points for gene i. To

compute p-values, the resulting t-statistics are compared to the t distribution with M − 1 + 2a

degrees of freedom.

The twelve plots in figure 4 compare the performance of the `1 estimator to FDR control at

q = 0.05 and q = 0.20, for simulations at the various levels of sparsity and noise variance. Each

point on these plots represents an average of twenty independent simulations.

The first row of plots shows the predicted proportion of zero-changers, that is, one minus the
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predicted sparsity. The dashed line at unity slope represents the true value. In every instance, each

of the three statistics overestimates the proportion of zeroes, increasingly so as the level of noise

variance increases. This is to be expected and not really a problem in terms of the interpretability

of the results as, given our model for θ, some of the true changers have θi very close to zero. At the

lowest noise variance, the `1 estimator falls between the two FDR-controlling procedures. As noise

variance increases, however, FDR control becomes increasingly conservative while `1 still discrim-

inates between the different levels of sparsity. The next row shows mean absolute error and gives

some hint for this phenomenon. As noted before, the `1 statistic minimizes absolute error loss,

so it is no surprise that `1 performs at least as well as the FDR-controlling statistics in each case.

The third row shows the actual false discovery rate achieved by the three estimators. FDR control

does achieve its goal of staying under the two dotted lines at .05 and .20, respectively, whatever

the sparsity. The `1 estimator produces increases values of FDR as the noise variance increases.

Generally speaking, the `1 estimator seems to behave as an FDR-thresholding procedure that adap-

tively selects the level of FDR control based on noise variance. Clearly this does not control FDR

at a predetermined level q, but does appear to lead to a minimization of the misclassification rate,

as illustrated in figure 5. This is not surprising, given the properties of `1 loss described in the

previous section, and represents an important point in favor of our proposed estimator.

5 Data analysis and more realistic models of expression data.

We now consider two datasets and present the results of their analysis with `1 estimation. The

first example consists of a series of experiments aimed at elucidating the variation in gene expres-

sion resulting from the suppression of transcription of a gene known to cause Friedreich’s ataxia.

The second dataset was collected with the explicit intention of studying the noise level of cDNA

experiments and compares the expression values of genes in E. coli when cells are grown in two

different media.
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5.1 Friedreich’s ataxia

Friedreich’s ataxia is one of the most common forms of autosomal recessive ataxia in humans and

is caused by reduced expression of the frataxin-producing gene on chromosome 9q13. Clinical

features include progressive neurological, cardiovascular, skeletal, and endocrine abnormalities.

The disease has been modeled in transgenic mice in which the expression of frataxin is reduced

to 25%–36% of wild-type levels. (Knocking out the entire gene is lethal for mice, see Miranda

et al. [20]) These mice are phenotypically identical to wild types because of compensatory effect.

In order to achieve a finer resolution of the phenotype, a study of the changes in expression levels

for a large set of genes involved in brain function appears as a promising strategy. Indeed, the

laboratory of professor Dan Geschwind is carrying out experiments along these lines [7].

We were involved in the analysis of one of the initial experiments in this study. A custom

mouse cDNA microarray of roughly 10,000 genes was probed with cDNA from three brain re-

gions (brain stem, cerebellum, and spinal cord) affected in Friedreich’s ataxia, from each of four

transgenic mice, two male and two female. Four wild-type mice served as controls, again two

male and two female. The two male controls, however, were combined into a single male control,

same with the female. Thus, although cells from the two male transgenic mice were hybridized

to separate slides, they were compared to the same controls; likewise with the females. Each of

the twelve comparisons, furthermore, were performed on a pair of dye-flipped slides, which were

subsequently averaged to help control labeling bias. After data normalization and quality control,

a data set consisting of 8,578 genes was produced for analysis.

The Friedreich’s ataxia data are analyzed using the model described in the previous section.

Initial analyses show that expression patterns vary significantly between brain regions, so the set

of θi is allowed to vary independently between each brain region. In other words, the data are

analyzed with N not merely equal to 8,578 but 3 × 8,578 = 25,734. However, because the probe

design is the same regardless of brain region, noise variances 1/πi are constrained not to vary from
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brain region to brain region. Thus πi = πi+8578 = πi+17156 for i = 1, . . . , 8578, and estimation of

the πi benefits from a three-fold increase in readings per estimate.

In addition to the twelve dye-crossed pairs of comparison slides, a dye-crossed pair of cali-

bration slides was produced in which cerebellar tissue from two transgenic mice was oppositely

dyed and hybridized. Because both tissue donors are transgenic, θi = 0 for all genes on the cali-

bration slides, and therefore all variation is due to biological and measurement variance, which in

the single-layer model is represented by the 1/πi.

Recall that the prior distributions on the πi are Gamma(ai, bi). In this example, the limited

amount of calibration data dictates that we constrain ai and bi to be constant between genes. If we

represent the calibration data by xi, then viewing the distribution of the 1/x2
i can help determine

reasonable values for a and b. In this example, viewing a histogram of the 1/x2
i led to setting a to

0.7 and b to 0.09. As we show in a second empirical example, a larger complement of calibration

data enables gene-specific estimation of one or both of these parameters.

A full complement of comparative data was not available for every gene, and restricting anal-

ysis to genes with complete data would have been excessively restrictive. Computation of con-

ditional posteriors, therefore, required slight modification. For example, the conditional posterior

distribution of πi is Gamma(ai + M/2, bi +
∑M

k=1(yik − θi)
2/2). For a given gene i, if not all the

yik are available then M is replaced by the number of populated yik, and the summation in the rate

parameter is only over those k for which yik is populated.

We wish to compare the `1 approach to FDR control as a benchmark. The computation of t-

statistics and p-values reflects the prior knowledge on noise variance gleaned from the calibration

slides, and adjustments are directly analogous to those described in the simulation example. Figure

6 shows the collection of p-values. On the left is a histogram of all p-values. The increased weight

toward zero indicates the existence of differential expression in a significant number of genes. On

the right-hand plot of ordered p-values, however, we see that FDR control at the moderate values of

q = .05 and q = .30 identifies no differentially expressed genes. This is a somewhat disappointing
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result, as it appears to be biologically very reasonable to expect a change in the expression of some

genes. Only by setting q to the unusually high value of 0.55 yields a reasonable number of genes,

roughly 200.

Figure 7, on the other hand, shows the `1 analysis of the spinal cord data. In both plots, the

`1 estimate (that is, the posterior median) is shown on the vertical axis. The left-hand plot simply

shows ȳ on the horizontal axis, while the right-hand plot shows ȳ scaled by a simple estimate of

standard deviation. The right-hand plot exhibits a shrink-or-kill behavior that is roughly equivalent

to that shown in the simpler example of figure 1. Deviations from a simple functional line are

due to the gene-specific variance estimates. In other words, the right-hand plot can be seen as

a random admixture of several of the plots shown in figure 1. The `1 estimator identifies 240

genes as differentially expressed. The earlier simulations indicate that this number is probably

a conservative estimate, even though roughly half of the genes identified are doomed to be false

discoveries.

5.2 E. coli

We use the E. coli data analyzed in Tseng et al. [27] as a second empirical example. In this

experiment, E. coli cells were grown in contrasting growth media, namely glucose and acetate.

There were E = 3 biological replicates, each of which was hybridized to R = 2 replicate slides.

Additionally, there were four calibration slides, two of which compared acetate-grown to acetate-

grown cells, and two of which compared glucose-grown to glucose-grown. Following channel

normalization and quality filtering, a data set of N = 2291 genes was prepared for analysis.

Given the structure of this dataset, it is possible and meaningful to introduce a more sophis-

ticated model for expression values. In particular, we are going to use the same hierarchical data

model adopted in Tseng et al. [27], except using our mixture prior and `1 loss, and then compare

our results to those obtained with the slightly different inferential framework of the original paper.
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The hierarchical model explicitly differentiates between biological and measurement error

sources of variance. Instead of simply referring to M replicates, E biological subjects are iden-

tified, with R slide replicates per subject, for a total of R × E observations per gene. Figure 8

diagrams the hierarchical structure of the model. For a given gene i, there are E unobserved

subject-specific expression changes µi1, . . . , µiE , with subjects indexed by l = 1, . . . , E. The prior

distributions on the µil are, as in the single-layer model, Gaussian with means θi and variances

1/πi. Similarly, the priors on the precisions πi are gamma with shape and rate parameters allowed,

in the most general form, to vary from gene to gene.

