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Abstract

Background: Simultaneous measurement of gene expression on a genomic scale can be accomplished using

microarray technology or by sequencing based methods. Researchers who perform high throughput gene

expression assays often deposit their data in public databases, but heterogeneity of measurement platforms leads

to challenges for the combination and comparison of data sets. Researchers wishing to perform cross platform

normalization face two major obstacles. First, a choice must be made about which method or methods to employ.

Nine are currently available, and no rigorous comparison exists. Second, software for the selected method must be

obtained and incorporated into a data analysis workflow.

Results: Using two publicly available cross-platform testing data sets, cross-platform normalization methods are

compared based on inter-platform concordance and on the consistency of gene lists obtained with transformed

data. Scatter and ROC-like plots are produced and new statistics based on those plots are introduced to measure

the effectiveness of each method. Bootstrapping is employed to obtain distributions for those statistics. The

consistency of platform effects across studies is explored theoretically and with respect to the testing data sets.

Conclusions: Our comparisons indicate that four methods, DWD, EB, GQ, and XPN, are generally effective, while

the remaining methods do not adequately correct for platform effects. Of the four successful methods, XPN

generally shows the highest inter-platform concordance when treatment groups are equally sized, while DWD is

most robust to differently sized treatment groups and consistently shows the smallest loss in gene detection. We

provide an R package, CONOR, capable of performing the nine cross-platform normalization methods considered.

The package can be downloaded at http://alborz.sdsu.edu/conor and is available from CRAN.

Background
Simultaneous measurement of gene expression on a

genomic scale can be accomplished using microarray

technology or by sequencing based methods [1-3]. Many

high-throughput mRNA expression experiments pro-

duce data that can be of value to other researchers

when analyzed in new contexts or in combination with

data from other experiments. In particular, the statistical

power and reproducibility of gene expression studies

can be increased by combining data across multiple stu-

dies [4-6]. While next generation sequencing seems

likely to replace microarrays for expression analysis in

the near future, the large amount of microarray data

already in existence could continue to be useful to

researchers for many years to come.

Modern microarrays are commercially produced, and

one-color hybridization schemes are often employed.

Several companies have emerged as leading manufac-

turers, each using different manufacturing techniques,

labeling methods, hybridization protocols, probe lengths,

and probe sequences. Table 1 lists some important char-

acteristics of the microarray platforms analyzed in this

work. These characteristics can affect microarray perfor-

mance [7-10]. The length of probes represents a tradeoff

between sensitivity and specificity, with longer probes

being generally more sensitive and shorter being more

specific. The use of linkers to reduce steric hindrance, as

employed by the Applied Biosystems and Illumina plat-

forms in table 1 is one method for increasing the sensitiv-

ity of short probes. The method by which probes are

constructed and attached, and the overall construction of

the array, can affect probe uniformity and intra-platform* Correspondence: faramarz@sciences.sdsu.edu
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reproducibility. Labeling and detection chemistry affect

the dynamic range of detection.

Chemiluminescence provides greater sensitivity for low

levels of expression compared to fluorescence, but at the

risk of saturation for highly expressed genes. The Applied

Biosystems scanning procedure attempts to mitigate

scanner saturation by using both a short and a long expo-

sure to extend the dynamic range of its expression mea-

surements. Probe sequences affect the binding constants

between probes and target and non-target molecules, and

therefore the sensitivity and specificity of each probe

depends partially on its sequence. Salinity and composi-

tion of the hybridization solution, temperature, and incu-

bation time of hybridization may also affect sensitivity

and specificity. Data from two microarrays are directly

comparable only if those microarrays are identical in all

design parameters including probe sequences and have

been subjected to similar hybridization conditions.

Because no two platforms share the same set of probe

sequences, no two platforms produce data that are

directly comparable, even if all other variables are the

same. For experimenters this restriction is not major.

They need only ensure that all experiments are con-

ducted using the same array platform and protocol. How-

ever, platform effects pose a significant problem for the

re-analysis of data from multiple microarray studies.

Researchers who perform high throughput gene

expression assays often deposit their data in public data-

bases such as ArrayExpress [11] and Gene Expression

Omnibus (GEO) [12], the latter of which currently

houses 630, 845 assays distributed among 9, 348 plat-

forms. Heterogeneity of measurement platforms leads to

challenges for the re-use of these large data sets, creating

limitations for researchers wishing to combine them.

Extensive effort has been directed toward assessing the

reproducibility of differential expression measurements

across different platforms. Several studies have found

good agreement among gene expression profiles pro-

duced by different platforms [13-18], while other studies

have had conflicting results [19-21]. Technical issues per-

taining to such evaluations include homogeneity of RNA

samples, consistency of experimental protocols, mapping

of probes across platforms, and the statistical methods

used to assess reproducibility (e.g. direct comparison vs.

log ratios). Those studies in which good intra-platform

reproducibility was achieved and log ratios were com-

pared across platforms generally showed good inter-plat-

form reproducibility for oligonucleotide-based arrays.

One study focusing on probe mapping in particular

found that reproducibility between Affymetrix and cDNA

platforms could be substantially improved by sequence-

based re-annotation [22], and another found that repro-

ducibility was further improved by mapping probe

sequences at the exon level [14]. More recent studies

generally show better cross-platform reproducibility than

earlier ones [23]. It seems clear that, at least under ideal

conditions, differential expression analysis gives consis-

tent results across platforms. It is therefore worth asking

how data from different platforms might be combined in

an analysis. Models and techniques exist for the meta-

analysis of microarray data from multiple studies and

platforms [24-27], and these have been applied exten-

sively to investigate questions of biological interest

[28-33].

Cross-platform normalization differs from meta-analy-

sis; the former involves direct comparison between

expression measurements obtained from different plat-

forms while the latter combines the results of intra-plat-

form comparisons at a higher level. While meta-

analysis techniques are extremely useful tools, they are

Table 1 Characteristics of relevant microarray platforms

Manufacture Platform Probe
Length

Probe Type Probe Construction Number
of

Probes

Label Type Detection method

Applied
Biosystems

Human Genome
Survey Microarray

v2.0

60 DNA oligonucleotide
with 3’ carbon spacer to
reduce steric effects

Presynthesized and
contact spotted

32878 Digoxigenin
(DIG) UTP

anti-DIG
phosphatase
catalyzed

Chemiluminescence

Affymetrix HG-U133 Plus 2.0
GeneChip®

25 DNA oligonucleotide In situ photolithography 54675 Biotin phycoerythrin-
streptavidin-
antibody

fluorescence

Agilent Whole Human
Genome Oligo

Microarray, G4112A

60 DNA oligonucleotide In situ inkjet printing 43931 Cy3 or Cy5 Cy3 or Cy5
fluorescence

Illumina Human-6 BeadChip,
48K v1.0

50 DNA oligonucleotide
with 29 base address
sequence as linker

Presynthesized,
immobilized on beads,
and randomly deposited

in wells

47293 Biotin strepatavidin-Cy3
fluorescence

Characteristics of microarray platforms analyzed in this work. See references [7-10] for information sources.
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limited to combining the results of studies that have

tested the same hypothesis or compared the same treat-

ments, and can not easily be applied to the investigation

of new hypotheses from existing data.

