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We propose a new empirical Bayes approach for inference in the p � n normal linear model. The novelty
is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assump-
tions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution,
relevant for both estimation and model selection. Computation is straightforward and fast, and simulation
results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
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1. Introduction

In this paper, we consider the Gaussian linear regression model, given by

Y = Xβ + ε, (1)

where Y is a n × 1 vector of response variables, X is a n × p matrix of predictor variables, β

is a p × 1 vector of slope coefficients, and ε is a n × 1 vector of i.i.d. N(0, σ 2) random errors.
Recently, there has been considerable interest in the high-dimensional case, where p � n, driven
primarily by challenging applications. Indeed, in genetic studies, where the response variable
corresponds to a particular observable trait, the number of subjects, n, may be of order 103,
while the number of genetic features, p, in consideration can be of order 105. Despite the large
number of features, usually only a few have a genuine association with the trait. For example,
the Wellcome Trust Case Control Consortium [37] has confirmed that only seven genes have a
non-negligible association with Type I diabetes. Therefore, it is reasonable to assume that β is
sparse, that is, only a few non-zero entries.

Given the practical importance of the high-dimensional regression problem, there is now a
substantial body of literature on the subject. In the frequentist setting, a variety of methods are
available based on minimizing loss functions, equipped with a penalty on the complexity of
the model. This includes the lasso (Tibshirani [34]), the smoothly clipped absolute deviation
(Fan and Li [13]), the adaptive lasso (Zou [41]), and the Dantzig selector (Candes and Tao [7],
James and Radchenko [22], James, Radchenko and Lv [23]). Fan and Lv [14] give a selective
overview of these and other frequentist methods. From a Bayesian perspective, popular methods
for variable selection in high-dimensional regression include stochastic search variable selection
(George and McCullogh [16]) and the methods based on spike-and-slab priors (Ishwaran and
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Rao [20,21]). These methods and others are reviewed in Clyde and George [11] and Heaton and
Scott [19]. More recently, Bondell and Reich [5], Johnson and Rossell [26], and Narisetty and
He [28] propose Bayesian variable selection methods and establish model selection consistency.

Any Bayesian approach to the regression problem (1) yields a posterior distribution on the
high-dimensional parameter β . It is natural to ask under what conditions will the β posterior dis-
tribution concentrate around the true value at an appropriate or optimal rate. Recently, Castillo,
Schmidt-Hieber and van der Vaart [8] show that, with a suitable Laplace-like prior for β , similar
to those in Park and Casella [29], and under conditions on the design matrix X, the posterior
distribution concentrates around the truth at rates that match those for the corresponding lasso
estimator (e.g., Bühlmann and van de Geer [6]). These results leave room for improvement in at
least two directions; first, the rates associated with the lasso estimator are not optimal, so a break
from the Laplace priors (and perhaps even the standard Bayesian setup itself) is desirable; sec-
ond, and perhaps most importantly, posterior computation with these inconvenient non-conjugate
priors is expensive and non-trivial. In this paper, we develop a new approach, motivated by com-
putational considerations, which leads to improvements in both directions, simultaneously.

Towards a model that leads to more efficient computation, it is natural to consider a conjugate
normal prior for β . However, Theorem 2.8 in Castillo and van der Vaart [9] says that if the prior
has normal tails, then the posterior concentration rates can be suboptimal, motivating a departure
from the somewhat rigid Bayesian framework. Following Martin and Walker [27], we consider
a new empirical Bayes approach, motivated by the very simple idea that the tails of the prior
are irrelevant as long as its center is chosen informatively. So, our proposal is to use the data
to provide an informative center for the normal prior for β , along with an extra regularization
step to prevent the posterior from tracking the data too closely. Details of our proposed empirical
Bayes model are presented in Section 2. It turns out that this new empirical Bayes posterior is
both easy to compute and has desirable asymptotic concentration properties. Section 3 presents
a variety of concentration rate results for our empirical Bayes posterior. For example, under al-
most no conditions on the model or design matrix, a concentration rate relative to prediction
error loss is obtained which is, at least in some cases, minimax optimal; the optimal rate can be
achieved in all cases, but at a cost (see Remark 1). Furthermore, we provide a model selection
consistency result which says that, under optimal conditions, the empirical Bayes posterior can
asymptotically identify those truly non-zero coefficients in the linear model. Our approach has
some similarities with the exponential weighting methods in, for example, Rigollet and Tsybakov
[31,32] and Arias-Castro and Lounici [2]; in fact, ours can be viewed as a generalization of these
approaches, defining a full posterior that, when suitably summarized, corresponds essentially
to their estimators. In Section 4, we propose a simple and efficient Markov chain Monte Carlo
method to sample from our empirical Bayes posterior, and we present several simulation studies
to highlight both the computational speed the superior finite-sample performance of our method
compared to several others in terms of model selection. Finally, Section 5 gives a brief a discus-
sion, the key message being that we get provable posterior concentration results, optimal in a
minimax sense in some cases, fast and easy computation, and strong finite-sample performance.
Lengthy proofs and some auxiliary results are given in the Appendix.
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2. The empirical Bayes model

2.1. The prior

Here, and in the theoretical analysis in Section 3, we take the error variance σ 2 to be known, as
is often done (e.g., Castillo, Schmidt-Hieber and van der Vaart [8], Rigollet and Tsybakov [32]).
Techniques for estimating σ 2 in the high-dimensional case are available; see Section 4. To specify
a prior for β that incorporates sparsity, we decompose β as (S,βS), where S ⊂ {1, . . . , p} denotes
the “active set” of variables, S = {j : βj �= 0}, and βS is the |S|-vector containing the particular
non-zero values. Based on this decomposition, we can specify the prior for β in two steps: a prior
for S and then a prior for βS , given S.

First, the prior π(S) for the model S decomposes as follows:

π(S) =
(

p

s

)−1

fn(s), s = 0,1, . . . , p, s = |S|, (2)

where fn(s) is a probability mass function on the size |S| of S. That is, we assign a prior dis-
tribution fn(s) on the model size and then, given the size, put a uniform prior on all models of
the given size. Some conditions on fn(s) will be required for suitable posterior concentration. In
particular, we assume that fn(s) is supported on {0,1, . . . ,R}, not on {0,1, . . . , p}, where R ≤ n

is the rank of the matrix X; see, also, Jiang [24], Abramovich and Grinshtein [1], Rigollet and
Tsybakov [32], and Arias-Castro and Lounici [2]. That is,

fn(s) = 0 for all s = R + 1, . . . , p. (3)

Our primary motivation for imposing this constraint is that in practical applications, the true
value of s; that is, s� = |S�|, is typically much smaller than R. Even in the ideal case where S�

is known, if |S�| > R, then quality estimation of the corresponding parameters is not possible.
Moreover, models containing a large number of variables can be difficult to interpret. Therefore,
since having no more variables than samples in the fixed-model case is a reasonable assumption,
we do not believe that restricting the support of our prior for the model size is a strong condition.