For a given subject l and gene i, there are R observed expression changes yil1, . . . , yilR, with

replicates indexed by k = 1, . . . , R. Given the subject-specific µil, the priors on the yilk are

Gaussian with means µil and variances 1/τi. The priors on the precisions 1/τi are again gamma

with possibly gene-specific shapes Ai and rates Bi.

The collapsed Gibbs sampler procedure to explore the posterior obtained with this model is

very similar to the one previously described. Below we provide the conditional distributions used

in each step has to be repeated for each possible value of subscripts i, l, and k.

µil|y, θ, π, τ ∼ N ((πiθi + ȳil•τiR)/(πi + τiR), πi + τiR) (14)

πi|y, θ ∼ Gamma(ai + E/2, bi +
∑E

k=1
(yik − θi)

2/2) (15)

τi|y, µ ∼ Gamma(Ai + RE/2, Bi +
∑E

l=1

∑R

k=1
(yilk − µil)

2/2) (16)

p(zi = 0|ω, p, π) ∝ ω0 exp
{
−πi

∑M

k=1
y2

ik/2
}

(17)

p(zi = 1|ω, p, π) ∝ ω1

√
p

p + Mπi

exp

{
M2π2

i ȳ
2
i•

2(p + Mπi)
− πi

∑M

k=1
y2

ik/2

}
(18)

θi|ω, p, π, zi = 0 ∼ δ0 (19)

θi|ω, p, π, zi = 1 ∼ N (ȳi•πiM/(p + πiM), p + πiM) (20)

ω|p, θ, π ∼ Beta(c0 + Ω0, c1 + Ω1) (21)

p|ω, p, θ, π ∼ Gamma(α + Ω1/2, β +
∑

i:zi=1
θ2

i /2), (22)
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where Ωj =
∑N

i=1 1(zi = j) for j = 0, 1.

Prior distributions for the noise variance components 1/πi and 1/τi were estimated from a

combination of calibration and comparison data. The priors for the biological variances 1/πi were

estimated from a weighted average of gene-specific and genome-wide statistics, while the priors

for slide-to-slide variances 1/τi were computed genome-wide and were the same for each gene.

Under this more complex model structure, we no longer use FDR control as a benchmark,

because it is unclear how a t-test would take advantage of the additional information yielded by

the hierarchical structure and calibration data. Instead, we use as a benchmark the framework of

Tseng et al. [27], which is the same as the Bayes structure described above except for the prior

distribution on θ. In their application, they place a flat, noninformative prior on the θi, which leads

to posteriors of θi that have no point mass at zero.

Because the flat-prior posteriors place no special emphasis on zero-changers, there is no im-

plicit Bayesian test of the hypothesis H0 : θi = 0. In Tseng et al. [27], the authors report 95%

confidence intervals for the θi and identify a gene as up- or down-regulated when its confidence

interval does not include zero. Figure 9 compares mixed-prior and flat-prior results. Both graphs

plot the mixed-prior posterior median against a normalized within-gene average. We recognize

the characteristic shape from earlier figures and note that deviations from a single functional line

are due to gene-to-gene variation in posterior distributions of biological and slide variance. On

the left-hand graph, genes whose flat-prior 95% confidence interval falls outside of zero are high-

lighted, while the right-hand graph does the same at the 99% level. Our analysis identifies 168

differentially expressed genes, which falls in between the 75 identified by flat-prior 99% CI and

the 266 identified by flat-prior 95% CI.

Figure 10 compares the two posteriors in a slightly different fashion. Posterior medians are

again plotted on the vertical axis, but the horizontal axis is a simple data mean, meaning that non-

zero points show more spread than in figure 9. The vertical lines span 95% confidence intervals

from the flat prior model, and we note that with the exception of only one gene at the far right,
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all posterior medians from the mixture prior fall within them. Confidence intervals that span zero

are colored differently from those that remain above or below; this emphasizes that the `1 analysis

selects more genes than selection based on the 99% CI, but fewer that one based on 95%, as shown

in figure 9.

6 Discussion

We have described how to estimate the value of the population expression changes for the genes

surveyed in an array experiments in a hierarchical Bayes framework under the assumption that a

large number of such changes is effectively zero. Using an estimation, rather than test of hypothesis

approach deflects the emphasis from type I error control. We argue this to be appropriate for

exploratory investigations whose aim is to identify genes that likely change expression across two

cell lines characterized by expression differences.

Our simulation study is conducted under rather simplistic hypotheses on the nature of the

noise in array experiments; it is not possible to extrapolate the performance of our estimator in that

setting to “real life.” The characteristics of our procedure and its relation to a false discovery control

that emerge from the simulation are, however, likely to be valid more generally. In particular, as

the `1 loss function is related to misclassification error, our estimates will tend to provide a low

misclassification. This can be described as selecting a level of FDR control adaptively on the

signal-to-noise ratio.

The Friedreich’s ataxia data set provides an illustration of such advantage: despite a low

number of replicates compared to the experimental noise level, we were able to provide a list

of genes whose transcript levels may change in the frataxin-deficient mice. While a large number

of false positives is to be expected, their proportion is selected to minimize a global loss, not

determined by a researcher’s arbitrary choice of a “reasonable” number of genes in the final list.

The E. coli data illustrate another advantage of the estimation procedure we suggest. Often
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the results from expression experiments are used in further analysis, such as clustering or clas-

sification and regression procedures. In such cases, practitioners often summarize the results of

replicate comparisons between two cell lines with their average. Using our procedure to provide

this summary allows a better use of the information in the data set not only by borrowing strength

across genes, but also by passing to further analysis the fact that a given gene appeared not to have

any detectable change in expression across the two studied conditions.

While we think that the description of array experiments we have provided correctly illustrates

the nature of the majority of them, there are some cases where either considering θ a sparse vector

or the goal of the experiment merely exploratory is less appropriate. A striking example of this are

the “subtraction arrays” described in Geschwind et al. [14]: in a first step, a subtraction technique

is used to identify transcripts that appear to be more abundant in one of the two cell lines under

study; in a second step, the cDNA corresponding to these are spotted on an array and the amounts

of their expression further quantified. In this situation one clearly expects the majority of genes

to change expression and the assumption of sparsity on θ may not be appropriate. Furtermore, the

experiment has a less exploratory nature and a more tight type I error control may be appropriate.

The estimation of sparse high dimensional vectors is an important topic in contemporary statis-

tics [8, 1, 2, 17]. The application that is most often considered is perhaps thresholding of wavelets

coefficients. Interesting theoretical results are obtained for cases where specific assumptions on the

noise level are possible. The hierarchical Bayes framework presented here applies this methodol-

ogy to a novel problem; in combination with the MCMC algorithm it allows for considerable

variation in distributional assumptions, of which only a couple are illustrated here. This flexibility

makes it particularly appealing in the context of microarray analysis and considerably broadens

the domain of estimation procedures that rely on sparsity of the parameters.
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Figure 1: Thresholding behavior as noise variance changes
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Figure 2: Threshold as a function of noise variance and sparsity
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Figure 3: Single-layer model
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Figure 4: Performance of `1 estimator and FDR control at q = 0.05 and 0.20
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Figure 5: Comparison of overall misclassification rates
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Figure 6: Friedreich’s ataxia FDR-controlling analysis, spinal cord
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Figure 7: Friedreich’s ataxia `1 analysis, spinal cord