Cross-platform normalization methods have been

developed for the combination of data sets collected

using different microarray platforms. These methods are

the Cross-Platform Normalization (XPN) method of

Shabalin et al.[34], Distance Weighted Discrimination

(DWD) [35], an Empirical Bayes (EB) method also

known as ComBat [36], Median Rank Scores (MRS)[6],

Quantile Discretization (QD) [6], Normalized Discretiza-

tion (NorDi) [37], the Distribution Transformation (Dis-

Tran) [5], and a method known as Gene Quantiles

(GQ), which was developed as part of the WebArrayDB

service [38]. In addition to these specialized methods,

Quantile Normalization (QN) [39], a method commonly

employed for intra-platform normalization, has also

been applied to cross-platform normalization [40]. Many

of the specialized methods include or are based closely

on QN. Online analysis services currently offering some

of these methods include WebArrayDB [38], ArrayMin-

ing [41], and DSGeo [40]. In addition, QN is available as

part of Bioconductor [42], and code for some methods

can be obtained from their respective authors.

Cross-platform normalization could be a valuable

resource to researchers. While several studies have

employed it for microarray analysis [4-6,43], it has not

achieved the popularity of meta-analysis methods for the

integration of results across studies and platforms. The

online services listed above have received a total of 28

citations as of this writing according Google Scholar. It is

difficult to judge the number of relevant citations for

many methods, as some have alternative uses to cross-

platform normalization or are introduced in publications

describing other techniques. The publication describing

XPN does not introduce any other methods or experi-

ments, nor does XPN have any obvious applications

other than cross-platform normalization. That article has

been cited 34 times since its publication in 2008 accord-

ing to Google Scholar, with only nine of those citing

papers satisfying a full text search for the string “XPN.”

Those wishing to perform cross-platform normalization

face three major obstacles. Firstly, a choice must be made

about which method or methods to employ. While the

authors of each method have demonstrated their meth-

ods on at least one example data set, to our knowledge

no empirical comparison of cross-platform normalization

methods similar to ours is available. In particular, no

third party empirical comparison has been attempted.

The authors of XPN do provide a comparison of their

method against several others [34], but their analysis was

conducted on a more limited data set and does not make

use of resampling or any other procedure to evaluate the

robustness of their results. This is not necessarily a short-

coming of their paper, but merely the result of a differ-

ence in objectives. The authors presented a method, and

it is left for others to provide an unbiased evaluation.

Secondly, software for the selected method must be

obtained and incorporated into a data analysis work-flow.

The disunity of interfaces and software packages for

cross-platform normalization makes this task quite diffi-

cult for researchers lacking advanced computer skills,

especially for methods that are only available as part of

an online service. Some methods also rely on proprietary

software, which presents an additional obstacle to inte-

gration. Thirdly, current cross-platform normalization

techniques are only applicable to a limited subset of data

sets. All the methods listed above require that every

treatment group or sample type be represented on each

platform. If this restriction is violated then it becomes

impossible to distinguish platform effects from treatment

effects of interest, and the latter may end up being

removed by normalization.

In this paper we provide a comparison of available

methods based on the MicroArray Quality Control

(MAQC) project [17] data set and a human sperm data

set [44] containing data from multiple platforms (see

Methods for details). Envisioning potential applications

to large scale databases or classification problems, we

restrict our attention to cross-platform normalization

performed without knowledge of treatment groups, and

we examine the consequences of differently sized and

missing treatment groups for the most successful meth-

ods. We also investigate the consistency of platform

effects across different experiments. We have assembled

an R [45] package capable of performing all of the meth-

ods investigated with a unified interface and reasonable

defaults for user selectable parameters. Our package

makes it possible for researchers to easily incorporate

cross-platform normalization into existing work-flows,

especially work-flows based on R or Bioconductor, and to

experiment with multiple techniques without significant

extra effort. Our package is available from the Compre-

hensive R Archive Network (CRAN, [46]). We explore a

possible solution to the third difficulty above and show

that it is insufficient in some cases.

Results and Discussion
Initial evaluation

As an initial evaluation of the nine cross-platform nor-

malization techniques, we applied each to a subset of the

MAQC data set. Seven assays were selected at random

from each of the four treatment groups, A, B, C, and D,

included in the MAQC experiment from the Illumina

(ILM) and Affymetrix (AFX) platform groups. The result-

ing reduced data set was then subjected to cross-platform

normalization. To visually assess the effectiveness of each
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normalization technique, mean-mean expression scatter

plots (or sunflower plots for methods with discrete out-

put) were produced for each treatment group and each

normalization method. Figure 1 shows mean-mean plots

for treatment group A. Plots for treatment groups B, C,

and D are included as additional files 1, 2, 3. Because

each treatment group consists of technical replicates, all

points on a mean-mean scatter plot should coincide with

the line y = x under ideal circumstances. The closeness of

the points to that line provides a measurement of inter-

platform concordance. Throughout this work, we have

used the squared Pearson correlation between the x and

y values of these plots, denoted r2, as a statistical measure

of inter-platform concordance.

Figure 1 Mean-mean plots for MAQC group A ILM and AFX data after cross-platform normalization. Scatter or sunflower plots for MAQC

treatment group A for each normalization method for the ILM and AFX data. Mean expression level of sample A assays on the AFX platform is

plotted against mean expression level on the ILM platform. Plot titles indicate the cross-platform normalization method performed. Red lines are

the line y = x, provided for visual comparison. Sub-titles indicate the r2 value for the plot.
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Based on Figure 1, the cross-platform normalization

methods are ranked by r2 value as follows: XPN, EB,

DWD, GQ, QN, MRS, DisTran, QD, and NorDi. There is

a substantial gap between the fourth and fifth methods in

the ranking, and another between the eighth and ninth.

To better interpret these plots it is necessary to know the

concordance that can be expected for technical replicates

(replicates in which identical RNA samples were assayed)

within a single platform and for technical replicates

between two platforms. Ideally, the best cross-platform

normalization methods will result in concordance levels

similar to those obtained by technical replicates within a

single platform. Figure 2 shows mean-mean plots for

non-overlapping sets of assays selected from the data set

for each platform, and a mean-mean plot for data from

the two platforms without cross-platform normalization,

for each of the four MAQC treatment groups. Intra-plat-

form concordance is greater than .99 for all treatment

groups and platforms, while inter-platform concordance

is around 0.6 for all treatment groups. Figures 1 and 2

demonstrate that XPN, EB, DWD, and GQ substantially

improve cross-platform concordance, while QN, MRS,

DisTran, and NorDi provide little improvement and in

some cases reduce concordance. The similar shapes dis-

played by the cross-platform scatter plots in Figure 2 sug-

gest a consistency in platform effects among the four

treatment groups. Such platform consistency is explored

later on in this work.