Second, for the conditional prior on βS , given S that satisfies |S| ≤ R, we propose to employ
the available distribution theory for the least squares estimator β̂S . Specifically, we take the prior
for βS , given S, as

βS |S ∼ N|S|
(
β̂S, γ −1(X�

S XS

)−1)
. (4)

Here, XS is the matrix filled with columns of X corresponding to S, and γ > 0 is a tuning
parameter, to be specified. This is reminiscent to Zellner’s g-prior (e.g., Zellner [38]), except that
it is centered at the least squares estimator; see Section 2.2 for more on this data-dependent prior
centering. To summarize, our proposed prior � for β is given by

�(dβ) =
∑

S:|S|≤R

N|S|
(
dβS |β̂S, γ −1(X�

S XS

)−1)
δ0(dβSc )π(S). (5)
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Following Martin and Walker [27], we refer to this data-dependent prior as an empirical prior;
see Section 2.3. By restricting |S| ≤ R, we can be sure that the least squares estimator β̂S is
available, along with the usual distribution theory. In our implementation, γ −1 will be large,
which means that the conditional prior for βS is rather diffuse, so the dependence on the data,
through β̂S , is not overly strong.

Obviously, to properly define the conditional prior for βS , we implicitly assume that X�
S XS

is non-singular for all subsets S with |S| ≤ R. This is only for simplicity, however, since the
theory in Section 3 goes through without this assumption at the cost of making computations
more difficult.

2.2. The likelihood function

For the likelihood function, write Ln(β) = Nn(Y |Xβ,σ 2I ) as the n-dimensional Gaussian den-
sity at Y , with mean Xβ , covariance matrix proportional to the identity matrix, and treated as
a function of β . One unique feature of our approach so far is the centering of the (conditional)
prior on the least squares estimator, which is greedy, in some sense. To prevent the posterior from
tracking the data too closely, the second feature of our proposed approach is that we introduce
a fractional power α ∈ (0,1) on the likelihood. That is, instead of Ln(β), our likelihood will be
Ln(β)α ; see Martin and Walker [27]. Other authors have advocated the use of a fractional likeli-
hood, including Barron and Cover [4], Walker and Hjort [35], Zhang [40], Jiang and Tanner [25],
Dalalyan and Tsybakov [12], and Grünwald and van Ommen [18], but these papers have differ-
ent foci and none include a data-dependent (conditional) prior centering. In fact, we feel that this
combination of centering and fractional likelihood regularization (see Section 2.3) is a powerful
tool that can be used for a variety of high-dimensional problems.

Our analysis in what follows does not go through for the genuine Bayes case, corresponding
to α = 1, but α can be arbitrarily close to 1. Clearly, for finite-samples, the numerical differences
between results for α ≈ 1 and for α = 1 are negligible.

2.3. The posterior distribution

Given the prior � for β and the fractional likelihood, we form an empirical Bayes posterior dis-
tribution, denoted by �n, for β using the standard Bayesian update. That is, for B a measurable
subset of Rp , we have

�n(B) =
∫
B

Ln(β)α�(dβ)∫
Rp Ln(β)α�(dβ)

. (6)

Computation of this empirical Bayes posterior will be discussed in Section 4.
We interpret “empirical Bayes” loosely – if the prior depends on data, then the corresponding

posterior is empirical Bayes. The combination of a prior, data-dependent or not, with a fractional
likelihood via Bayes formula can also be understood from this empirical Bayes point of view.
Indeed,

Ln(β)α�(dβ) = Ln(β)
�(dβ)

Ln(β)1−α
,
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that is, the Bayes combination of a fractional likelihood with a prior is equivalent to a Bayes
combination of the original likelihood function with a data-dependent prior. As Walker and Hjort
[35] explain, rescaling the prior by a portion of the likelihood helps to protect from possible in-
consistencies by penalizing those parameter values that “track the data too closely.” Our proposal
is obviously very different from the traditional empirical Bayes approach. As stated in Section 1,
our goal is simply to construct a data-dependent distribution for β that is easy to compute and
also has optimal concentration properties. As a guide, we have followed the familiar prior-to-
posterior updating, but added a new twist, and we will demonstrate in Sections 3–4 that our
proposed empirical Bayes posterior distribution (6) does, indeed, achieve the stated objectives.

3. Posterior concentration rates

3.1. Setup

Before getting into details about the concentration rates, we first want to clarify what is meant
by asymptotics in this context. There is an implicit triangular array setup, that is, for each n, the
response vector Yn = (Y n

1 , . . . , Y n
n )� is modeled according to (1) with the n × p design matrix

Xn = ((Xn
ij )), of rank R ≤ n, which we take to be deterministic but depending on n, and vector

of coefficients βn = (β1, . . . , βp)�. When n is increased, more data is available so, even though
there are more variables to contend with (since p � n), there is hope that something about the
true βn can be learnt, provided that it is sufficiently sparse. In what follows, we will use the
standard notation in (1) which is less cumbersome but hides the triangular array formulation.
It is important to keep in mind, however, that, throughout our analysis, p, R, and s� depend
implicitly on n.

We make some minimal standing assumptions. First, without loss of generality, we can assume
that s� ≤ R ≤ n 
 p. No other assumptions concerning n, p, R, and s� will be required. The
results below also hold for all fixed tuning parameters α ∈ (0,1) and γ > 0; see Section 4.1 for
guidance on the practical choice of (α, γ ). For the design matrix X, there is a standing simpli-
fying assumption that we shall make. In particular, we assume that XS is full-rank for each S

satisfying |S| ≤ R. This assumption holds, for example, if X satisfies the “sparse Riesz condi-
tion with rank n” discussed in Zhang and Huang [39] and Chen and Chen [10]. It is possible,
however, to remove this condition, but it requires a modification of the empirical Bayes model.
Indeed, if the prior π for S only puts positive mass on those S such that XS is full-rank, and if
XS� is full-rank, then the theoretical results presented below follow similarly. The drawback for
adjusting the prior for S in this way is additional computational cost, that is, the less-than-full-
rank models must be identified and removed by zeroing out the prior mass. We opt here to keep
things simple by making the full-rank assumption.
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3.2. A preliminary result

Let B be a generic event for β ∈ R
p . Our empirical Bayes posterior probability of the event B

in (6) can be rewritten as

�n(B) =
∫
B

Rn(β,β�)α�(dβ)∫
Rn(β,β�)α�(dβ)

, (7)

where Rn(β,β�) = Ln(β)/Ln(β
�) is the likelihood ratio. Let Dn denote the denominator in the

above display, i.e., Dn = ∫
Rn(β,β�)α�(dβ). The next result, which will be useful throughout

our analysis, gives a sure lower bound on Dn.

Lemma 1. There exists c = c(α, γ,σ 2) > 0 such that Dn ≥ π(S�)e−c|S�|.

Proof. Dn is an average of a non-negative S-dependent quantity with respect to π(S). This
average is clearly greater than the quantity for S = S� times π(S�). That is,

Dn > π
(
S�

)∫
Rn

(
β,β�

)α
N
(
βS� |β̂S� , γ −1(X�

S�XS�

)−1)
dβS�

= π
(
S�

)∫
e−(α/(2σ 2)){‖Y−XS�βS�‖2

2−‖Y−XS�β�
S�‖2

2}N
(
βS� |β̂S� , γ −1(X�

S�XS�

)−1)
dβS� .

Direct calculation shows that the lower bound above equals

π
(
S�

)
e(α/(2σ 2))‖XS� (β̂S�−β�

S� )‖2
2

(
1 + α

γ σ 2

)−|S�|/2

.