● ●●● ●●● ●● ●● ●●● ● ● ●● ●●●●● ● ●●● ● ●● ●● ●●●

●

●●● ●●● ● ●●● ●●● ●●●●● ●● ●● ●● ●● ● ●●● ●●● ●●●● ●● ●● ●

●

● ● ●●●●●●● ● ●●● ●●● ●● ●● ● ●●● ● ●● ● ●● ●● ●● ●●● ●●●● ●●●● ●● ● ●●●●● ●● ●

●

●● ●●● ●● ● ●●● ●● ●●●●● ● ●●●●●

●

●● ●●●

●

●

●● ●●●●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●●●●

●

●● ● ●● ●

●

●●● ● ● ●●● ●●● ●● ●●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●●●●● ●●●● ●● ● ●● ● ●●● ●●●●●● ●● ●● ●●

●

●

●● ●●● ● ●●●●● ●● ●● ●●

●

● ●● ●● ●●● ●● ● ●●●● ●● ● ●●● ● ●●●● ● ●● ● ●●● ●●● ●● ●● ●●● ●●● ●

●

●● ●●●● ●● ●●● ●●●●

●

●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●● ●●●●● ● ●●● ●●● ●●● ●● ● ● ●● ● ●● ●●● ●● ● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●● ●●● ● ●●

●

●

● ● ●●

●

●● ●●● ●● ●● ● ●●● ●●●● ● ●● ●● ● ● ● ●●● ●● ●●● ●● ●●● ●● ●● ●●●

●

●● ●●●● ● ●● ● ●● ●●● ●● ● ●●● ●●● ● ●● ●●●●● ●●● ●●● ●● ●● ●● ●●●● ●●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●● ●●●

●

● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●● ●●●●●

●

● ●●●● ● ● ●●● ● ●● ●●

●

●● ● ●●● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ● ●● ●●● ● ●●● ●● ●● ●●●●● ●●● ●●● ● ●● ●●●● ●● ●●● ● ●●● ● ●● ●

●

●●● ●●●● ●● ●● ●●● ●● ●

●

● ●●●● ● ●● ●●●● ●●●● ●● ● ●●● ●● ●● ● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●● ● ●

●

● ●● ●● ●

●

● ●●●●● ● ●● ●●●● ●● ● ●●● ● ●●● ● ●●● ● ●●●● ●● ● ●● ●●●●● ● ● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ● ●●●●● ●●● ●● ● ●● ●●●● ●● ●● ●●● ●● ●● ● ● ●●●● ●● ●● ●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●● ● ●●●●●● ● ●● ●●● ●●●●● ● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●● ● ●●●

●

● ●● ● ●●●● ●● ●● ●●● ● ●●● ● ●●● ● ●● ● ●● ●● ●●●●●●● ●● ●●● ●●●●● ● ●●● ●●● ● ●●● ●●● ● ●● ● ●●●●●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ● ●●●●● ●● ● ●●● ●● ●

●

● ● ●●● ● ● ●●● ● ●● ●● ●● ●●● ●●● ●

●

● ●● ●● ●● ●● ● ●●● ● ●● ● ●●●● ●● ●● ●●● ● ●● ● ● ●● ●● ● ●● ●● ●●●●

●

● ●● ●●●● ●● ●● ●●●

●

● ●●● ●●●● ●● ●● ●●

●

●● ●●●● ●● ● ●● ●●● ●● ●●● ●● ●●● ●● ●

●

●●● ● ●● ●●●● ●●● ●●● ●● ●●

●

●● ●●● ●●●● ●● ●● ●● ●● ● ●●● ●●● ●

●

●● ● ●●● ● ●●●●● ● ●●●● ●●● ●● ●● ●●

●

● ●

●

●● ● ●● ●● ●●●● ●● ●● ●●● ● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ● ●

●

●● ●●●● ● ●● ●●● ●●●● ● ●● ●●● ●● ●●●●● ●● ● ●●● ● ● ●●● ●●●● ● ● ●●● ●● ●●● ● ●●●●● ● ●● ●●● ●●●●● ● ●

●

●●● ● ●●● ●●● ●● ●● ●●● ●●●

●

●●● ●●● ●

●

● ●●● ●● ●●

●

● ●● ●● ●● ●● ●● ●● ●●● ●●●●

●

●● ● ●●● ●

●

● ●●●● ●

●

● ●● ●●●●● ●● ●● ● ●●● ● ● ●●●● ●● ●● ●● ●●● ●

●

●

●

●● ●●● ● ●●

●

●

●

● ●● ●

●

● ●● ●● ●● ●●

●

●

●●● ●●

●

● ● ●

●

● ●●●●

●

●● ●●●● ●● ● ● ●● ●● ●

●

●●● ●● ●● ● ●● ●●●●●●● ● ●● ●● ●● ● ●●● ●

●

● ●● ●●● ●●

●

● ●● ●● ● ●● ●

●

● ●

●

●● ●●●●● ●● ●●●●● ●●● ●

●

● ●● ● ●●● ●●

●

● ●● ●● ● ●●●● ●● ●● ●● ● ●● ●●●●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●

●

●● ●● ●● ●●●●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ● ●● ● ●●● ● ●●●● ●● ●●● ●● ●●●● ●

●

● ●●● ●● ● ●
●

●

●

● ●●●●●● ●●

●

●● ●● ●● ●●● ●●● ●● ●● ●● ● ●● ●●● ● ●● ● ●●

●

●●● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ●● ●● ●●●● ●●●● ● ● ●● ●● ● ●●●●● ●●● ●●● ●●● ●●●● ● ●●● ● ●●● ●● ●●●● ●● ● ●●● ● ●●●● ●● ●

●

●● ●● ● ●● ● ●●● ●● ●● ● ● ●● ●● ●● ● ● ●● ●● ●● ●●● ●●● ● ●● ●●●● ●● ●●● ●●● ●● ●●●● ●● ●● ● ●●● ●

●

●● ●●● ●●●

●

●●●● ● ●● ● ●

●

●●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ●●●●

●

● ● ●● ● ●●● ● ●●

●

● ●● ●●● ● ●● ● ●●● ●●●●● ●● ● ●●● ●●●● ●● ●● ●

●

● ●● ●● ●● ●●

●

●●●● ● ●●● ●● ●●●●●●● ● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ●●

●

●●●●

●

●

●

●

●

●

●●● ●● ● ●●●● ●

●

● ●●

●

●● ●●●

●

●● ●●● ●● ●● ● ● ●●

●

●● ●● ●●●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ●●● ● ●●

●

●●●● ●●●● ● ● ●● ●● ●● ● ●●● ● ●● ● ●●●●● ●

●

●● ●●●

●

● ● ● ●●● ●

●

● ●● ● ●● ● ● ●●● ●● ● ●

●

● ●●● ●●● ● ● ●●●● ● ● ●●●● ●● ●● ●● ●● ●● ● ●●

●

● ●● ●● ●● ●●●● ●●●●

●

●

●●●●● ● ● ●● ●● ●●●● ●● ●● ● ●●● ●● ●●● ●● ●●

●

●● ● ●●●● ●● ●● ●● ●●● ●●●●● ● ●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ● ●●● ●●● ●● ●●●●● ● ●●● ●●●● ● ●
●

●●●● ● ●●●● ●●● ●● ● ●● ●● ●● ●●●●● ●● ●●● ●

●

●● ●●●● ●●● ●● ●●● ●● ● ●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●
●

●●●● ●●● ●● ●●●● ● ●●● ●● ●●●● ●●● ● ●●● ● ●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ●●● ●● ●●●●●●● ●●● ●●● ●● ●●● ●●●

●

● ●●● ●● ●●

●

●●●● ● ● ● ●●● ●● ● ● ●● ●●

●

● ●● ●●● ●● ●●● ●● ●●● ● ●●●●● ●● ●●●●● ●● ●●●● ●● ●●● ● ●●

●

● ●● ● ●●

●

●●● ● ●●● ●● ●●●● ●● ●● ● ●●● ● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●●●●●● ●● ●●●●● ● ●● ●● ●●●●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●●● ● ●●

●

●● ● ● ●

●

●● ●●●● ● ●●● ●

●

● ●●●● ●● ● ●●● ●●●● ●● ●●●●●● ● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●●● ●●