A trivial transformation could be devised to produce

perfect concordance between platforms by the removal

of all platform and treatment effects. However, such a

transformation would be undesirable for cross-platform

analysis because of the loss of treatment effects. To

assess the degree to which treatment effects were

retained during cross-platform normalization, we plotted

Receiver Operating Characteristic (ROC)-like curves for

seven of nine methods for treatment groups A and B

from the reduced MAQC data set (Figure 3). NorDi and

QD were excluded from further analysis because of their

unsatisfactory scatter plots and the additional difficulty

associated with discrete output. A true ROC curve plots

true positives against false positives for a classifier [47].

The ROC-like curves used here show the proportion of

genes classified as differentially expressed as a function

of the estimated false discovery rate (FDR, see Methods

for details). To provide a basis for comparison, we per-

formed differential expression analysis using each plat-

form separately to obtain a native differential expression

set for each platform. An ROC-like curve was obtained

from cross-platform data normalized by each method

(the red curves in Figure 3), along with four additional

curves for comparison. Two curves represent differen-

tially expressed genes detected by either AFX or ILM

(the union of native differential expression sets, yellow

curves in Figure 3) and differentially expressed genes

detected by both AFX and ILM (the intersection of native

differential expression sets, green curves in Figure 3), and

two more represent the intersections of genes detected

by the cross-platform data set with the union (blue) or

intersection (violet) of native differential expression sets

from the individual platforms.

By comparing these curves we obtain statistics for over

and under-detection of differentially expressed genes

after cross-platform normalization as follows. Over-

detection can be assessed by observing the difference

between the ROC-like curve for genes detected with the

cross-platform data set (the red curve) and the curve for

the intersection of the cross-platform genes and the

union of the single platform genes (the blue curve),

which gives the genes detected using the cross-platform

data set but not using either single platform data set.

Under-detection can be assessed by observing the differ-

ence between the curve for the intersection of the two

single platform gene sets (the green curve) and the curve

for the intersection of all three gene sets (the violet

curve), which gives the proportion of genes detected by

both platforms individually but not by the cross-platform

data set. In our further analyses, the areas between these

two pairs of curves are used as statistics to measure over

and under-detection, denoted o and u, respectively, of

differentially expressed genes. These area statistics have

the advantage of not depending on any arbitrary FDR

cut-off, and to our knowledge have not been used

previously.

It is not possible to rank cross-platform normalization

methods by either one of the statistics o or u described

above. For example, a method may bring o to nearly zero

by removing all treatment effects. Such a method would

not be desirable, and would result in a large u. Each of

the statistics o and u guards against unrestricted optimi-

zation of the other. The o and u statistics are related to

false positive and false negative rates, respectively, and in

practice a good cross-platform normalization should

strike a balance between the two.

Sorted from least to greatest under-detection, the

methods are ordered: DWD, EB, GQ, XPN, MRS, QN,

DisTran. Again, there is a major jump between the fourth

and fifth ranked methods. When sorted instead by over-

detection, the order is: MRS, QN, DisTran, XPN, DWD,

GQ, EB, with a major discrepancy between the third and

fourth ranked methods. Inspection of the ROC-like

curves shows that the lower levels of over-detection

among MRS, DisTran, and QN can be understood in

terms of lower total detection of differentially expressed

genes. By all three measurements, the seven methods

cluster into two groups. The first group, made up of

DWD, EB, GQ, and XPN, is characterized by higher con-

cordance and over-detection and lower under-detection,
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while the second group, consisting of DisTran, MRS, and

QN, is characterized by lower concordance and over-

detection and higher under-detection. The ROC-like

plots for the two groups are qualitatively different (Figure

3). In the first group, the curve for the cross-platform

normalized data lies between the intersection and union

curves for the native differential expression sets. In the

second group, the curve for the normalized data always

lies below the native intersection curve.

Bootstrapping

Equally sized treatment groups

Figures 1 and 3 provide a qualitative impression of the

effectiveness of each method on the MAQC data set.

For a quantitative assessment, we used the bootstrap to

obtain distributions for the statistics o, u, and r2, defined

above, for cross-platform normalization between the

AFX and ILM MAQC data. Additionally, we included

MAQC data from the Applied Biosystems (ABI) and

Figure 2 Mean-mean plots for MAQC ILM and AFX data without cross-platform normalization. Scatter plots for each MAQC treatment

group. Single platform plots were produced from random non-overlapping subsets of seven assays each selected from the MAQC data set for

that platform and treatment group. Red lines are the line y = x, provided for visual comparison. Sub-titles indicated the r2 value for the plot.
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Agilent one color (AG1) platforms, obtaining bootstrap

distributions for all three statistics and all six combina-

tions of the four platforms. For all bootstraps, a sample

size of 15 assays was fixed for each treatment group for

a total of 60 assays per bootstrap per platform. Figures

4, 5, and 6 show the distributions of r2, o, and u, for the

seven non-discrete normalization methods. The XPN

method includes a clustering step, and normalizations

were performed with different clustering options. For

comparison, distributions are also shown for data that

have not been normalized (no.norm) and for resampled

data from each individual platform (resample.1 and

Figure 3 ROC-like curves for the reduced MAQC data set. ROC-like curves for the seven non-discrete cross platform normalization methods

are applied to the reduced MAQC data set. Horizontal axes represent false discovery rate (FDR), while vertical axes represent the proportion of

genes found to be differentially expressed between treatment groups A and B. Horizontal and vertical lines represent the areas used to compute

under-detection (u) and over-detection (o), respectively, although no substantial areas of vertical lines are visible. The “union INT DWD” and

“intersection INT DWD” curves represent the intersections (in the sense of gene sets) of the red curve with the yellow and green curves,

respectively.
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resample.2). The resampling trials simulate the result of

performing an identical experiment again using each

each platform separately. The resampled and non-nor-

malized distributions serve as positive and negative con-

trols, respectively, for successful cross-platform

normalization.

In terms of concordance (Figure 4), results largely

agree with our initial evaluation. Methods can be

divided into the same two groups. The rankings of

DWD, EB, GQ, and XPN fluctuate depending on the

platforms, with one of the XPN methods always show-

ing the highest ranking. XPN, DWD, EB, and GQ all

perform near the level of the resampling controls, while

MRS, QN, and DisTran perform near the level of the

non-normalized cross-platform control. Over detection

(Figure 5) showed the same pattern as in our initial

comparison. We had stated that the reduced over-detec-

tion of MRS, QN, and DisTran may be due entirely to

the reduced level of total detection for those methods.