Using the trivial bound ‖ · ‖2 ≥ 0 on the norm in the exponent, the proof is complete if we let
c = 1

2 log(1 + α

γσ 2 ), which is clearly positive. �

3.3. Prediction loss

We now present a result characterizing the concentration rate of the posterior distribution for the
mean Xβ . Set

Bεn = {
β ∈R

p : ∥∥X
(
β − β�

)∥∥2
2 > εn

}
, (8)

where εn is a positive sequence to be specified. Since this loss involves the X matrix, the notion
of convergence we are considering here is related to prediction. Different loss functions will
be considered in Section 3.5. As discussed in Bühlmann and van de Geer [6], for example,
their equation (2.8), εn proportional to s� logp corresponds to the convergence rate for the lasso
estimator. Intuitively, if S� were known, then the best rate for the prediction error would be s�,
so the logarithmic term acts as a penalty for having to also deal with the unknown model.

Let Nn be the numerator for the posterior probability of Bεn , as in (7), that is, Nn =∫
Bεn

Rn(β,β�)α�(dβ). We have the following bound on Nn.
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Lemma 2. There exists d = d(α,σ 2) > 0 and ϕ = ϕ(α,γ,σ 2) > 1 such that Eβ�(Nn) ≤
e−dεn

∑
S:|S|≤R ϕ|S|π(S), uniformly in β�.

Proof. See Appendix A.1. �

To bound the posterior probability of Bεn , let bn = π(S�)e−cs�
. Since Dn ≥ bn, surely, by

Lemma 1, we have

�n(Bεn) = Nn

Dn

· 1(Dn ≥ bn) + Nn

Dn

· 1(Dn < bn) ≤ Nn

bn

.

Taking expectation and plugging in the bound in Lemma 2 gives

Eβ�

{
�n(Bεn)

} ≤ ec|S�|−dεn
1

π(S�)

∑
S

ϕ|S|π(S)

= ecs�−dεn

(
p
s�

)
fn(s�)

R∑
s=0

ϕsfn(s);

which holds uniformly in β� with |Sβ� | = s�. Then the empirical Bayes concentration rate εn =
εn(p,R, s�) is such that the above upper bound vanishes. A first conclusion is that εn must satisfy
s� = o(εn). More precisely, if we set

ζn = ζn

(
p,R, s�

) =
(
p
s�

)
fn(s�)

R∑
s=0

ϕsfn(s),

then the rate εn satisfies

log ζn = O(εn) as n → ∞. (9)

This amounts to a condition on the prior fn for |S|. Indeed, (9) requires that fn should be suf-
ficiently concentrated near s�, so that fn(s

�) is not too small and the expectation of ϕ|S| with
respect to fn is not too big. Compare this to the prior support conditions in Ghosal, Ghosh and
van der Vaart [17], Shen and Wasserman [33], and Walker, Lijoi and Prünster [36].

We are now ready to state and prove our first main concentration rate result. To keep the state-
ment of the theorem concise, we give an asymptotic convergence result. However, Theorem 1
and Theorems 2–5 in the upcoming sections, are actually stronger than stated, since the proofs
are based on getting explicit fixed-(n,p, s�) bounds.

Theorem 1. For any s� ≤ R, if the prior fn on |S| admits ζn such that (9) holds with εn, then
there exists a constant M > 0 such that Eβ�{�n(BMεn)} → 0 as n → ∞, uniformly in β� with
|Sβ� | = s�.

Proof. By Lemmas 1 and 2, and the growth condition (9), we have that, for large n,

log Eβ�

{
�n(BMεn)

} ≤
(

cs�

εn

− Md + log ζn

εn

)
εn.
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The first term inside the parentheses vanishes since s� = o(εn). Next, under (9), there exists a
K > 0 such that (log ζn)/εn < K . So, if we take M such that Md > K , then the upper bound
above goes to −∞ as n → ∞. This implies the result. �

Remark 1. What rates εn are desirable/attainable? The minimax rate for estimation under this
prediction error loss is min{R, s� log(p/s�)}; see, for example, Rigollet and Tsybakov [32]. Note
the phase transition between the ordinary [s� log(p/s�) < R] and the ultra high-dimensional
[s� log(p/s�) > R] regimes. According to Remark 2, an empirical Bayes posterior concentration
rate equal to s� log(p/s�) obtains for a class of priors on S, which is minimax optimal but only
in the ordinary high-dimensional regime; this rate is slightly better than those obtained in Arias-
Castro and Lounici [2] and Castillo, Schmidt-Hieber and van der Vaart [8], but see Gao, van der
Vaart and Zhou [15], Corollary 5.3, for a result comparable to ours in Theorem 1. By picking a
prior outside this class, in particular, one that puts a little mass on an overly-complex model, the
minimax rate can be achieved in both the ordinary and ultra high-dimensional regimes. There is
a price to be paid, however, for this complete minimax rate: the little piece of extra prior mass
on the complex model is large enough to cause problems with the proofs of marginal posterior
concentration properties for S. Justification of these claims can be found in Appendix B. Based
on these observations, we conjecture that the priors on S that lead to minimax concentration rate
under prediction error loss do not lead to desirable model selection properties. This is intuitively
reasonable, since good prediction generally does not require a correctly specified model, but
more work is needed to confirm this. Since we prefer to have a single prior that does well in all
aspects, we will not concern ourselves here with attaining the optimal minimax rate in the ultra
high-dimensional regime, though we do know how to obtain it.

Remark 2. The growth condition (9) holds with εn proportional to s� log(p/s�), the minimax
rate in the ordinary high-dimensional case, if there exists constants a1, a2, c1, c2, C1, and C2
such that fn satisfies

C1

(
1

c1pa1

)s

≤ fn(s) ≤ C2

(
1

c2pa2

)s

for all s = 0,1, . . . ,R. (10)

The proof of this claim follows from calculations similar to those in Example 1 below. Assump-
tion 1 in Castillo, Schmidt-Hieber and van der Vaart [8] implies (10), but our restriction, |S| ≤ R,
allows us to get rates for priors that may not satisfy (10).

Remark 3. Consider the expectation term
∑R

s=0 ϕsfn(s). The trivial bound ϕR could be used in
the ultra high-dimensional case where s� log(p/s�) � R. More generally, if fn satisfies (10),
then the formulas for partial sums of a geometric series reveal that this expectation term is
bounded as n → ∞. In fact, in the examples discussed below, it is easy to confirm that the expec-
tation term is bounded. Therefore, the rate is determined completely by the prior concentration
around S�.

Next, we identify the rate εn corresponding to several choices of prior fn. The complexity
prior in Example 1, which is simple and has good properties, will be our choice of prior in what
follows; our proofs Sections 3.4–3.6 can be easily modified to cover any fn that satisfies (10).
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Example 1. The complexity prior for the model size |S| in equation (2.3) of Castillo, Schmidt-
Hieber and van der Vaart [8] is given by

fn(s) ∝ c−sp−as, s = 0,1, . . . ,R, (11)

where a and c are positive constants. This prior clearly satisfies the condition (10) in Remark 2.
We claim that this complexity prior satisfies (9) with εn = s� log(p/s�). To see this, note that
logfn(s

�) is lower bounded by

−s� log
(
cs�a

) − as� log
(
p/s�

) = −
(

a + log c + a log s�

log(p/s�)

)
s� log

(
p/s�

)
.