●

●● ● ●●● ●●

●

●● ●●● ●● ●●●● ●

●

●●● ● ●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●●●●● ● ●●● ●● ●●● ●●●● ● ●● ●●● ● ●● ●● ●● ● ●● ●●●●●●

●

●●● ●● ●●● ●● ●●● ●● ●● ●●● ● ● ●●●●● ●

●

● ● ●

●

●● ●●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●● ●●● ●● ●●●●● ●●●● ● ●●● ●●●●● ●●

●

● ●● ●● ● ●●● ●●●● ● ●●● ● ●

●

●

●

●● ●●● ●●

●

●● ●●●● ●● ● ●●

●

●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●● ●●● ●●● ●●●●● ● ●●●● ●● ●● ● ●●● ●● ●●● ●● ● ●●● ● ●● ● ●● ●●● ●●●● ●●●●

●

● ●● ●● ● ●● ● ●●●●● ● ●●

●

●●

●

●● ●● ● ●●●

●

● ●● ● ●● ●● ●● ●● ●● ●●●

●

●●●● ●● ●●● ●●● ●● ●●●● ● ●● ●

●

●●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●● ●●●●● ●

●

●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●●●● ●● ●● ●

●

●●●● ●●

●

● ●●●●● ●● ●●● ● ●●● ●●● ●●●● ● ●● ● ● ●● ●● ●●● ● ●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●●● ● ● ●●●●●●

●

● ●●●●●● ●● ●● ●● ● ●●●●● ●● ● ● ●●● ●● ●●● ● ● ●● ●●

●

●

● ●●

●

●●● ●● ●●●

●

● ●● ●● ●●●● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●●●●●● ●● ●● ●●● ● ● ●●● ●●●● ● ●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ● ● ●●●● ● ●●●●● ● ● ●● ●●●●● ●● ●● ●●● ●●● ●● ●●●● ●● ●● ●● ●●● ● ● ●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ●● ● ●● ●●● ●●●● ● ● ●●●

●

● ●●●● ● ●●● ●●●● ●● ●● ●●●● ●●● ● ● ● ●●●●● ●●● ● ●●● ●●

●

●● ●

●

●●●● ● ●● ●●● ●●●● ●● ● ●●●●

●

●●●●● ●● ●●●●●● ● ●● ●●●● ●● ●● ●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●

●

● ● ●● ●● ●●●● ●

●

● ● ●●●●● ●●● ●● ● ●●● ●● ● ●

●

●● ● ●●● ●● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ●● ● ●●●● ●●●●● ●● ● ●● ●●●● ●● ●●● ● ● ● ●●●●●● ●● ● ● ● ●● ●● ●●●● ● ●● ●●● ● ●● ●● ●●●● ● ●● ●●● ●●● ● ●●

●

●●● ● ●●● ● ●●●● ●● ●●● ●● ● ●● ●● ●● ●●●●● ●● ● ●●●●●

●

● ●●● ●●● ● ● ●

●

● ●● ●● ●● ●

●

● ●

●

●● ●● ●●●●●● ●● ●

●

●● ● ●●● ● ●●● ●

●

● ●●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●

●
●

● ●●● ● ●● ●● ●● ●●●●● ● ●●● ●● ● ●● ● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ● ●●● ●●● ● ● ●● ●

●

●●●●●

●

●● ● ●●● ●● ●● ●●

●

●● ●● ●●●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ●● ●●●● ●●● ●●●● ● ●●● ●●●● ● ●● ●●● ●●

●

● ● ●● ●●●●●● ● ●● ● ●●● ●●●●●● ● ●● ●● ●●●

●

●● ●●● ●● ●● ●●● ●● ●●●● ●●●●● ● ●● ● ●●●

●

● ●●● ●●●● ● ●●● ●● ●

●

● ●● ●●●●

●

● ●●● ●● ●● ● ● ●● ●

●

● ●●●●● ●●● ● ●●● ●● ●●●● ● ●●● ● ●●●●●●●● ●● ●●● ● ●●●● ●● ●

●

●

● ●● ● ●●● ●●● ●● ●● ●● ●

●

● ●● ●● ●●● ●● ●● ●●● ●● ●●● ● ●

●

●● ● ●● ●●●

●

●● ● ●●●●● ●●● ● ●● ●● ●● ●● ●●●●●●● ● ●●●●

●

●● ●●● ●●● ●● ●●●● ● ● ●● ●●●● ● ●●● ●● ● ●● ●●● ●●●●● ●●

●

● ●●●● ●● ● ●● ● ●● ●●

●

● ●● ●● ●●●● ●●● ●●●

●

●● ●●● ●● ● ●● ●● ●●●● ●●●● ● ●●● ● ● ● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●●●●

●

●●

●

●

●●●● ●● ● ●●●● ●● ●●●● ● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●● ● ●● ●●●● ●

●

● ●●● ●●●● ● ●●● ● ●●●● ●● ●● ●● ●●● ●● ●

●

● ●●●●● ● ●● ●●● ●● ●●●● ● ●●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●●● ●●●●● ● ● ●● ●●●●● ● ●●

●

●● ● ●● ●● ●● ● ●

●

●●●● ●● ●● ● ●●● ●● ●●●● ●● ● ● ●● ●●● ● ● ●●●● ● ●● ●● ● ● ●● ● ● ●● ●● ● ●● ●● ●●●● ●● ●●● ●● ●●●● ●●●● ●● ● ●● ●●●●● ●●●● ●●

●

●●●●● ●● ● ●●● ●● ●●● ● ● ●●● ●●● ● ●● ●● ●●● ● ●●● ●● ●●●

●

● ●● ●

●

●● ●●

●

● ●●●●● ●●● ●● ● ●●● ●● ●● ●●●● ●●● ● ●●●● ●●●● ● ●● ●●● ●●●●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●●
●

● ● ●●

●

●●●●● ●●●

●

● ●●● ●●●● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●

●

●● ● ●●●● ● ●● ●● ●● ●● ●●●●● ●● ●● ●●● ●

●

● ●●●● ●● ●● ●●● ●●●●● ● ●●● ●●●● ●● ●● ● ●●● ● ●●●● ●●● ● ●●● ● ●●●● ●● ●● ● ●● ●● ●●●● ●●● ●● ●● ●●● ●●● ● ● ●● ● ● ●●● ●●●●● ●●●● ● ●●● ●

●

● ●●● ● ●● ● ●● ●●●●● ●● ●● ●● ● ●● ●

●

● ●● ●●●●● ●● ●● ●●●●● ●●● ● ●●●●● ●● ●● ●●●●●● ● ●●● ●● ●● ● ●● ●● ●

●

●●● ● ●●● ●●● ●●● ●●●● ●● ●● ●● ●

●

●

●●● ●● ●●● ●●● ●

●

● ●● ● ●●● ● ●● ●●● ●●● ●● ●● ●●

●

● ●●● ●●●● ●●● ●● ●●●● ●●● ● ●●● ●● ●●●●● ●● ●●●● ●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●●● ● ●●●● ●● ●●● ●● ●

●

●● ●●● ● ●●● ● ● ●● ●● ●●●● ●●●

●

●●●

●

● ●●● ●●● ●●● ● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ●●● ● ●●●● ●●●● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ●●● ● ●●●● ●●● ● ● ●●● ●● ●●● ●●● ●● ●●

●

●

● ● ●●● ●● ●● ●●● ●●●●● ●●● ●●● ●●● ●● ● ● ●● ●●●● ●●●● ●●● ● ●●●● ● ●●

●

●● ●● ●● ● ●●●● ●●●● ●● ●● ●●●●● ●● ●● ●●● ●●

●

● ● ●● ●● ●● ● ● ●●●●●● ●●● ●● ●● ●●●● ●● ●● ● ● ●●●●● ●●● ●● ●●

●

●● ● ●● ●●● ● ●● ●● ● ● ●●●●●● ●● ●●●●●● ●●●● ●●● ●●● ●●● ● ●●● ●●

●

●● ●● ● ●●● ●● ● ●●● ● ●●● ●●●● ● ●●● ● ●●● ● ●

●

●● ●●● ●●●

●

●●●●● ● ●● ●●● ● ●● ●●●● ●● ●●● ●● ●●●●● ● ●●● ●●●

●

●● ● ● ●

●

●● ●●●●● ● ●●●● ●● ●● ●

●

●● ● ●●● ●●●● ●● ●●● ●● ●●●●●● ●●● ● ●●● ●●●● ●● ●● ●●● ●●● ●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●● ●●●