Here we show that the increased over-detection of XPN,

DWD, EB, and GQ is still below the level of the resam-

pling controls regardless of platform. Under-detection

(Figure 6) was near but somewhat above the resampling

controls for XPN, DWD, EB, and GQ for all platform

combinations. MRS, QN, and DisTran fluctuated

together depending on platform, always with a higher

Figure 4 Concordance (r2) for normalization methods applied to the MAQC data. Plot titles give the source platforms of the data being

normalized. Boxes show the interquartile range and whiskers extend to an additional 1.5 times the interquartile range. Values outside the

whiskers are plotted as circles. Notches are drawn such that non-overlapping notches are strong evidence of differing medians [61,45]. Subtitles

show ranking of the methods. A: resample1, B: resample2, C: dwd, D: eb.par, E: gq, F: mrs, G: qn, H: distran, I: xpn3, J: xpn6, K: xpn9, L: xpn_mod6,

M: no.norm. Inequalities in sub-titles are significant at the 0.5/n2 level, where n is the number of methods in each sub-figure (including controls),

by two-sided Mann-Whitney U-test. Commas indicate the difference in ranking is not significant. Numbers indicate the number of gene clusters

used for XPN, e.g. xpn6 means XPN was performed using 6 gene clusters.
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level than the other methods, and sometimes near the

level of the negative control. DWD always showed the

lowest level of under-detection, while an XPN variant

was always the highest out of XPN, DWD, EB, and GQ.

Variance of under-detection for the XPN methods

appears markedly higher than for DWD, EB, and GQ. A

Brown-Forsythe Levene-type test based on the absolute

deviations from the median [48] showed the pooled var-

iance of the XPN methods differed from that of DWD,

EB, and GQ at a significance level of less than 1e - 20.

The MAQC data set is unusual in that it contains a

large number of technical replicates. The human sperm

data set contains more biological than technical repli-

cates and is more representative of data sets encountered

in biological research. We performed the same bootstrap-

ping analysis on the AFX and ILM human sperm data

(Figure 7). Again, treatment group sizes were held fixed

at 15 for both platforms for data obtained from both nor-

mal (N) and teratozoospermic (T) individuals. Results for

concordance were similar to the MAQC data set, except

that XPN outperformed the resample controls. All meth-

ods again showed over-detection levels below those of

the resampling controls. DWD again showed the lowest

level of under-detection, followed by GQ and EB. Pre-

vious trials of XPN showed levels similar to those of

MRS, QN, and DisTran when more than 10 gene clusters

were used (results not shown). XPN distributions for

under-detection again showed higher variance than for

Figure 5 Over-detection (o) for normalization methods applied to the MAQC data. Plot titles give the source platforms of the data being

normalized. Boxes show the interquartile range and whiskers extend to an additional 1.5 times the interquartile range. Values outside the

whiskers are plotted as circles. Notches are drawn such that non-overlapping notches are strong evidence of differing medians [61,45]. Subtitles

show ranking of the methods. A: resample1, B: resample2, C: dwd, D: eb.par, E: gq, F: mrs, G: qn, H: distran, I: xpn3, J: xpn6, K: xpn9, L: xpn_mod6,

M: no.norm. Inequalities in sub-titles are significant at the .05/n2 level, where n is the number of methods in each sub-figure (including controls),

by two-sided Mann-Whitney U-test. Commas indicate the difference in ranking is not significant. Numbers indicate the number of gene clusters

used for XPN, e.g. xpn6 means XPN was performed using 6 gene clusters.
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DWD, EB, and GQ, and the difference was significant at

the 1e - 20 level.

Over all, some results were consistent for all data sets

tested. DWD, EB, GQ, and XPN outperform MRS, QN,

and DisTran in both concordance and under-detection,

with DWD showing the lowest over-detection and XPN

the highest concordance in all cases. Over detection

never exceeded levels observed in resampling controls,

even for the non-normalized control, which in fact

showed no over-detection. Because all treatment groups

were the same size for both platforms, platform effects

would be expected to cancel out when comparing treat-

ment groups. High variance within each treatment group

due to platform effects explains the under-detection seen

in the negative control. The performance of MRS, QN,

and DisTran varied with the data sets tested. MRS, QN,

and DisTran generally performed poorly. However, they

still outperformed the negative control in the sperm data

set, which is consistent with past successful applications

of those methods.

Unequally sized treatment groups

Four cross-platform normalization methods, DWD, EB,

GQ, and XPN, showed satisfactory performance when

evaluated using data sets with balanced treatment group

sizes. Applications in which treatment group sizes are

not consistent across platforms can easily be envisioned.

Figure 6 Under-detection (u) for normalization methods applied to the MAQC data. Plot titles give the source platforms of the data being

normalized. Boxes show the interquartile range and whiskers extend to an additional 1.5 times the interquartile range. Values outside the

whiskers are plotted as circles. Notches are drawn such that non-overlapping notches are strong evidence of differing medians [61,45]. Subtitles

show ranking of the methods. A: resample1, B: resample2, C: dwd, D: eb.par, E: gq, F: mrs, G: qn, H: distran, I: xpn3, J: xpn6, K: xpn9, L: xpn_mod6,

M: no.norm. Inequalities in sub-titles are significant at the .05/n2 level, where n is the number of methods in each sub-figure (including controls),

by two-sided Mann-Whitney U-test. Commas indicate the difference in ranking is not significant. Numbers indicate the number of gene clusters

used for XPN, e.g. xpn6 means XPN was performed using 6 gene clusters.

Rudy and Valafar BMC Bioinformatics 2011, 12:467

http://www.biomedcentral.com/1471-2105/12/467

Page 10 of 22



We evaluated the four successful cross-platform normal-

ization methods again using the MAQC data set with

the same bootstrapping procedure. This time only data

from treatment groups A and B were included, and the

number of A and B samples was not necessarily equal

between the two platforms. Five trials were performed

for each method using different combinations of sample

sizes: 15 A, 5 B for AFX and 5 A, 15 B for ILM; 13 A, 7

B for AFX and 7 A, 13 B for ILM; 10 A, 10 B for AFX

and 10 A, 10 B for ILM; 7 A, 13 B for AFX and 13 A, 7

B for ILM; and 5 A, 15 B for AFX and 15 A, 5 B for

ILM. Results indicate that DWD is the most robust to

sample size differences, but that such differences have

some effect on all methods (Figure 8). The under and

over-detection statistics for XPN responded differently

than for the other methods. Under-detection decreased

for XPN as treatment group size disparity increased,

and over-detection increased. For all other methods, the

opposite was observed. All methods but DWD showed

substantially decreased concordance with increasing

treatment group size disparity. Our modified clustering

procedure reduced this effect in XPN to some extent.

Missing treatment groups

All cross-platform normalization methods studied share a

common strategy. First, a set of parameters is determined

from the data. Those parameters are then used to trans-

form the data to remove platform effects. The parameters

fitted from the data provide an estimate, in one form or

another, of the platform effects present in the data set.

Cross-platform normalization is only possible when all

treatment groups are represented on both platforms.