The ratio inside the parentheses above vanishes since s� 
 p. Similarly, by Stirling’s formula,
we have that log

(
p
s�

) ≤ s� log(p/s�){1 + o(1)}. Putting these two bounds together, and using the
result in Remark 3, we can conclude that the complexity prior above yields a posterior concen-
tration rate s� log(p/s�).

Example 2. Convergence rates can be obtained for other priors fn. First, consider a beta–
binomial prior for |S|, that is,

fn(s) =
∫ 1

0

(
R

s

)
wR−s(1 − w)sanw

an−1 dw,

which corresponds to a Beta(an,1) prior for W and a conditional Bin(R,1 − w) prior for |S|,
given W = w. For an = aR, for a constant a > 0, it can be shown that the corresponding rate
εn is proportional to s� log(p/s�). If, on the other hand, fn is a Bin(R,R−1) mass function, then
similar calculations show that the concentration rate is εn = s� logp, which agrees with the lasso
rate in Bühlmann and van de Geer [6], but falls short of the rates discussed previously.

3.4. Effective dimension

Under our proposed prior, the empirical Bayes posterior distribution for β is concentrated on an
R-dimensional subspace of the full p-dimensional parameter space. In the sparse case, where the
true β� has effective dimension s� ≤ R 
 p, it is interesting to ask if the posterior distribution is
actually concentrated on a space of dimension close to s�. Below we give an affirmative answer
to this question under some conditions. Such considerations will also be useful in Sections 3.5
and 3.6.

For a given , let Bn() = {β ∈ R
p : |Sβ | ≥ } be those β vectors with no less than  non-

zero entries. We say that the effective dimension of �n is bounded by  = n if the expected
posterior probability of Bn() vanishes as n → ∞. Next, write

Nn() =
∫

Bn()

Rn

(
β,β�

)α
�(dβ),

for the numerator of the posterior probability of Bn().
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Lemma 3. Eβ�{Nn()} ≤ ∑R
s= ϕsfn(s) for all β�.

Proof. See Appendix A.2. �

We can combine Lemmas 3 and 1 to conclude that

Eβ�

[
�n

{
Bn()

}] ≤ ecs�

(
p
s�

)
fn(s�)

R∑
s=

ϕsfn(s),

uniformly in β� with |Sβ� | = s�. Since ϕ > 1, we have
∑

s ϕsfn(s) > 1 and, therefore,

Eβ�

[
�n

{
Bn()

}] ≤ ecs�+log ζn

R∑
s=

ϕsfn(s). (12)

So, if the tail of the prior fn on the model size is sufficiently light, then the posterior probability
assigned to models with complexity of order greater than s� will be small. Under the conditions
of Theorem 1, we know the magnitude of log ζn, but here we need additional control on the tails
of fn.

Theorem 2. Let s� ≤ R. If fn is of the form (11), then Eβ� [�n{Bn(n)}] → 0, holds with n =
Cs�, uniformly in β� with |Sβ� | = s�, i.e., the effective dimension �n is bounded by Cs�.

Proof. Recall that, for this fn, log ζn is of the order s� log(p/s�). Moreover, for a generic , the
summation

∑R
s= ϕsfn(s) is bounded by a partial sum of a geometric series. In particular, the

bound is O(r+1), where r = ϕ/cpa and a, c are in (11). In that case,

r+1 = e−(+1)[a logp+log(c/ϕ)].

So, if  is a suitable multiple of s�, then clearly the r+1 term dominates the ecs�+log ζn term. In
particular, if  = Cs� with C > a−1, then the product on the right-hand side of (12) vanishes,
proving the claim. �

To summarize, our prior is such that the posterior distribution is supported on models of size
no more than R. However, a good prior is one such that the posterior ought to be able to learn the
size of the true model that generated the data, which is possibly much less than R. Theorem 2
shows that, indeed, if the prior fn on the model size has sufficiently light tails, controlled by the
prior exponent a > 0, then the posterior will concentrate on models of size proportional to s�,
the true model size. We cannot take a s̃ < s� to replace s� in Cs�, since we would need

s̃

s�
≥ log(p/s�)

logp
→ 1,

which confirms this particular point. Furthermore, we see exactly the effect that the prior expo-
nent a has through the bound C > a−1 on the proportionality constant. So, small a will have
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the effect of spreading out the posterior to include some large (but not too large) models, while
large a will keep the posterior concentrated on small models. Choosing small a is beneficial in
finite-sample studies; see Section 4.

3.5. Other loss functions

Theorem 1 concerns the empirical Bayes posterior probability of sets of β which are near the true
β� relative to a distance depending on the design matrix X. A natural question is if the empirical
Bayes posterior concentrates on neighborhoods of β� with respect to more other metrics, such
as �1- and �2-norms. An affirmative answer will require further conditions on X to separate β

from Xβ .
In the low-dimensional case, with p < n, we have∥∥X

(
β − β�

)∥∥
2 ≥ λmin

(
X�X

)1/2∥∥β − β�
∥∥

2,

where λmin(A) is the minimum eigenvalue of A, which is positive if A is non-singular. When
p � n, X is not full rank and, therefore, the smallest eigenvalue of X�X is zero, making the
above inequality trivial and not useful. However, it is still possible to get something like the
displayed inequality. Toward this, define the function

κ(s) = κX(s) = inf
β:0<|Sβ |≤s

‖Xβ‖2

‖β‖2
, s = 1, . . . , p. (13)

The quantity κ(s) is called the “smallest scaled sparse singular value of X of dimension s,”
similar to the quantity in equation (11) of Arias-Castro and Lounici [2] and that in Definition 2.3
of Castillo, Schmidt-Hieber and van der Vaart [8]. Its main purpose is to facilitate conversion
of �2-norm concentration results for the mean vector Xβ to �2-norm concentration results for β

itself. Indeed, a result shown in Lemma 1, Arias-Castro and Lounici [2] is that a true β� ∈ R
p

with |Sβ� | = s� is identifiable if and only if

κ
(
2s�

)
> 0. (14)

Consequently, κ is an important quantity and will appear in Theorem 3 below. One can define
quantities analogous to κ in order to get concentration results relative to the �1- or �∞-norm of β;
see Castillo, Schmidt-Hieber and van der Vaart [8], Section 2.

The result presented below will follow almost immediately from Theorem 1 and the definition
of κ . Indeed, for any β , we have∥∥X

(
β − β�

)∥∥
2 ≥ κ

(|Sβ−β� |)∥∥β − β�
∥∥

2. (15)

For example, if ‖β − β�‖2 is lower-bounded, then so is ‖X(β − β�)‖2, for suitable κ , so a
posterior concentration result for the �2-norm on β should follow from an analogous result for
the �2 prediction error as in Theorem 1. The only obstacle is that the κ term on the right-hand
depends on the particular β . The following result leads to the observation that κ(|Sβ−β� |) can be
controlled by a term that depends only on s�.



Empirical Bayes sparse regression 1833

Lemma 4. For any β and β�, κ(|Sβ−β� |) ≥ κ(|Sβ | + |Sβ� |).