●

●● ●●● ●●●●●● ●● ●●● ● ●●● ● ● ●● ● ●● ● ●● ●●● ●● ●●● ●● ●●● ● ●● ● ●●●● ●● ● ●●● ●●● ●●●● ● ●● ●

●

●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ● ●●● ● ●● ●●● ● ●● ●● ●●

●

●● ●● ● ●

●

●●● ●●● ● ●

●

●●● ●● ●●●● ● ●● ●●●●●● ● ● ●● ● ●●● ●●●●●● ● ●●●● ●● ●● ● ● ●●● ●● ●● ●●● ● ●●● ● ●● ●●● ●● ●●●● ●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●●●● ●●●● ● ●● ●● ● ●●●● ● ●● ●●● ●●● ●● ● ●● ●●●● ●● ●●● ●● ● ●● ● ● ●●● ●● ●●● ●●● ●● ●●● ●●● ●●● ● ●● ● ●● ●●● ● ● ●● ●●● ●● ●● ●●● ●● ●●● ●

●

●●●● ●●● ●● ● ●●●● ● ●●● ● ●●● ●●●●●●● ● ● ●●● ● ●● ●●

●

● ●●● ●●● ● ●● ●●● ● ●●●● ●● ● ●●●● ●● ●●●● ●● ●● ●●● ● ●● ● ●●●● ●●●● ● ●●●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●

●

● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ●● ●●●● ●● ● ●●● ●● ● ●● ●● ●● ●●

●

● ●● ●●●●● ● ●●●● ●●●● ●●●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ● ●● ●● ●● ● ● ●●● ●● ●●●●● ● ●● ●●●●● ●●● ●●● ●●●

●

● ● ● ●●● ● ●●●●● ●●● ● ●●● ● ●●●● ● ●●● ●●●●●●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●● ● ●●●●● ●●● ●●● ● ●● ●●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●●●●● ● ●

●

● ●● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ● ●● ●● ●● ●●●● ●● ●●●●● ● ●●●

●

●●●● ●● ●●● ●

●

●●● ● ●●●● ● ●●● ●● ●● ●●● ● ●● ● ●● ●● ●●●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●●●●●● ●

●

● ●● ●●● ●●● ●● ● ●●●●●● ● ●●●●● ● ●● ● ●● ●●● ●● ●●● ●● ● ●● ● ● ●●●●● ●●●● ●●●● ●● ●● ● ●●●●● ●● ●● ●

●

● ●● ● ●● ●●●●

●

● ●● ● ● ●● ● ●●●●●● ●●● ● ●●● ●●

●

●

●

● ● ● ●●●● ● ●●●●● ●● ●● ●● ●

●

● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●● ● ●● ● ●●●● ● ●● ●● ●● ● ●● ●● ●●●● ● ●●

●

●●● ●●● ● ●●● ● ● ●●●● ●● ●●● ●● ●●●●● ●● ●● ●●●● ●● ● ●●●●●● ●● ● ●● ●● ●● ●●●●● ● ●●● ● ● ●● ●●●● ●● ● ●●● ● ●● ● ●● ●●●● ●● ●●● ● ●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●●● ●●●●● ●●● ●● ●● ● ●●● ●● ●●

●

● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ● ●●●●● ● ●● ●● ●● ●●●●● ●●●●● ● ●● ●●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ●● ● ●●● ● ● ●● ●●●● ● ● ●● ●● ●●●●● ● ●●● ● ●● ●● ●● ●●●●● ●●● ●●● ● ●● ● ●● ●●●●● ● ●●●● ● ●●●●● ●●● ● ● ● ●●● ●● ●●●● ● ●●●● ●● ●●● ●●●● ●● ● ●● ●● ●● ● ●● ●●●●● ● ●● ● ● ●● ●● ●● ●● ●●●●●● ● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●●● ● ●●● ●● ● ●● ●●● ●●● ●● ●●●● ●●●● ● ● ●●●● ●
●

●●●● ●●● ●● ●●● ●● ● ●●● ●●●●

●

●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●● ●●●●● ●●● ●●● ● ●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●●●● ● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●● ●● ●●●●● ● ●● ●●● ●●●● ● ● ●●● ● ●● ●●●●●●●● ●● ● ●●

●

● ●● ●●● ●●●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●● ● ●● ● ●

●

● ●●●●● ●●●● ● ● ●●● ●● ●●●● ●● ●●● ●●●● ● ●● ● ●●●● ●● ● ●●● ●● ●●● ●●● ●●● ●●● ●●●● ● ●● ●●● ●● ●●●●●● ●●● ●● ● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●●●●● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●●● ● ●● ●●● ●●●●●● ●● ●

●

● ●● ●●● ●● ● ● ●●●●

●

●● ● ●●●●●● ●● ● ●●●●● ●● ● ●●● ●●● ●●●● ● ● ●● ● ●●● ● ● ●● ●● ● ●●●● ●● ●● ● ● ●●

●

●●● ●●● ●●●●● ●● ●● ●● ●● ●●

●

● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●●●●● ●●● ●●● ● ●●● ●● ●●● ●● ●●●● ●●● ●● ● ●●● ●● ●●●● ● ●● ●●● ●●

●

● ● ●●●● ● ●● ●● ●● ●● ●●● ●●●● ●●● ● ●●

●

● ●●● ●

●

● ●● ●●● ● ●●●●●●● ● ●●● ●● ● ●●● ●● ●●●

●

●● ● ●● ●● ●●● ● ●● ● ●●●● ●●● ●●●● ●● ●●●● ● ●● ●● ● ● ●●●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ●●●● ●● ●●●● ● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●

●

●●● ●●● ●●●●● ●● ● ●

●

●●● ● ●● ●●● ●●●● ●● ●● ●● ● ●●●● ●● ●●●

●

●● ●●●● ●●● ● ● ● ●● ●●●● ●● ●●● ●● ● ●● ●●●● ● ●●● ●● ● ●● ●●●● ● ● ●● ●● ●●●● ●●●●● ● ●●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ● ●● ● ● ●●● ●● ●● ● ● ●● ●● ●●●●●● ● ● ●● ● ●●●● ●● ●● ●●● ●●● ● ● ●●● ●●●●● ●●● ●●● ● ●●●● ● ●● ●● ● ●●●●●●● ●●● ● ●● ●●●● ●●● ●●

●

●● ●● ●●● ●●●● ●●● ●●●●● ●● ●●● ● ●●●●● ●●● ● ●● ●● ●

●

●● ●● ● ●●●●●● ● ●●● ●●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●● ● ●●● ●●● ●● ●● ●●●●● ● ●●●●● ● ●

●

●● ●●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●● ●●●●● ●●●●● ●●● ●●● ●●● ● ●●● ●● ● ●● ●●●●●●● ●●●●● ●●● ●●●●● ● ●● ●● ●●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●●● ● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●●● ● ●●● ● ●● ●●● ●● ●● ●● ●●●●● ●●●● ● ●● ●●●●●●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●●●● ●●

●

● ● ●● ●●● ●●● ● ●●●● ●● ● ●●●● ●● ● ● ● ●●● ●

●

●●

−8 −6 −4 −2 0 2 4 6

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Spinal cord

t statistic

P
os

te
rio

r 
m

ed
ia

n

● ●●● ●●● ●● ●● ●●● ● ● ●● ●●●●● ●●●● ● ●● ●● ●●●

●

●●● ●●● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●●● ●● ●● ●

●

● ● ●●● ●●●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ● ●● ●● ●● ●●● ●●●● ●●●● ●● ● ●●●● ● ●● ●