Otherwise, it becomes impossible to distinguish platform

effects from treatment effects. Relaxation of this restric-

tion would improve the usefulness of cross-platform nor-

malization to researchers wishing to apply it. It may be

possible to overcome this limitation by determining plat-

form effects ahead of time using a separate data set, and

then applying those parameters to the data set one wishes

to transform. This possibility depends on the consistency

of platform effects across different studies and treatment

groups. To evaluate whether such consistency exists, we

attempted to use parameters derived from the MAQC

data set to perform DWD on the human sperm data set,

first removing all N assays from the AFX data and all T

assays from the ILM data, and then the reverse. DWD

was selected for this experiment because of its success in

previous trials and because of the simplicity of its model

While concordance statistics could not be produced for

this data set because data from each treatment group

were represented on only one platform, we were able to

Figure 7 Normalization methods applied to the human sperm AFX and ILM data. Boxes show the interquartile range and whiskers extend

to an additional 1.5 times the interquartile range. Values outside the whiskers are plotted as circles. Notches are drawn such that non-

overlapping notches are strong evidence of differing medians [61,45]. Subtitles show ranking of the methods. Inequalities in sub-titles are

significant at the .05/n2 level, where n is the number of methods in each sub-figure (including controls), by two-sided Mann-Whitney U-test.

Commas indicate the difference in ranking is not significant. Numbers indicate the number of gene clusters used for XPN, e.g. xpn6 means XPN

was performed using 6 gene clusters.
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evaluate both over-detection and under-detection using

the same bootstrapping procedure as before (Figure 9).

Sample sizes were again fixed at 15 for both platforms

and treatment groups. “Self.transfer” indicates that the

human sperm data set, rather than the MAQC, was used

as a training set, which resulted in successful cross-plat-

form normalization. “No.transfer” indicates that the miss-

ing treatments data set was used alone with no additional

training data, which resulted in the removal of all treat-

ment effects. The “Transfer” data set, for which the

MAQC data set was used as a training set, showed over-

detection near the level of non-normalized data, indicat-

ing that the MAQC platform effects, as estimated by

DWD, differ substantially from those of the human

sperm data set. The difference here does not imply that

there is no consistency in the properties of different plat-

forms, but merely that if such consistency exists then

DWD is not sufficient to take advantage of it.

Exploring platform effects

The inconsistency between platform effects in the MAQC

and human sperm data sets may be due to differences in

data processing or experimental protocols. Because of the

age of the human sperm data set, its authors were unable

to give any details regarding their exact procedures. To

further explore the consistency of platform effects for dif-

ferent treatments, we tried using the MAQC A data to

Figure 8 Normalization methods applied to the MAQC data with unequal treatment groups. Labels on the x-axis indicate method names

and the treatment group sizes. Numbers indicate the sizes of treatment groups A and B, respectively, on the AFX platform and B and A,

respectively, on the ILM platform, in terms of number of assays. For example, the label “method.m.n“ indicates that the method “method” was

applied to a data set containing m group A AFX assays, n group B AFX assays, m group B ILM assays, and n group A ILM assays. Boxes show the

interquartile range and whiskers extend to an additional 1.5 times the interquartile range. Values outside the whiskers are plotted as circles.

Notches are drawn such that non-overlapping notches are strong evidence of differing medians [61,45].
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transform the MAQC B data and using the human sperm

N data to transform the T data. Again we used the same

bootstrapping procedure with 15 assays in each treatment

group. Results (Figure 10) show reduced but high concor-

dance compared to non-normalized data and to

“scrambled” normalization, in which the location para-

meters used by DWD were randomly re-ordered after

being estimated from the training set. Because the data

being transformed contained only one treatment group,

over and under-detection could not be assessed.

Figures 9 and 10 indicate that there is some consistency

in platform effects between treatment groups within the

same study, but possibly less between the MAQC and

human sperm studies. We directly assessed the correlation

between platform effects for different treatments, studies,

and platforms again using DWD. Figure 11 shows correla-

tions obtained between DWD parameters for 16 pairs of

data sets. Each set shows the highest correlation with

resampled data for the same treatment, study, and platform

pair if present, the next greatest with data from a different

treatment and the same study and platform pair, the next

greatest with data from the same platform pair but differ-

ent treatment and study, and the least with data from

another platform pair regardless of treatment and study.

Theoretical perspective

The four best performing methods, DWD, EB, GQ, and

XPN, model platform effects using location parameters,

Figure 9 DWD applied to human sperm data with missing treatment groups. One treatment group was removed from each platform’s

data set before DWD was performed. Subtitles indicate the groups retained. Scrambled: Same as transfer, but parameters were randomly re-

ordered before being used for cross-platform normalization. Self.transfer: Full human sperm data set was used for training. Transfer: MAQC data

set was used for training. No.transfer: No additional training set was used. Boxes show the interquartile range and whiskers extend to an

additional 1.5 times the interquartile range. Values outside the whiskers are plotted as circles. Notches are drawn such that non-overlapping

notches are strong evidence of differing medians [61,45]. Differences between all pairs are significant at the .05/n2 level, where n is the number

of methods in each sub-figure (including controls), by two-sided Mann-Whitney U-test.
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while the other five methods do not include location shifts.

The representation of platform effect as a location para-

meter is somewhat consistent with a physical interpreta-

tion of the microarray hybridization process. The

hybridization process can be coarsely described by the

chemical equation

p + g

k+

⇋

k−

h, (1)

where p, g, and h are the probe, the gene or transcript

target, and the hybridized transcript, respectively, and k+

Figure 10 DWD platform parameter transfer. One treatment group was used as a training set for DWD to transform another treatment group

in the MAQC and human sperm data sets. Titles indicate treatment groups used. Scrambled: Same as transfer, but parameters were randomly re-

ordered before being used for cross-platform normalization. Self.transfer: Full human sperm data set was used for training. Transfer: Indicated

treatment group was used as a training set. No.transfer: No additional training set was used. Boxes show the interquartile range and whiskers

extend to an additional 1.5 times the interquartile range. Values outside the whiskers are plotted as circles. Notches are drawn such that non-

overlapping notches are strong evidence of differing medians [61,45].

Figure 11 Correlations between DWD parameters. DWD parameters were obtained for each treatment group. Bars represent median

correlation values between DWD parameters and whiskers represent interquartile ranges. AFX-ILM A-2 and B-2 represent independent resamples

of the A and B data. Results represent 100 bootstrap iterations.
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and k- are rate constants. For relatively large target con-

centrations, the signal for a hybridized probe at equili-

brium is

S =
Ig0p0

k+

k−

1 + k+

k−
g0

, (2)

where S = Ih is measured signal, g0 is the initial con-

centration of target RNA or DNA, p0 is related to the

initial number of available probe sites, and I is related to

the intensity of the marking mechanism associated with

each target DNA or RNA molecule. The parameter I

should be thought of as the intensity of the label on

each target molecule. The number of target molecules

present at the probe site multiplied by the intensity of

each gives the total intensity at that site. Model (2) has

previously been applied to Affymetrix GeneChip© data

[49,50]. Under this model, the log of the measured sig-

nal is given by

log(S) = log(g0) + log

(

Ip0
k+

k−

)

− log

(

1 + g0
k+

k−

)

. (3)