Proof. This follows since κ is non-increasing and |Sβ−β� | ≤ |Sβ | + |Sβ� |. �

Under our prior formulation, we know that the posterior puts probability 1 on those β for which
|Sβ | ≤ R. So, if |Sβ� | = s�, then, trivially, κ(|Sβ−β� |) ≥ κ(R + s�). For better control on the κ

term in (15), recall that Theorem 2 says that the posterior probability of the event {|Sβ | ≥ Cs�}
vanishes as n → ∞. Therefore, for C′ = C + 1,

κ
(|Sβ−β� |) ≥ κ

(
C′s�

)
(16)

holds for all β in a set with posterior probability approaching 1. Compare this to Theorem 1 of
Castillo, Schmidt-Hieber and van der Vaart [8], and also to the corresponding model selection
results for frequentist point estimators in, for example, Bühlmann and van de Geer [6], Chapter 7.

We are now ready for the concentration rate result with respect to the �2-norm loss on the
parameter β itself. This time, set

B ′
δn

= {
β ∈ R

p : ∥∥β − β�
∥∥2

2 > δn

}
,

where δn is a positive sequence to be specified.

Theorem 3. For s� ≤ min(n,R), suppose that the prior fn satisfies (11) with exponent a > 0,
so that Theorem 1 holds with εn equal to s� log(p/s�) and Theorem 2 holds with n = Cs�, for
C > a−1. Then there exists a constant M such that Eβ�{�n(B ′

Mδn
)} → 0 as n → ∞, uniformly

in β� with |Sβ� | = s�, where

δn = s� log(p/s�)

κ(C′s�)2
,

provided that κ(C′s�) > 0, where C′ = 1 + C > 1 + a−1 > 1.

Proof. It follows immediately from (15) that ‖β − β�‖2
2 > Mδn implies

∥∥X
(
β − β�

)∥∥2
2 > Mκ

(|Sβ−β� |)2
δn.

By definition of δn and the inequality (16), this last inequality implies

∥∥X
(
β − β�

)∥∥2
2 > Ms� log

(
p/s�

)
.

If we take M as in Theorem 1, then the event in the above display is exactly BMεn . We have
shown that �n(B ′

Mδn
) ≤ �n(BMε). By Theorem 1, the expectation of the upper bound vanishes

uniformly in β� as n → ∞, so the proof is almost complete. The remaining issue to deal with is
an extra term in the upper bound for �n(B ′

Mδn
) coming from using κ(C′s�) in place of κ(|Sβ−β� |)

above. However, this extra term is o(1) by Theorem 2, and, therefore, does not actually impact
the proof. �
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Compare this result to the third in Theorem 2 of Castillo, Schmidt-Hieber and van der Vaart [8].
First, our rate is slightly better, s� log(p/s�) compared to the lasso rate s� logp. Second, our
bound does not depend on a “compatibility number” (e.g., Castillo, Schmidt-Hieber and van der
Vaart [8], Definition 2.1), which also improves the rate and makes interpretation of our result eas-
ier. A referee has indicated that the improved results are as a direct consequence of the (X�

S XS)−1

term that appears in the prior for βS . Also, the condition κ(C′s�) > 0, with C′ = 1 + a−1 and
a < 1, agrees with the condition, roughly, κ((2 + ε)s�) > 0 for some ε > 0, in Arias-Castro and
Lounici [2]; that is, just a little more than identifiability, as in (14) is needed.

3.6. Model selection

Interest here is on the model S and not directly on the regression coefficients. In this case, it is
convenient to work with the marginal posterior distribution for S which, thanks to the simple
conjugate structure in the conditional prior, we can write explicitly as

πn(S) ∝ π(S)e−(α/(2σ 2))‖Y−ŶS‖2
ν−|S|, (17)

where ν = (γ + α/σ 2)1/2. Then

πn(S) ≤ πn(S)

πn(S�)
= π(S)

π(S�)
ν|S�|−|S|e(α/(2σ 2)){‖Y−ŶS�‖2−‖Y−ŶS‖2}. (18)

From this bound, we can show that the posterior concentrates on models contained in S�, that
is, asymptotically, it will not charge any models with unnecessary variables. Furthermore, this
conclusion requires no conditions on the X matrix or true β�. For simplicity, we will focus on the
particular complexity prior fn in (11) shown previously to yield desirable posterior concentration
properties.

Theorem 4. Let the constant a > 0 in the complexity prior (11) be such that pa � R. Then
Eβ�{�n(β : Sβ ⊃ Sβ�)} → 0, uniformly over β�.

Proof. See Appendix A.3. �

Theorem 4 says that, asymptotically, our empirical Bayes posterior will not include any un-
necessary variables. It remains to say what it takes for the posterior to asymptotically identify all
the important variables. The first condition is one on the X matrix, specifically, if s� is the true
model size, then we require κ(s�) > 0; this is implied by monotonicity of κ and the identifiabil-
ity condition (14) in Section 3.5. For our second assumption, we consider the magnitudes of the
non-zero entries in a s�-sparse β�. Intuitively, we cannot hope to be able to distinguish between
an actual zero and a very small non-zero, but defining what is “very small” requires some care.
Here, we define this cutoff by

ρn = σ

κ(s�)

{
2M(1 + α)

α
logp

}1/2

, (19)
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where M > 0 is a constant to be determined. In particular, coefficients of magnitude greater than
ρn are large enough to be detected. The so-called beta-min condition assumes that all the non-
zero coefficients are sufficiently far from zero. The cutoff ρn in (19) is better than that appearing
in equation (2.18) in Bühlmann and van de Geer [6] for the lasso model selector but comparable
to that in Theorem 1 of Arias-Castro and Lounici [2] and in the third part of Theorem 5 in
Castillo, Schmidt-Hieber and van der Vaart [8], where the latter requires additional assumptions
on X.

Theorem 5. For any s� ≤ R, let β� be such that |Sβ� | = s� and

min
j∈S�

∣∣β�
j

∣∣ ≥ ρn,

with M > a + 1, where a > 0 is in the complexity prior, with pa � R. Assuming the condition of
Theorem 2 holds, if κ(s�) > 0, then Eβ�{�n(β : Sβ = Sβ�)} → 1.

Proof. See Appendix A.4. �

4. Numerical results

4.1. Implementation

To compute our empirical Bayes posterior distribution, we employ a Markov chain Monte Carlo
method. To start, recall from (17) that we can write the marginal posterior mass function, πn(S),
for the model S can be written down explicitly, that is,

πn(S) ∝ π(S)e−(α/(2σ 2))‖Y−ŶS‖2
(

γ + α

σ 2

)−|S|/2

,

where ŶS = XSβ̂S is the least-squares prediction for model S. Intuitively, there are three con-
tributing factors to the posterior distribution for S, namely, the prior probability of the model,
a measure of how well the model fits the data, and an additional penalty on the complexity of
the model. So, clearly, the posterior distribution will favor models with smaller number of vari-
ables that provide adequate fit to the observed Y . This provides further intuition about theorems
presented in Section 3.

Besides this intuition, the formula πn(S) provides a convenient way to run a Rao–
Blackwellized Metropolis–Hastings method to sample from the posterior distribution of S. In-
deed, if q(S′|S) is a proposal function, then a single iteration of our proposed Metropolis–
Hastings sampler goes as follows:

1. Given a current state S, sample S′ ∼ q(·|S).
2. Move to the new state S′ with probability

min

{
1,

πn(S′)
πn(S)

q(S|S′)
q(S′|S)

}
;
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otherwise, stay at state S.