●

●● ●●● ●● ● ●●● ●● ●●●●● ● ●● ●●●

●

●● ●●●

●

●

●● ●● ● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●●●●

●

●● ● ●● ●

●

●●● ● ● ● ●● ●●● ●● ●●●● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●●●●● ●●●● ●● ● ●● ● ●●● ●●●●●● ●● ●● ●●

●

●

●● ●●● ● ●●●●● ●● ●● ●●

●

● ●● ●● ●●● ●● ● ●●●● ●● ● ●●● ● ●●●● ● ●● ● ●●● ●●● ●● ●● ●●● ● ●● ●

●

●● ●● ●● ●● ●●● ●● ●●

●

●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●● ●●●●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ●●● ●● ● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●●● ● ●●

●

●

● ● ●●

●

●● ●●● ●● ●● ● ●●● ●●●● ● ●● ●● ● ● ● ●●● ●● ●●● ●● ●●● ●● ●● ●●●

●

●● ●●●● ● ●● ● ●● ●●● ●● ● ●●● ●●● ● ●● ●●●●● ●●● ●●● ●● ●● ●● ●●●● ●●● ● ●● ● ●●●●● ●● ●● ● ●● ●● ●● ●●●

●

● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●● ●●●●●

●

● ●●●● ● ● ●●●● ●● ●●

●

●● ● ●●● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ●●● ●●● ● ●●● ●● ●● ●●●●● ●●● ●●● ● ●● ●●●● ●● ●●● ● ●●● ● ●●●

●

●●● ●● ●● ●● ●● ●●● ●● ●

●

● ●●●● ● ●● ●● ●● ●●●● ●● ● ●●● ●● ●● ● ● ●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ● ●

●

●●● ●● ●

●

● ●●●●● ● ●● ●●●● ●● ● ●●● ● ●●● ● ●●● ●●●●● ●● ● ●● ●●●●● ● ● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ● ●● ●●● ●●● ●● ● ●● ●●●● ●● ●● ●●● ●● ●● ● ● ●●●● ●● ●● ●● ●● ●●●● ●●●● ● ●●● ●●● ●● ●●●● ●●●● ●● ●●● ●●● ● ●●●●●● ● ●● ●●● ●●●●● ● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●● ● ●●●

●

● ●●● ●●●● ●● ●● ●●● ● ●●● ● ●●● ● ●● ● ●● ●● ●●●●●●● ●● ●●● ● ●●●● ● ●●● ●●● ● ●●● ●●● ● ●● ● ●● ● ●●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ● ●●●●● ●● ● ● ●● ●● ●

●

● ● ●●● ● ● ●●● ● ●● ●● ●● ●●● ●●● ●

●

● ●● ●● ●● ●● ● ●●● ● ●● ●●●●● ●● ●● ●●● ● ●● ● ● ●●●● ● ● ● ●● ●●●●

●

● ● ● ●●●● ●● ●● ● ●●

●

● ●●● ●●●● ●● ●● ●●

●

● ● ●●●● ●● ● ●● ●●● ●● ●●● ●● ●●● ●● ●

●

●●● ● ●● ●●●● ●●● ●●● ●● ●●

●

●● ●●● ●●●● ●● ●● ●● ●● ●●●● ●●● ●

●

● ● ● ●●● ● ●●●●● ● ●●●● ●●● ●● ●● ● ●

●

● ●

●

●● ● ●● ●● ●●●● ●● ●● ●●● ● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ● ●

●

●● ●●●● ● ●● ●●● ● ●●● ● ●● ●●● ●● ●●●●● ●● ● ●●●● ● ●●● ●●●●● ● ●●● ●● ●●●● ●●●●● ● ●● ●●● ●●●●● ● ●

●

●●● ● ●●● ●●● ●● ●● ●●● ●●●

●

●●● ●●● ●

●

● ●●● ●● ●●

●

● ●● ●● ●● ●●●● ●● ● ●● ●●●●

●

●● ●●●● ●

●

● ●●●● ●

●

● ●● ●●●●● ●● ●● ● ●●● ●● ●●● ● ●● ●● ●●●●● ●

●

●

●

●● ●●● ● ●●

●

●

●

● ●● ●

●

● ●● ●● ●● ●●

●

●

●●● ●●

●

● ●●

●

● ●●●●

●

●● ●●●● ●●● ● ●● ●● ●

●

●●● ●● ●● ● ●● ●●●●●●● ● ●● ●● ●● ● ●●● ●

●

● ● ● ●●● ●●

●

● ●● ●● ● ●● ●

●

● ●

●

●● ●●●●● ●● ●●● ● ● ●●● ●

●

● ●● ● ●●● ●●

●

● ●● ●● ● ●●●● ●● ●● ●● ● ●● ●●●●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●

●

● ● ●● ●● ●●● ●● ● ●●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●●● ● ●● ● ●●● ● ●●●● ●● ●●● ●● ●●●● ●

●

● ●●● ●● ● ●
●

●

●

● ●●●●●● ●●

●

●● ●● ●● ●●● ●●● ●●● ● ●● ● ●● ●●● ● ●● ● ●●

●

●●● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ●● ●● ● ●●● ●●●● ● ● ●● ●● ● ●●●●● ●●● ●●● ●●● ●●●● ● ●●● ● ●●● ●● ●●●● ●● ● ●●● ● ●●●● ●● ●

●

●● ●● ● ●● ● ●●● ●● ●● ● ● ●● ●● ●● ● ● ●● ●● ●● ●●● ●●●● ●● ●●●● ●● ●●● ●●● ●● ●●●● ●● ●● ● ●●● ●

●

●● ●●● ●●●

●

●●●● ● ●● ● ●

●

●●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ●●●●

●

● ● ●● ● ●●● ● ●●

●

● ●● ●●● ● ●● ● ●●● ●●●●● ●● ● ●●● ●●●● ●● ●● ●

●

● ●●●● ●● ●●

●

●●●● ● ●●● ●● ●●●●●●● ● ●● ●●● ●● ●● ●●● ●● ● ● ●● ●● ● ●●● ●●

●

●●●●

●

●

●

●

●

●

●●● ●● ● ●●●● ●

●

● ●●

●

●● ●●●

●

●● ●●● ●● ●● ● ● ●●

●

●● ●● ● ●●● ●● ● ●●●● ●● ●●● ●●●● ●●●● ●●● ● ●●

●

●●●● ●●●● ● ● ●● ●● ●●● ●●● ● ●● ● ●●●●● ●

●

●● ●●●

●

● ● ● ●●● ●

●

● ●● ● ●● ● ● ●●● ●● ● ●

●

● ●●● ●●● ● ● ● ●●● ● ● ●●●● ●● ●● ● ● ●● ●● ● ●●

●

● ●● ●● ●● ●●●● ●●●●

●

●

●●●●● ● ● ● ● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●● ●●

●

●● ● ●●●● ●● ●● ●● ●●● ●●●●● ● ●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●● ●● ● ● ●● ● ●● ● ●● ●●●● ●●● ●● ●●●●● ●●●● ●●●● ● ●
●

●●●● ● ●●●● ●●● ●● ● ●● ●● ●● ●●●●● ●● ●●● ●

●

●● ●●●● ●●● ●● ●●● ●● ● ●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●
●

●●●● ●●● ●● ●●●● ● ●●● ●● ●●●● ●●● ● ●●● ● ●● ●● ●● ●●●●● ●● ●●● ●● ●● ● ●●● ●● ●●●●●●● ●●● ●●● ●● ●●● ●●●

●

● ●●● ●● ●●

●

●●●● ● ● ● ●●● ●● ● ● ●● ●●

●

● ●● ●●● ●● ●●● ●● ●●● ● ●●●●● ●● ●●●●● ●● ●●●● ●● ●● ● ● ●●

●

● ●● ● ●●

●

●●● ● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●● ●●●●● ● ●● ●● ●●●●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●●● ● ●●