The parameters k+, k-, I, and p0 are determined by the

microarray platform and experimental conditions such

as hybridization temperature. Only g0 is related to gene

expression. Assuming experimental conditions are about

the same for all users of a given platform, a statistical

model of log signal intensity for a particular probe

might be

yijk = Ti + Pj + Cij + εijk, (4)

where yijk is the log signal value for gene i, treatment

j, and repetition k; Ti, Pj, and Cij are treatment, plat-

form, and treatment-platform interaction effects, respec-

tively; and εijk is a random variable associated with

repetition. Equation (4) is more general than, but fully

consistent with, equation (3). The presence of a treat-

ment-platform interaction term can be tested by analysis

of variance (ANOVA). We performed ANOVA using

model (4) for each gene separately on ABI, AFX, AG1,

and ILM data with treatment groups A, B, C, and D

from the MAQC data set, using the lm function of the

R stats package [45]. Figure 12 shows the distribution of

p-values for the null hypothesis (H0) that Cij = C for all

treatments and platforms. Using the qvalue package

Figure 12 P-values for ANOVA. Histogram of p-values for treatment-platform interaction terms of model (4).
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[51], we were able to estimate the proportion of genes,

π0, for which H0 is true, and subsequently the propor-

tion of genes, π1, for which H0 is false from the distribu-

tion of p-values using the method of Story and

Tibshirani [52]. Results indicate that treatment-platform

interaction effects exist for 93.59% of genes, or about

11, 315 genes out of 12, 091 total. Because not all genes

are differentially expressed, it is to be expected that

some genes show no interaction effect. If there is only

one treatment group, platform and interaction effects

don’t need to be distinguished. Both P and C terms can

be removed by a single location shift. For larger num-

bers of samples, the interaction term cannot be fully

removed by a single location shift. An optimal location

shift, in the least squares sense, for the m treatment

case is

y∗

ijk = yijk − ηj (5)

ηj = Pj +

∑m
i=1 nijCij

∑m
i=1 nij

(6)

where y∗

ijk is the corrected value and hj is the location

shift used to correct for platform effects. The values nij
are the number of repetitions for treatment i and plat-

form j, and m is the total number of different treatment

groups. It is assumed that the true values of the effects

are known. In practice, hj will be an estimate based on

the data.

None of the methods studied here make explicit use

of a least squares optimal location shift to remove plat-

form effects. Rather, this optimal location shift is used

to illustrate the limitations of modeling platform effects

as location parameters under model (1). The prospect of

determining a location shift for a particular pair of plat-

forms using one data set and applying that shift to

another data set is complicated by the presence of inter-

action effects in equation (6). By equations (5) and (6),

the difference between two treatment group averages in

a two platform data set after the application of a loca-

tion shift derived from another two-platform data set,

assuming equally sized treatment groups, is

ȳ∗

1·· − ȳ∗

2·· = T1 − T2 +
1

2

2
∑

i=1

2
∑

j=1

(−1)j−1(Cij − C♦

ij ) (7)

where C♦

ij are the interaction terms from the training

data set. Depending on the values of Cij and C♦

ij , trans-

ference of parameters could result in the increased over-

detection seen in our missing treatment group experi-

ment. Other causes are also possible, including differ-

ences in scanners or image processing procedures.

Uniformity of platform effects across different experi-

ments is consistent with the model (1). Additivity is not,

although empirically it appears to be a useful approxi-

mation, as indicated by the relative success of the loca-

tion based methods. The accuracy of that approximation

may be reduced, however, when employing a separate

training set to estimate platform effects. This reduction

was observed in our analyses, in particular in Figures 9

and 10. Model (1) is a sufficient explanation for all of

our observations, which suggests it or the more general

equation (4) may provide a good basis for an improved

cross-platform normalization method that addresses the

issue of non-identical treatment groups across platforms.

However, fitting such a model would require a data set

containing multiple matched treatment groups for any

pair of platforms on which it could be used.

Software

To facilitate the application of cross-platform normaliza-

tion by other researchers, we packaged all the imple-

mentations used in this work, including those obtained

from other authors, using the R package mechanism.

Our package, CONOR, includes documentation and

provides a common interface for all methods, along

with reasonable defaults for user-selectable parameters.

The package can be downloaded at http://alborz.sdsu.

edu/conor and is available from CRAN.

Conclusions
Of the four methods capable of successful cross-platform

normalization, DWD showed the least loss of treatment

information and XPN showed the greatest inter-platform

concordance, although the latter was sometimes in excess

of resample controls and might be interpreted as a slight

over-correction. DWD was the most robust to variations

in treatment group sizes between the two platforms. This

result is somewhat surprising because XPN incorporates

an assay clustering step designed to correct for such var-

iations [34]. Our clustering variant showed reduced sen-

sitivity to treatment size disparity, and it is possible that

further improvement to the clustering step of the XPN

algorithm could result in improved robustness. It is no

surprise that GQ and EB, which do not account for treat-

ment group disparities, suffered reduced performance

under such conditions. In general, those methods that

employ location shifts (DWD, EB, GQ, and XPN) outper-

formed those that do not, and the performance of the

methods that do not include such shifts was quite unsa-

tisfactory. Many of those methods were not originally

designed for cross-platform normalization, and their fail-

ure to accomplish such normalization does not imply
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that they are insufficient to their other uses. The EB and

XPN methods make use of distributional assumptions

about the data. XPN uses a normally distributed residual

for maximum likelihood estimation, while EB employs a

complicated model including parametric prior distribu-

tions. For the log-transformed microarray data used in

this study, these methods performed well. However, the

distributional assumptions of these methods must be

valid for their performance to be assured. When per-

formed on non-log transformed data, for example, these

methods fail to produce good results. In cases in which

normality is in doubt, appropriate transformations (such

as log transformation) should be employed. Our analyses

considered cross-platform normalization in the absence

of treatment group information. It is possible that super-

ior methods to those investigated could be devised that

make use of treatment information. The EB method is

already able to accommodate treatment group member-

ship information if it is available.

Our experiment in normalizing the human sperm data

set using parameters derived from the MAQC data set

shows that there may be some consistency in platform

effects across different treatments. Larger differences

between platform effects in the MAQC and human

sperm studies may have resulted from differences in

protocols between the two studies. However, they may

also have resulted from larger disparity between gene

expression patterns in sperm and those of other human

tissues, in which case a more complicated model of plat-

form effects might resolve the difference. Ideally, data

sets like the MAQC project’s could be used as “Rosetta

Stones” for gene expression platforms, allowing data col-

lected on one platform to be translated to be compar-

able with data from another platform regardless of

treatment group disparities. This work has shown that a

model including treatment-platform interaction terms

will be required for such a system to be effective, and

further investigation is required before such a system

can be realized.