Repeating this process M times, we obtain a sample of models S1, . . . , SM from the posterior
πn(S). Monte Carlo approximations of, say, the inclusion probabilities (Section 4.2) of individual
variables can then easily be computed based on this sample. In our case, we use a symmetric
proposal distribution q(S ′|S), that is, one that samples S′ uniformly from those models that
differ from S in exactly one position, which simplifies the acceptance probability above since the
q-ratio is identically 1. Also, we initialize our Markov chain Monte Carlo search at the model
selected by lasso.

To implement this procedure, some additional tuning parameters need to be specified. First,
recall that (α, γ ) = (1,0) corresponds to the genuine Bayes model with a flat prior for βS . Our
theory does not cover this case, but we can mimic it by picking something close. Here we consider
α = 0.999 and γ = 0.001; in our experience, the performance is not sensitive to the choice of
(α, γ ) in a neighborhood of (0.999,0.001). Second, for the prior on the model size, we employ
the complexity prior (11) with c = 1 and a = 0.05, i.e., fn(s) ∝ p−0.05s . The choice of small a

makes the prior sufficiently spread out, allowing the posterior to move across the model space
and, in particular, helping the Markov chain for S to mix reasonably well. Third, in practice,
the error variance σ 2 is seldom known, so some procedure to handle unknown σ 2 is needed. We
proposed to modify our empirical Bayes posterior by plugging in an estimate of σ 2. In particular,
we use a residual mean square error based on a lasso fit (Reid, Tibshirani and Friedman [30]).

Finally, if samples from the β posterior are desired, then these can easily be obtained, via
conjugacy, after a sample of S is available. In particular, the conditional posterior distribution for
βS , given S, is normal with mean β̂S and variance (γ + α

σ 2 )−1(X�
S XS)−1. R code to implement

our procedure is available at www.math.uic.edu/~rgmartin.

4.2. Simulations

In this section, we reconsider some of the simulation experiments performed by Narisetty and
He [28], which are related to experiments presented in Johnson and Rossell [26]. In each setting,
the error variance is σ 2 = 1; the covariate matrix is obtained by sampling from a multivariate
normal distribution with zero mean, unit variance, and constant pairwise correlation ρ = 0.25;
and the true model S� has s� = 5. The particular correlation structure among the covariates is
given practical justification in Johnson and Rossell [26]. Under this setup, we consider three
different settings:

Setting 1. n = 100, p = 500, and βS� = (0.6,1.2,1.8,2.4,3.0)�;
Setting 2. n = 200, p = 1000, and βS� the same as in Setting 1;
Setting 3. n = 100, p = 500, and βS� = (0.6,0.6,0.6,0.6,0.6)�.

Our Settings 1–2 correspond to the two (n,p) configurations in Case 2 of Narisetty and He [28]
and our Setting 3 is the same as their Case 3.

We carry out model selection by retaining those variables whose inclusion probability pj =
�n(βj �= 0), j = 1, . . . , p, exceeds 0.5; this is the so-called median probability model, shown
to be optimal, in a certain sense, by Barbieri and Berger [3]. Alternatively, one could select the
model with the largest posterior probability, but this is more expensive computationally compared

http://www.math.uic.edu/~rgmartin
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Table 1. Simulation results for Setting 1. First seven rows taken from Table 2 (top) in Narisetty and He [28];
the EB row corresponds to our empirical Bayes procedure

Method p̄0 p̄1 P(Ŝ = S�) P(Ŝ ⊇ S�) FDR

BASAD 0.001 0.948 0.730 0.775 0.011
BASAD.BIC 0.001 0.948 0.190 0.915 0.146
BCR.Joint 0.070 0.305 0.268
SpikeSlab 0.000 0.040 0.626
Lasso.BIC 0.005 0.845 0.466
EN.BIC 0.135 0.835 0.283
SCAD.BIC 0.045 0.980 0.328
EB 0.002 0.959 0.680 0.795 0.051

to the median probability model – only p inclusion probabilities instead of up to 2p model
probabilities. In all cases, the posterior almost immediately concentrates on the true model. Our
Markov chain Monte Carlo required only 5000 iterations to reach convergence, which took only
a few seconds on an ordinary laptop computer: about 10 seconds for Setting 1 and about 25
seconds for Setting 2.

To summarize the performance, we consider five different measures. First, we consider the
mean inclusion probability for those variables in and out of the active set S�, respectively, that is,

p̄1 = 1

s�

∑
j∈S�

pj and p̄0 = 1

p − s�

∑
j /∈S�

pj .

We expect the former to be close to 1 and the latter to be close to 0. Next, we consider the
probability that the model selected by our empirical Bayes method, denoted by Ŝ is equal to
or contains the true model S�. Finally, we also compute the false discovery rate of our selection
procedure. A summary of these quantities for our empirical Bayes method, denoted by EB, across
the three settings is given in Tables 1–3.

For comparison, we consider those methods discussed in Narisetty and He [28], including
their two Bayesian methods, denoted by BASAD and BASAD.BIC. Two other Bayesian methods
considered are the credible region approach of Bondell and Reich [5], denoted by BCR.Joint, and
the spike-and-slab method of Ishwaran and Rao [20,21], denoted by SpikeSlab. We also consider
three penalized likelihood methods, all tuned with BIC, namely, the lasso (Tibshirani [34]), the
elastic net (Zou and Hastie [42]), and the smoothly clipped absolute deviation (Fan and Li [13]),
denoted by Lasso.BIC, EN.BIC, and SCAD.BIC, respectively. The results for these methods are
taken from Tables 2–3 in Narisetty and He [28], which were obtained based on 200 samples
taken from the models described in Settings 1–3 described above.

Our selection method based on our empirical Bayes posterior is the overall the best among
those being compared in terms of selecting the true model and false discovery rate. In addition
to the strong finite-sample performance of our model selection procedure, our theory is arguably
stronger than that available for the other methods in this comparison. Take, for example, the
BASAD method of Narisetty and He [28], the next-best-performer in the simulation study. Their
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Table 2. Simulation results for Setting 2. First seven rows taken from Table 2 (bottom) in Narisetty and
He [28]; the EB row corresponds to our empirical Bayes procedure

Method p̄0 p̄1 P(Ŝ = S�) P(Ŝ ⊇ S�) FDR

BASAD 0.000 0.986 0.930 0.950 0.000
BASAD.BIC 0.000 0.986 0.720 0.990 0.046
BCR.Joint 0.090 0.250 0.176
SpikeSlab 0.000 0.050 0.574
Lasso.BIC 0.020 1.000 0.430
EN.BIC 0.325 1.000 0.177
SCAD.BIC 0.650 1.000 0.091
EB 0.000 0.998 0.945 0.990 0.015

method produces a posterior distribution for β but since their prior has no point mass, this pos-
terior cannot concentrate on a lower-dimensional subspace of R

p . So, it is not clear if their
posterior distribution for β can attain the minimax concentration rate without tuning the prior
using knowledge about the underlying sparsity level.

5. Discussion

We have presented an empirical Bayes model for the sparse high-dimensional regression prob-
lem. Though the proposed approach has some unusual features, such as a data-dependent prior,
we characterize the posterior concentration rate, which agrees with the optimal minimax rate
in some cases. To our knowledge, this is the only available minimax concentration rate result
for a full posterior distribution in the sparse high-dimensional linear model. Moreover, our for-
mulation allows for relatively simple posterior computation, via Markov chain Monte Carlo, and
simulation studies show that model selection by thresholding the posterior inclusion probabilities
outperforms a variety of existing methods.