●

●● ● ● ●

●

●● ●●●● ●●●● ●

●

● ●● ●● ●●● ●●● ●●●● ●● ●●● ●●●● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ● ● ●●● ●●

●

●● ● ●●● ●●

●

●● ●●● ●● ●●●● ●

●

●●● ● ●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●●●● ●● ● ●●● ●● ●●● ●●●● ● ●● ●●●● ●● ●● ●● ● ●● ●●●●●●

●

●●● ●● ●●● ●● ●●● ●● ●● ●●● ● ● ● ●● ●● ●

●

● ● ●

●

●● ●● ●● ●●● ●● ●●●●●● ●● ●● ●● ●●● ●● ●●●●● ●●●●● ●●●● ● ● ●● ●●●●● ●●

●

● ●● ●● ● ●●● ●●●● ● ●●● ● ●

●

●

●

●● ●●● ●●

●

● ● ●●●● ●● ● ●●

●

●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●● ●●● ●●● ●●●●● ● ●●●● ●● ●● ● ●●● ●● ●●● ●● ● ●●●● ●● ● ●● ●●● ●●●● ●●●●

●

● ●● ●● ● ●● ● ●●●●● ● ●●

●

●●

●

●● ●● ● ●● ●

●

● ●● ● ● ● ●● ●● ●● ●● ●●●

●

●● ●● ●● ●●● ●●● ●● ●●● ● ●●● ●

●

●●●● ●●● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ●

●

●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●●●● ●● ●● ●

●

●●●● ● ●

●

● ●●●●● ●● ●●● ● ●●● ●●● ●●● ● ● ●● ● ● ●●●● ●●● ● ●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●● ● ●●●●●●

●

● ●●●●●● ●● ●● ●● ● ●●●●● ●● ● ● ●●● ●● ●●● ● ● ●● ●●

●

●

● ●●

●

●●● ●● ●●●

●

● ●● ●● ●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●● ●●●●●● ● ● ●● ●●● ● ● ●●● ●●●● ● ●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ● ●●●●● ● ● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ●●● ●●●●● ●●●● ● ● ●●●

●

● ●●●● ● ●●● ●●●● ●● ●● ●●●● ●●● ● ● ● ●● ●● ● ●●● ● ●●● ●●

●

●● ●

●

●●●● ● ●● ●●● ●●●● ●● ● ●● ●●

●

●●●● ● ●● ● ● ●●●● ● ●● ●●●● ●● ●● ●●● ●● ●●●● ●● ● ●●●●● ●● ●●● ●● ●

●

● ● ●● ●● ●●●● ●

●

● ● ●●●●● ●●● ●● ● ●●● ●● ● ●

●

●● ● ●●● ●● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ●● ● ●●●● ● ●● ●● ●● ● ●● ●● ●● ●● ●●● ● ● ●●●●● ●● ●● ● ● ● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●●●● ● ●● ●●● ●●● ● ●●

●

●●● ● ●●● ● ●●●● ●● ●●● ●● ●●● ●● ●● ●●●●● ●● ● ●●●● ●

●

● ●●● ●●● ● ● ●

●

● ●● ●● ●● ●

●

● ●

●

●● ●● ●●●●●● ●● ●

●

●● ● ●●●● ●●● ●

●

● ●●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●

●
●

● ●●● ● ●● ●● ●● ●●●●● ● ●●● ●● ● ●● ● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ● ●●● ●●● ● ● ●● ●

●

● ●●●●

●

●● ● ●●● ●● ●● ●●

●

●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●●●● ●●●● ●●● ●●●● ● ●●● ●●●● ● ●● ●●● ●●

●

● ● ●● ●●●●●● ● ●● ● ●●● ●●●●●● ● ●● ●● ●●●

●

●● ●●● ●● ●● ●●● ● ● ●●●● ●●●●● ● ●● ● ●●●

●

● ●●● ●●●● ● ●●● ●● ●

●

● ●● ●● ●●

●

● ●●● ●● ●● ● ● ●● ●

●

● ●●●●● ●●● ● ●●● ●● ●●●● ● ●●● ● ●●●●●●●● ●● ●●● ● ●●●● ●● ●

●

●

● ●● ● ●●● ●●● ●● ●● ●● ●

●

● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●●

●

●● ● ●● ●●●

●

●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●●●●● ●● ● ●●●●

●

●● ●●● ●●●● ● ●● ●● ● ● ●● ●●●●● ●●● ●● ● ●● ●●● ●●●●● ●●

●

● ●●●● ●● ● ●● ● ●● ●●

●

● ●● ●● ●● ●● ●●● ●●●

●

●● ●●● ●● ● ●● ●● ●●●● ●●●● ● ●●●● ● ● ●● ●●● ●● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●●●●

●

●●

●

●

●●● ● ●● ● ●●●● ●● ●● ●● ● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●● ● ●● ●●●● ●

●

● ●●● ●●●● ● ●●●● ●●●● ●● ●● ●● ● ●● ●● ●

●

● ●● ●● ● ● ●● ●●● ●● ●●● ● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ● ●●● ●●●●●● ● ●● ●●●● ● ● ●●

●

●● ● ●● ●● ●● ● ●

●

●●●● ●● ●● ● ●●● ●● ●●●● ●● ● ● ●● ●●● ● ● ●●●● ● ●● ●● ●● ●● ● ● ●● ●● ● ●● ●● ●●●● ●● ●●● ●● ●●● ● ●●●● ●● ●●● ●●●●● ●●●● ●●

●

●●●●● ●● ● ●●● ●● ●●● ●● ●●● ●●● ● ●● ●● ●●● ● ●●● ●● ●●●

●

● ●● ●

●

●● ●●

●

● ●●●●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●●● ●●●● ●● ●● ● ●● ●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●●
●

● ● ●●

●

●●●●● ●●●

●

● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●

●

●● ● ●●●● ● ●● ●● ●● ●● ●●●●● ●● ●● ●●● ●

●

● ●●● ● ●● ●● ●●● ●●●●● ● ●●● ●●●● ●● ●● ● ●●● ● ●●●● ●●● ● ● ●● ● ●●●● ●● ●● ● ●● ●● ●●●● ●●● ●● ●● ●●● ● ●● ● ● ●● ● ● ●●● ●●● ●● ●●●● ●● ●● ●

●

● ●●● ● ●● ● ●● ●●●●● ●● ●●●● ● ●● ●

●

● ●●●●●●● ●● ●● ●●●●● ●●● ● ●●●●● ●● ●● ●●●●●● ●●●● ●● ●●● ●● ●● ●

●

●●● ● ●●● ●●● ●●● ●●●● ●● ●● ●● ●

●

●

●●● ●● ●●● ●●● ●

●

● ●● ●●●● ● ●● ●●● ●●● ●● ●● ●●

●

●●● ● ●●●● ●●● ●● ●●●● ●●● ● ●●● ●● ●●●●● ●● ●●●● ●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ● ● ●●●● ●● ●●● ● ● ●

●

●● ●●● ● ●●● ● ● ●● ●●●●●● ●●●

●

●● ●

●

● ●●● ●●● ●●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●● ●●● ●●● ● ●●● ● ●●●● ●● ●●● ●● ●● ●●● ●●● ● ●● ●● ●● ● ● ●● ● ●●●● ●●● ● ● ●●● ●● ●●● ●●● ●● ●●

●

●

● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ● ● ●● ●●●● ●●●● ●●● ● ●●●● ● ●●

●

●● ●● ●● ● ●●●● ●●●● ●● ●● ● ●●●● ●● ●● ●●● ●●

●

● ● ●● ●● ●● ● ● ●●●●●● ●● ● ●● ●● ●●●● ●● ●● ● ● ●● ●●● ●●● ●● ●●

●

●● ● ●● ●●● ● ●● ●● ● ● ●●●●●● ●● ●● ●●●● ●●●● ●●● ●●● ●●● ● ●●● ●●

●

●● ●● ● ●●● ●● ● ●●● ● ●●● ●● ●● ● ●●● ● ●●● ● ●

●

●● ●●● ● ●●

●

●●●●● ● ●● ●●● ● ●● ●●●● ●● ●●● ●● ●●●●● ● ●●● ●●●

●

●● ● ● ●

●

●● ●●●●● ●●●●● ●● ●● ●

●

●● ● ●●● ●●●● ● ●●●● ●● ●●● ● ●● ●●● ● ●●● ●●● ● ●● ●● ●●● ●●● ●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●● ●●●