Next generation sequencing technology is replacing

microarrays for the measurement of gene expression. The

types of platform effects present in microarray data are

probably not relevant for sequencing-based expression

data. Nevertheless, existing databases, as well as microarray

experiments that may be performed in the near future,

represent a substantial resource. Cross-platform normaliza-

tion has the potential to become a valuable tool for gene

expression research by allowing researchers to combine

and analyze existing data together with new data or in new

contexts. While at least nine methods are currently avail-

able, we’ve shown that only four of those methods provide

reasonable results on the MAQC and human sperm data

sets. Although researchers are encouraged to draw their

own conclusions based on their particular needs, two

methods emerged as most effective. In cases in which false

positives are to be preferred over false negatives, or in which

treatment group sizes are not equal for the various single

platform data sets, DWD is the recommended cross-plat-

form normalization method because of its lower under-

detection and improved robustness. In cases in which false

negatives are to be preferred to false positives, and for use

with classifiers, XPN is recommended because of its superior

cross-platform concordance. If there is doubt as to which

situation applies, DWD is recommended, but there is no

reason that multiple techniques could not be employed and

the results compared. The existence of the CONOR pack-

age will make the latter option particularly painless. In

cases in which treatment groups are missing from one plat-

form or another, the DWD-based procedure described

here is the only currently available method, but care must

be taken to ensure that training data have sufficiently simi-

lar transcription profiles to the data being transformed.

Cross-platform normalization of large or complex

datasets in which treatment groups are missing will

require improved models of treatment-platform interac-

tion effects. Future work should include the modifica-

tion of XPN to improve robustness and allow for the

use of a separate training set, as well as the investigation

of other models of platform effects. This study has not

examined every platform available. In particular, no

cDNA arrays were included, and the effectiveness of

cross-platform normalization with such arrays should be

investigated before those methods are applied. While

the types of platform biases present in microarrays are

not relevant to sequencing based assays, it is worth

investigating the effects that different extraction, amplifi-

cation, and sequencing methodologies have of such

measurements, as well as how data from sequencing-

based assays might be combined with microarray data.

While the availability of an R package does much to

make these methods accessible, there are some research-

ers who are not comfortable with the R command-style

interface. For those researchers, a GUI application or

web interface integrating all of those methods may be

beneficial, although web interfaces are already available

for some methods. If the transfer of platform parameters

between data sets is improved, a web-based database of

such platform parameters that could be integrated into

cross-platform analyses would be extremely useful.

Methods
Data preparation

The MAQC data set [17] contains assays of two distinct

RNA samples, Stratagene Universal Human Reference

RNA (treatment group A) and Ambion Human Brain

Reference RNA (treatment group B), along with 3:1

(group C) and 1:3 (group D) mixtures of the two. Each

sample was assayed repeatedly at two or more
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independent sites for each platform included. The plat-

forms used in our analyses were the Applied Biosystems

Human Genome Survey Microarray V2.0, the Affymetrix

HG-U133 Plus 2.0 GeneChip©, the Agilent Whole Gen-

ome Oligo Microarray G4112A, and the Illumina

Human-6 BeadChip 48k v1.0. These platforms were

selected based on the availability of data and the variety

of probe lengths, manufacturing techniques, and detec-

tion methods employed (see Table 1).

The human sperm data set [44] contains assays of

mRNA from sperm obtained from normally fertile men

(group N) and teratozoospermic men (group T), assayed

using the same AFX and ILM arrays as were used in

MAQC, as well as another Illumina array, which was

not used in this study. While some individual samples

were assayed on both the AFX and ILM platforms,

assays in the N or T group of each platform represent

biological rather than technical replicates. Each assay

comes from a unique sample and individual.

The MAQC and human sperm data were obtained from

GEO [GEO: GSE5350 and GSE6969]. The data set for

each microarray platform was subject to different prepro-

cessing. Preprocessing did not make use of treatment

group membership, as such knowledge would not be avail-

able or easily incorporated for some applications. For all

data sets except ABI, quantile normalization was used as

an intra-platform normalization strategy to remove assay

effects. Quantile normalization is a well established and

simple method for intra-platform normalization. While

other methods are available [39], we found quantile nor-

malization to be sufficient for our purposes. All expression

data were subject to log transformation, and it is worth

noting that most cross-platform normalization methods

failed to perform well on data that was not log trans-

formed in our initial trials (results not included). Those

methods that failed to perform on non-log data were

those that employed statistical models, and their poor per-

formance is likely the result of violations of the distribu-

tional assumptions of those models.

Applied Biosystems

The ABI data were downloaded already normalized from

GEO using the GEOquery package [53] from Bioconduc-

tor. These data were normalized by the MAQC authors

using the Expression Array System Software suite from

Applied Biosystems, which implements a platform speci-

fic normalization sequence based on the specific proper-

ties of the ABI array and the 1700 Chemiluminescent

Microarray Analyzer. The steps in this normalization

sequence take advantage of co-localized control probes

and signal to noise ratios obtained during image proces-

sing. Details can be found in the supplemental materials

of the MAQC publication [17] and in the document

entitled “User Bulletin: Applied Biosystems 1700 Chemi-

luminescent Microarray Analyzer” issued by ABI [54].

The downloaded data were natural log transformed

before use in my analyses. It should be noted that the

ABI data set was the only set not subjected to quantile

normalization.

Affymetrix

Raw Affymetrix CEL files were pre-processed using the

function justRMA from the affy package [55] of Biocon-

ductor. For the experiments involving both MAQC and

human sperm data, both sets were normalized together.

For all other experiments, the MAQC and sperm data

were normalized separately.

Agilent

The raw Agilent data were processed using the limma

package [56] from Bioconductor. Background correction

was performed using the “normexp” and “mle” options of

the backgroundCorrect function. Quantile normalization

was performed by the normalizeBetweenArrays function.

Data from duplicate probes was then averaged and nat-

ural log transformation performed.

Illumina

Raw Illumina data were acquired from GEO in text for-

mat. The mean signal for each probe type was extracted

and subjected to quantile normalization (provided by the

normalize. quantiles function from Bioconductor’s pre-

processCore package) and natural log transformation.

For the experiments involving both MAQC and human

sperm data, both sets were quantile normalized together.

For all other experiments, the MAQC and sperm data

were subjected to separate quantile normalization.

Probe mapping

The MAQC publication [57] provides mappings for all

platforms involved in the study for 12, 091 common

genes as Supplementary Table five, and we used that

mapping for all cross-platform normalization experi-

ments for both the MAQC and human sperm data sets.

The mapping was accomplished by BLASTing probe

sequences against the human RefSeq database. A detailed

BLAST protocol is also provided in the supplementary

materials of the MAQC publication, which are available

from the Nature Biotechnology website. The RefSeq data-

base has been improved and updated since 2006, and

some justification is required for the use of gene annota-

tions that are presently more than four years old. While

it is generally advisable to use the most recent annota-

tions available when analyzing microarray data, little is to

be gained in this case by repeating the mapping with a

more recent version of RefSeq. The number of additional

probes that could be mapped using the current version of

RefSeq is likely to be very small, especially when consid-

ering that the arrays used were designed before the origi-

nal mapping was produced and that the human genome

was already well mapped by 2006. As the purpose of this

study is to compare the various methods for cross-plat-

form normalization, and not to discover genes of
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biological interest, we believe the MAQC mapping to be

sufficient.