Table 3. Simulation results for Setting 3. First seven rows taken from Table 3 in Narisetty and He [28]; the
EB row corresponds to our empirical Bayes procedure

Method p̄0 p̄1 P(Ŝ = S�) P(Ŝ ⊇ S�) FDR

BASAD 0.002 0.622 0.185 0.195 0.066
BASAD.BIC 0.002 0.622 0.160 0.375 0.193
BCR.Joint 0.030 0.315 0.447
SpikeSlab 0.000 0.000 0.857
Lasso.BIC 0.000 0.520 0.561
EN.BIC 0.040 0.345 0.478
SCAD.BIC 0.045 0.340 0.464
EB 0.003 0.811 0.305 0.350 0.092
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The general strategy proposed here goes as follows. Suppose we have a high-dimensional
parameter, and different models S identify a set of parameters θS . Suppose further that θ is sparse
in the sense that only a few of its entries are non-null. Then an empirical Bayes model is obtained
by specifying a prior for (S, θS) as π(S)π(dθS |S), where π(dθS |S) would be allowed to depend
on data through, say, the maximum likelihood estimator θ̂S of θS . Intuitively, the idea is to center
the conditional prior on a data-dependent point, say θ̂S , and then use the fractional likelihood
to prevent the posterior to track the data too closely. We believe this is a general tool that can
be used in high-dimensional problems, and one possible application of this approach, which we
plan to explore, is a mixture model where S represents the number of mixture components, and
θS is the set of parameters associated with a mixture model with S mixture components.

Appendix A: Proofs

A.1. Proof of Lemma 2

Write Bn = Bεn . Rewrite the numerator Nn of the posterior (7) as

Nn =
∫

Bn

∑
S

π(S)

{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}α

N
(
βS |β̂S, γ −1(X�

S XS

)−1)
dβS

=
∑
S

π(S)

∫
Bn(S)

{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}α

N
(
βS |β̂S, γ −1(X�

S XS

)−1)
dβS,

where the sum is over all S with |S| ≤ n, βS+ is a p-vector made by augmenting βS with βj = 0
for all j ∈ Sc, and Bn(S) is the set of all βS such that βS+ ∈ Bn. Focus on a single S. Taking
expectation of the inner integral with respect to Y ∼ N(Xβ�,σ 2I ) gives

∫
Bn(S)

E

[{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}α

N
(
βS |β̂S, γ −1(X�

S XS

)−1)]
dβS.

Apply Hölder’s inequality to the inside expectation, that is, for h > 1 and q = (h − 1)/h,

E

[{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}α

N
(
βS |β̂S, γ −1(X�

S XS

)−1)]
(20)

≤ E1/h

[{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}hα]
E1/q

[
Nq

(
βS |β̂S, γ −1(X�

S XS

)−1)]
.

If hα < 1, then a Renyi divergence formula is available for the first term, giving

E1/h

[{
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}hα]
= e−(α(1−hα)/(2σ 2))‖X(βS+−β�)‖2

. (21)
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For the second term in the product above, recall that β̂S = (X�
S XS)−1X�

S Y . Then

XSβS − XSβ̂S = XS

(
X�

S XS

)−1
X�

S (XSβS − Y),

and, therefore, since XS(X�
S XS)−1X�

S is idempotent of rank |S|, we get that

Z := 1

σ 2
‖XSβS − XSβ̂S‖2 = 1

σ 2

∥∥XS

(
X�

S XS

)−1
X�

S (XSβS − Y)
∥∥2

is distributed as a non-central chi-square with |S| degrees of freedom and non-centrality param-
eter λ = 1

σ 2 ‖XS(βS − (X�
S XS)−1X�

S Xβ�)‖2. Then

E1/q
[
Nq

(
βS |β̂S, γ −1(X�

S XS

)−1)]
= γ |S|/2|X�

S XS |1/2

(2π)|S|/2
E1/q

(
e−(qγ /2)Z

)
(22)

= γ |S|/2|X�
S XS |1/2

(2π)|S|/2
(1 + qγ )−|S|/(2q)e−(γ /(2(1+qγ )))λ

= γ |S|/2|X�
S XS |1/2

(2π)|S|/2
(1 + qγ )−|S|/(2q)e−(γ /(2σ 2(1+qγ )))‖XS(βS−(X�

S XS)−1X�
S Xβ�)‖2

,

where the second equality is from the standard formula for the moment generating function of a
non-central chi-square random variable. Now we must integrate the upper bound (20) over An(S)

with respect to βS . It is clear from the definition of Bn(S) that the quantity in (21) is bounded on
Bn(S), that is,

e−(α(1−hα)/(2σ 2))‖X(βS+−β�)‖2 ≤ e−(α(1−hα)/(2σ 2))εn , βS ∈ Bn(S).

It is also clear that the expression (22) resembles a normal density in βS , modulo some multi-
plicative factors. The algebra is tedious, but the integral of (22) with respect to βS is bounded
above by

ϕ|S| where ϕ =
{

(1 + qγ σ 2)1−1/q

σ 2

}1/2

.

Putting everything together, we have that

E(Nn) ≤ e−(α(1−hα)/(2σ 2))εn
∑
S

ϕ|S|π(S).

Taking d = α(1 − hα)/2σ 2 completes the proof.
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A.2. Proof of Lemma 3

The proof is an application of ideas used in the proof of Lemma 2. In particular, Nn() equals

∑
S:≤|S|≤n

π(S)

∫ {
N(Y |XβS+, σ 2I )

N(Y |Xβ�,σ 2I )

}α

N
(
βS |β̂S, γ −1(X�

S XS

)−1)
dβS.

Take expectation with respect to Y ∼ N(Xβ�,σ 2I ) as in the proof of Lemma 1 and move expec-
tation to the inside of the integral. Working with each S term separately, apply Hölder’s inequality
to bound the expectation of the product. This upper bound consists of a product of three terms
just like in the previous proof. The first is bounded by 1; the second is ϕ|S|; and the third is a
probability density function in βS . Then the integral over βS is bounded by ϕ|S| and the claim
follows.

A.3. Proof of Theorem 4

Fix β� and write S� = Sβ� as usual. Write PS for the n × n matrix projecting onto the column
space of XS . If S ⊃ S�, then

‖Y − ŶS�‖2 − ‖Y − ŶS‖2 = Y�(PS − PS�)Y,

and, since PS − PS� is idempotent of rank |S| − |S�|, this quantity is distributed as a non-central
chi-square with |S| − |S�| degrees of freedom and non-centrality parameter

(
Xβ�

)�
(PS − PS�)

(
Xβ�

)
.

By definition of PS , it turns out that the non-centrality parameter in the above display is zero,
so it is actually an ordinary/central chi-square. From the chi-square moment generating function,
we immediately get

Eβ�

{
πn(S)

} ≤ π(S)

π(S�)
z|S�|−|S|,

where z is a constant that depends only on (α, γ,σ 2). Then

Eβ�

{
�n

(
β : Sβ ⊃ S�

)} =
∑

S:S⊃S�

Eβ�

{
πn(S)

} ≤
∑

S:S⊃S�

π(S)

π(S�)
z|S�|−|S|.