●

●● ●●● ●●●●●● ●● ●●● ● ●●● ● ● ●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●● ● ●●● ● ●● ● ●●● ●●● ●●●● ● ●● ●

●

●●● ●● ●● ● ●● ● ●● ●● ●●● ●●●● ● ●●● ● ●● ●●● ● ●● ●● ●●

●

●● ●● ● ●

●

●●● ●●● ● ●

●

●●● ●● ●●●● ● ●● ●●●●●● ● ● ●● ● ●●● ●●● ●●● ● ●●●●●● ●● ● ● ●●● ●● ●● ●●● ● ●●● ● ●● ●●● ●● ●●●● ●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●●●● ●●●● ● ●● ●● ● ●●●● ● ●● ●●● ●●● ●● ● ●●●●●● ●● ●●● ●● ●●●● ● ●●● ●● ●●● ●●● ●● ●●● ●●● ●●● ● ●● ● ●● ●●●● ● ●● ●●●● ● ●● ●●● ●● ●●●●

●

●●●● ●●● ●● ● ●●●● ● ●●● ● ●●● ●●●● ●●● ● ● ●●● ● ●● ●●

●

● ●●● ● ●● ● ●● ●●● ● ●●●● ● ● ●●●●● ●● ●●●● ●● ●● ●●● ● ●● ● ●●●● ●●●● ● ●●●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●

●

● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ●● ●●●● ●● ● ●●● ●● ● ●● ●● ●● ●●

●

● ●● ●●●●● ●●●●● ●●●● ●●●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●●● ●● ●● ● ● ●●● ●● ●●●●● ● ●● ●●●●● ● ●● ●●● ● ●●

●

● ● ● ●●● ● ●● ●●● ●●● ● ●●● ● ●●●● ● ●●● ●●●●●●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●● ● ●●●●● ●●● ●●● ● ●● ●●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●●●●● ● ●

●

● ●● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ● ●● ●● ●● ●●●● ●● ●●●● ● ● ●●●

●

●●●● ●● ●●● ●

●

●●● ● ●●●● ● ●●● ● ● ●● ●●● ● ●●● ●● ●● ●●●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●●●●●● ●

●

● ●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ● ●● ● ●● ●●● ●● ●●●●● ● ●● ● ● ●●●●● ●●●● ●●●● ●● ●● ● ● ●● ●● ●● ●● ●

●

● ●● ● ●● ●●●●

●

● ●● ● ● ●● ● ●●●●●● ●●● ● ●●● ●●

●

●

●

● ● ● ●●●● ● ●●●●● ●● ●● ●● ●

●

● ●●● ●●●●● ● ●●● ●● ●●● ● ●●● ● ●● ● ● ●●● ● ●● ●● ●● ● ●● ●● ●●●● ● ● ●

●

●●● ●●● ● ●●●● ● ●●●● ●● ●●● ●● ●●●●● ●● ●● ●●●● ●● ● ●●●●●● ●● ● ●● ●● ●● ●● ●●● ● ●●● ● ● ●● ●●●● ●● ● ●●● ● ●● ● ●● ●●●● ●● ●●● ● ●● ● ●● ● ●● ●●● ●●● ●● ● ●● ●●● ●●●●● ●●● ●● ●● ● ●●● ●● ●●

●

● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ● ●●●●● ● ●● ●● ●● ●●●●● ●●●●● ● ●● ●●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ●● ● ●●● ● ● ●● ●●●● ● ● ●● ●● ●●●●● ● ●●● ● ●● ●● ●● ●●●●● ●●● ● ●● ● ●● ● ●● ●●●●● ● ●●● ● ● ●●●●● ●●● ● ● ● ●●● ●● ●●●● ● ●●●● ●● ●●● ●●●● ●● ● ●● ●● ●● ● ●● ●●●●● ● ●● ● ● ●● ●● ●● ●● ●●●●●● ● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ● ●● ● ●● ●●● ●●● ● ●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●●● ●●●● ●● ● ●● ●●● ●●● ●● ●●●● ●●●● ● ● ●●●● ●
●

●●●● ●●● ●● ●●● ●● ● ●●● ● ●●●

●

●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●● ●●●●● ●●● ●●● ● ●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●●●● ● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●● ●● ●●●●● ● ●● ●●● ●●●● ● ● ●●● ● ●● ●●●●●●●● ●● ● ●●

●

● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●● ● ●● ● ●

●

● ●●●●● ●●●● ● ● ●●● ●● ● ●●● ●● ●●● ●●●● ● ●● ● ●●●● ●● ● ●●● ●● ●●● ●●● ●●● ● ●● ●●●● ● ●● ●●● ●● ●●●●●● ●●● ●● ● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●●●●● ● ●●●● ●● ●● ●● ●● ●●●● ●●● ●● ●● ●●● ● ●● ●●● ●●●●●● ●● ●

●

● ●● ●●● ●● ● ●●●●●

●

●● ● ●●●●●● ●● ● ●● ●●● ●● ● ●●● ●●● ●●●● ● ● ●● ● ●●● ● ● ●● ●● ● ●●●● ●● ●● ● ● ●●

●

●●● ●●● ●●●●● ●● ●● ●● ●● ●●

●

● ●● ● ●●● ●● ●● ●●● ● ●● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●●●●● ●●● ●●● ● ●●● ●● ●●● ●● ●●●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ●●

●

● ●●●●● ● ●● ●● ●● ●● ●●● ●●●● ●●● ● ●●

●

● ●●● ●

●

● ●● ●●● ● ●●●●● ●● ● ●●● ●● ● ●●● ●● ●●●

●

●● ● ●● ● ● ●●●● ●● ● ●●●● ●●● ●●●● ●● ●●●● ● ●● ●● ● ● ●●●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ●●●● ●● ●●●● ● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●

●

●●● ●●● ●●● ●● ●● ● ●

●

●●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●●●● ●● ●● ●

●

●● ●●●● ●●● ● ● ●●● ●●●● ●● ●●● ●● ●●● ●● ●● ● ●●● ●● ● ●● ●●●● ● ● ●● ●● ●●●● ●●●●● ● ●●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●● ● ● ●●●●● ●● ● ● ●● ●● ●●●●●● ● ● ●● ● ●●●● ●● ●● ●●● ●●● ● ●●●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ●● ●●●●●●●● ●●●● ●● ●●●● ●●● ●●

●

●● ●● ● ●● ●●●● ●●● ●●●●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ●

●

●● ●● ● ●●●●●● ● ●●● ●●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●●● ●●●●● ●●● ●●● ●● ●● ● ●●●● ● ●●●●● ● ●

●

●● ●●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●● ●●● ●● ●●●●● ●●● ●●● ●●● ● ●●● ●● ● ●● ●●●●●●● ●●●●● ●●● ●●● ●● ● ●● ●● ●●●● ● ● ● ●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ●●●● ● ●● ●● ● ● ●● ●●● ●● ● ● ●● ●● ●●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●●● ●●●● ● ●● ●●●●●●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●●●●●●

●

● ● ●● ●●● ● ●● ● ●●●● ●●● ●●●● ●● ● ● ● ●●● ●

●

●●

−3 −2 −1 0 1 2 3

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Spinal cord

Avg / StdDev

P
os

te
rio

r 
m

ed
ia

n

32



Figure 8: Two-layer model
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Figure 9: Comparison of `1 analysis with flat-prior confidence intervals, E. coli example
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Figure 10: `1 posterior median and flat-prior 95% confidence intervals vs. data average, E. coli
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● Mixed−prior posterior median
Flat−prior 99% CI
Significant flat−prior 99% CI
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