Plots and statistics

Mean-mean plots and inter-platform concordance

Mean-mean expression scatter plots were produced by

plotting the average expression value for each gene and

treatment group on one platform against the average

expression for the corresponding gene and treatment

group of another platform. Treatment groups for MAQC

data are equivalent to sets of technical replicates (since

the same RNA pool was used for all assays), whereas

treatment groups in the human sperm data set (samples

obtained from normal and teratozoospermic individuals)

represent biological replicates, although some technical

replicates are included. Squared Pearson correlation

between the x and y coordinates of each point in the

mean-mean scatter plot was used as a statistic to measure

inter-platform concordance. It has been pointed out by

the editors that the concordance correlation coefficient is

a more appropriate statistic for these purposes [58].

Unfortunately this error was brought to our attention

after it was possible to make the change. We believe,

however, that the conclusions of this work are not

impacted by the use of the squared Pearson correlation

for two reasons: firstly, that the mean-mean plots used in

this study generally show a good fit to the line y = x, and

secondly, that the conclusions drawn are supported by

the other statistics used.

Differential expression and ROC-like curves

Differential expression was assessed using the p-value of

a two-sided Welch’s t-test as a statistic. A p-value was

obtained for each gene, and the resulting list of p-values

was transformed into a list of q-values using the q-value

package [51], available from Bioconductor. The q-value

for a particular feature (or gene) is defined as the propor-

tion of false positives expected when calling all features

on a list up to and including that one significant, where

here the list in question is the list of p-values obtained

from the t-tests [52]. The empirical cumulative distribu-

tion function (cdf) of the resulting list of q-values is then

equivalent to the ROC-like curves presented. Similar

curves have been used previously in the evaluation of

methods for identifying differentially expressed genes

[57].

The union and intersection curves were obtained by

taking the empirical cdf of the gene-wise minimum and

maximum, respectively, of the two q-value lists. Areas

between curves were obtained by numerical integration

using the trapezoid method, as implemented in the

caTools package [59] available from CRAN. Curves were

sampled at intervals of 0.001 on the FDR axis. Over

detection was measured as the area between the ROC-

like curve for differentially expressed genes detected

using cross-platform normalized data and the intersec-

tion of that curve with the curve representing the union

of genes detected using each platform independently.

Under detection was measured as the area between the

curve representing the intersection of genes detected

using each platform independently and the intersection

of that curve with the curve representing differentially

expressed genes detected using cross-platform normal-

ized data. The sample sizes were equalized for all curves

during the resampling process.

Bootstrapping

A smoothed bootstrapping procedure was used to

obtain distributions for the concordance, over-detection,

and under-detection statistics. The smoothing was

accomplished through the addition of zero-centered

Gaussian noise with a 0.1 standard deviation. Resam-

pling was restricted by treatment groups. That is, for

the MAQC data set, every bootstrap maintained the

same proportion of data from samples A, B, C, and D.

For the human sperm data set, the proportion of data

from N and T samples was kept constant. Data used to

produce the native ROC-like curves for each platform

(and subsequent union and intersection curves) were

produced by the same resampling and smoothing proce-

dure, but with the sample size doubled for the relevant

treatment groups in order to maintain the same total

sample size for each ROC-like curve produced. Data for

resampling (positive) control methods was generated in

the same manner as the data for the native ROC-like

curves, sampled independently to simulate repetition of

the experiment on each platform separately. Computa-

tions were performed using R version 2.9.0 (2009-04-17)

x86_64-redhat-linux-gnu on a Rocks 5.3 computing

cluster. Bootstrapping results are available as additional

file 4.

Cross-platform normalization

R code was obtained for all methods if available. R func-

tions for GQ, MRS, and QD were taken from the source

code for WebArrayDB. Code for EB and NorDi was

obtained from the original authors of those methods.

QN was available from the preprocessCore package of

Bioconductor. To the best of our knowledge, no R

implementations of DWD, DisTran, or XPN existed

prior to this work. Implementation of DisTran was

based on a description of the method [5]. Because the

DisTran method relies on treatment group information,

which for the purposes of this comparison was not con-

sidered to be available, a k-means clustering step was

added to estimate that information. The correct number

of treatment groups was always used as the value of k.

Implementation of DWD and XPN was based on the

Matlab implementations of those methods provided by
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their authors. Both methods were tested on toy data sets

to ensure agreement with the original implementations.

For XPN, agreement was approximate due to the ran-

domness inherent in the initial clustering step. DWD

relies on the solution to a second order cone program

(SOCP). No appropriate SOCP solver existed in R prior

to this work, so a recent smoothing Newton method

algorithm was implemented and employed [60]. Addi-

tional clustering features were added to XPN. In the ori-

ginal Matlab implementation, k-means clustering of

assays was performed on data from both platforms

together. If any cluster contained data from only one

platform, clustering was simply repeated with a different

set of initial centroids. To speed up the clustering pro-

cess, an option to cluster data from the two platforms

separately and match clusters based on the correlation

of cluster centroids was added. XPN trials designated as

“modified” or “mod” made use of this modified method.

Some methods require the user to select one or more

parameters manually. XPN and DisTran both require

the user to select how many assay clusters are to be

used. In all cases, the actual number of treatment

groups was used. XPN also requires the user to select

the number of gene clusters and the number of itera-

tions to perform. Values of 3, 6, and 9 were used for

gene clusters as indicated in the results section. Where

no value is indicated, three gene clusters were used. For

all XPN trials, 30 iterations were performed as recom-

mended by the original authors [34]. The EB method

allows the user to select whether a parametric or non-

parametric prior distribution is to be used. For all trials

shown, the parametric prior was selected. Difficulties

were encountered with the non-parametric option.

NorDi requires the selection of p-value and alpha para-

meters, which were set at 0.01 and 0.05, respectively, in

agreement with that method’s use by its authors.

A detailed description of each method can be found in

the references, with the exception of GQ. GQ is

included as part of the WebArrayDB service [38] and

was invented by the authors of that service, but has

never been described in a publication. GQ is a two step

process. First, the data are transformed by the MRS

method. Second, the median expression value is calcu-

lated for each gene and platform combination in the

MRS normalized data. The median expression values

are then subtracted from the second platform data, and

the first platform’s medians are added to the second

platform’s data set, with the end result that each gene

has the same median expression level on both platforms.

The EB method is capable of taking treatment group

or other covariate information into account [36].

Because we are interested in applications in which such

information may be unavailable, we did not utilize those

capabilities in our analyses.

Additional material

Additional file 1: Mean-mean plots for MAQC treatment group B

ILM and AFX data.

Additional file 2: Mean-mean plots for MAQC treatment group C

ILM and AFX data.

Additional file 3: Mean-mean plots for MAQC treatment group D

ILM and AFX data.

Additional file 4: Raw bootstrap results for all statistics presented.
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