Plug in our complexity prior and simplify the upper bound:

∑
s>s�

(
p−s�

p−s

)(
p
s�

)
(
p
s

) (
z

cpa

)s−s�

.
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From (
p−s�

p−s

)(
p
s�

)
(
p
s

) =
(

s

s�

)
=

(
s

s − s�

)
≤ ss−s�

,

the upper bound becomes

R∑
s=s�

(
zs

cpa

)s−s�

≤ zR

cpa
× O(1).

So, if a is such that pa � R, the upper bound vanishes, completing the proof.

A.4. Proof of Theorem 5

In light of Theorem 4, it suffices to show that Eβ�{�n(β : Sβ ⊂ S�)} → 0. To start, take a generic
S ⊂ S�. Then, from (18), we have

πn(S)

πn(S�)
= π(S)

π(S�)
νs�−|S|e−(α/(2σ 2)){‖Y−ŶS‖2−‖Y−ŶS�‖2}.

The exponent ZS := 1
σ 2 {‖Y − ŶS‖2 − ‖Y − ŶS�‖2} is a chi-square random variable with s� − |S|

degrees of freedom and non-centrality parameter

λS := 1

σ 2

(
Xβ�

)�
(PS� − PS)

(
Xβ�

)
.

The algebra is a bit tedious, but we can simplify λS as

λS = 1

σ 2

∥∥(I − PS)XS�∩Scβ�
S�∩Sc

∥∥2
.

From the non-central chi-square moment generating function we have

Eβ�

{
πn(S)

} ≤ π(S)

π(S�)
zs�−|S|e−(α/(2(1+α)))λS ,

where z = ν/(1 + α). The irrepresentability result in Lemma 5 of Arias-Castro and Lounici [2]
gives a lower bound on λS :

λS ≥ 1

σ 2
κ
(∣∣S� ∩ Sc

∣∣)2∥∥β�
S�∩Sc

∥∥2
.

Monotonicity of κ implies that

κ
(∣∣S� ∩ Sc

∣∣) ≥ κ
(
s�

)
> 0

and, furthermore, by the beta-min condition,∥∥β�
S�∩Sc

∥∥2 ≥ ρ2
n

(
s� − |S|).
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Putting everything together, including the definition of ρn, we get

Eβ�

{
πn(S)

} ≤ π(S)

π(S�)
zs�−|S|e−(α/(2(1+α)))(1/σ 2)κ(s�)2ρ2

n(s�−|S|)

= π(S)

π(S�)

(
zp−M

)s�−|S|
.

If we can show that the sum of our upper bound above, over all S ⊂ S�, vanishes, then we are
done. Plugging in our complexity prior, we need to bound

∑
s<s�

(
s�

s

)(
p
s�

)(
p
s

) (
zcpa−M

)s�−s
.

where r is a constant that depends only on (α, γ,σ 2). Note that(
s�

s

)(
p
s�

)(
p
s

) =
(

p − s

p − s�

)
=

(
p − s

s� − s

)
≤ ps�−s .

Then the summation can be bounded above by∑
s<s�

(
zcpa+1−M

)s�−s ≤ pa+1−M × O(1),

where the inequality follows from the formula for partial sums of a geometric series. Since M >

a + 1, the upper bound vanishes, completing the proof.

Appendix B: Justification of claims in Remark 1

Consider a prior π̃ for the model S of the form

π̃(S) = (1 − wn)π(S) + wnδS0(S),

where π is a prior on models of size |S| ≤ R, for R = min{n, rank(X)}, S0 is a fixed model
with |S0| = R and span(XS0) = span(X), and wn = e−rR for r > 0 to be determined; a similar
setup is taken in Gao, van der Vaart and Zhou [15], Section 5.10, and the choice wn ≡ 1/2 is
considered in Rigollet and Tsybakov [31], equation (3.4). With the prior π̃ , it is easy to see that
the denominator Dn of the posterior satisfies

Dn ≥ 1
2 max

{
π

(
S�

)
g
(
S�

)
,wng(S0)

}
for sufficiently large n (so that 1 − wn > 1

2 , say), where

g(S) = e(α/(2σ 2)){‖XS� (β̂S�−β�
S� )‖2+‖Y−XS� β̂S�‖2−‖Y−XSβ̂S‖2}

(
1 + α

γ σ 2

)−|S|/2

.
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For the case S = S�, in the first term of the maximum, we have

g
(
S�

) = e(α/(2σ 2))‖XS� (β̂S�−β�
S� )‖2

(
1 + α

γ σ 2

)−|S�|/2

,

just like in the proof of Lemma 1. Hence,

g
(
S�

) ≥
(

1 + α

γ σ 2

)−|S�|/2

.

For the second term, since |S| ≤ R, we have

g(S0) ≥ e(α/(2σ 2)){‖XS� (β̂S�−β�
S� )‖2+‖Y−XS� β̂S�‖2−‖Y−XS0 β̂S0 ‖2}

(
1 + α

γ σ 2

)−R/2

.

Since the span of XS0 contains that of XS� , by assumption, we have that

‖Y − XS�β̂S�‖2 ≥ ‖Y − XS0 β̂S0‖2

and, consequently, the term in the exponent above is bigger than α

2σ 2 ‖XS�(β̂S� − β�
S�)‖2, which

is obviously positive. Therefore, the second term in the maximum is

≥ wne
−cRe(α/(2σ 2))‖XS� (β̂S�−β�

S� )‖2
> wne

−cR = e−(r+c)R,

where c = 1
2 log(1 + α

γσ 2 ) is as in Lemma 1. Finally, for A = r + c, we have

Dn ≥ 1
2 max

{
π

(
S�

)
e−c|S�|, e−AR

}
with probability 1, for large n, as desired.

We claim that, with this new prior π̃ , the posterior can achieve the minimax rate for the predic-
tion loss under both the ordinary and ultra high-dimensional regimes. That is, we get the optimal
rate

εn = min
{
R, s� log

(
p/s�

)}
.

This follows easily from the denominator bound discussed above, so long as our current numera-
tor bound from Lemma 2 also holds for the new prior. The majority of the proof of Lemma 2 has
nothing to do with the model prior, so we can immediately jump to the following conclusion:

Eβ�(Nn) ≤ e−kεn
∑

S:|S|≤R

ϕ|S|π̃ (S),

where d and ϕ are as in the proof of Lemma 2. Now, for the weighted average part, we have∑
S

ϕ|S|π̃ (S) ≤
∑
S

ϕ|S|π(S) + wnϕ
R.
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The first term in this upper bound is just like that in the proof of Lemma 2, so we have a handle
on this. We need to choose wn in such a way that the second term is also controlled. Since
wn = e−rR for some r > 0, it follows that we need r ≥ logϕ. With this choice, the optimal
minimax rate can be achieved in both ordinary and ultra high-dimensional regimes.

We claimed in Remark 1 that there is a price to be paid, in terms of model selection perfor-
mance, if one uses the prior π̃ discussed above. The problem is that the weight wn assigned to
the large model S0, with |S0| = R > s�, is considerably larger than the weight (1 − wn)π(S�)

assigned to the true model S�. Then the corresponding posterior mass assigned to S0 is too large,
large enough to pull the posterior away from the true model, leading to inconsistency.
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