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BACKGROUND: Decision makers rely on meta-analytic
estimates to trade off benefits andharms. Publicationbias
impairs the validity and generalizability of such estimates.
The performance of various statistical tests for publica-
tion bias has been largely compared using simulation
studies and has not been systematically evaluated in em-
pirical data.
METHODS: This study compares seven commonly used
publication bias tests (i.e., Begg’s rank test, trim-and-fill,
Egger’s, Tang’s, Macaskill’s, Deeks’, and Peters’ regres-
sion tests) based on 28,655 meta-analyses available in
the Cochrane Library.
RESULTS: Egger’s regression test detected publication
bias more frequently than other tests (15.7% in meta-
analyses of binary outcomes and 13.5% in meta-
analyses of non-binary outcomes). The proportion of sta-
tistically significant publication bias tests was greater for
larger meta-analyses, especially for Begg’s rank test and
the trim-and-fill method. The agreement among Tang’s,
Macaskill’s, Deeks’, and Peters’ regression tests for binary
outcomes was moderately strong (most κ’s were around
0.6). Tang’s and Deeks’ tests had fairly similar perfor-
mance (κ > 0.9). The agreement among Begg’s rank test,
the trim-and-fill method, and Egger’s regression test was
weak or moderate (κ < 0.5).
CONCLUSIONS: Given the relatively low agreement be-
tween many publication bias tests, meta-analysts should
not rely on a single test andmay apply multiple tests with
various assumptions. Non-statistical approaches to eval-
uating publication bias (e.g., searching clinical trials reg-
istries, records of drug approving agencies, and scientific
conference proceedings) remain essential.
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INTRODUCTION

Systematic reviews and meta-analyses are an essential link in

the chain of evidence translation and are frequently used to

provide a single pooled estimate of the best available evidence

for decision makers. Publication bias is recognized as a serious

threat to the validity and generalizability of this pooled esti-

mate. Studies with statistically significant findings are more

likely to be published than those reporting statistically non-

significant findings; thus, summary treatment effects may be

under- or over-estimated.1–5 In one example, data on 74% of

patients enrolled in the trials evaluating the antidepressant

reboxetine remained unpublished.6 Published data overesti-

mated the benefit of reboxetine vs. placebo by 115% and

underestimated harm; the addition of unpublished data

changed the non-significant difference between reboxetine

and placebo shown in published data to an inferiority of

reboxetine. Therefore, assessing publication bias has been

recommended as a critical step in conducting systematic re-

views and meta-analyses.7 Both non-statistical and statistical

approaches have been widely accepted for this purpose.

Non-statistical approaches include searching for unpub-

lished databases from clinical trials registries and drug or

device approving agencies, and they provide a powerful tool

to detect publication bias. In the reboxetine example, only few

published studies were available to validate the benefit of

reboxetine, and the majority (74%) of the data were unpub-

lished. Statistical methods may not successfully detect publi-

cation bias when the number of available published studies is

small as in this example.

However, identifying and accessing unpublished databases

are not always possible. Therefore, statistical methods have

been popular auxiliary tools to handle publication bias. Table 1

summarizes several statistical methods that are based on test-

ing the asymmetry of the funnel plot, which is a plot that

presents each study’s effect size against its precision or stan-

dard error.8,9 The trim-and-fill method not only detects but

also adjusts for publication bias; nevertheless, it makes a rather

strong assumption that the potentially unpublished studies

have the most negative (or positive) treatment effects. Thus,

it is generally recommended as a form of sensitivity analysis.10

Begg’s and Egger’s tests examine the association between the
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observed treatment effects and their standard errors; a strong

association implies publication bias. The original Egger’s test

regresses the standardized effect (i.e., the effect size divided by

its standard error) on the corresponding precision (i.e., the

inverse of the standard error).11 It is equivalent to a weighted

regression of the treatment effect on its standard error, weight-

ed by the inverse of its variance.12 The weighted regression is

more familiar among meta-analysts, because it directly links

the treatment effect to its precision without a standardization

process. Several modifications of Egger’s test also use the

technique of weighted regression: the dependent variable is

also the treatment effect, but the independent variable differs.

For example, Tang and Liu13 used the inverse of the square

root of study-specific sample size as the regression indepen-

dent variable, which was motivated by the sample-size-based

funnel plot (effect size against sample size).

When study outcomes are binary, the commonly used effect

size odds ratio is mathematically associated with its standard

error, even in the absence of publication bias.14,15 Because of

this, Begg’s and Egger’s tests may have inflated false positive

rates for binary outcomes, and alternative regression tests have

been designed specifically to deal with this issue.15–17 For

example, Macaskill et al.16 regressed log odds ratio on the

study-specific total sample size. Deeks et al.15 used the “ef-

fective sample size” (defined in Table 1) as the regression

independent variable, and Peters et al.17 modified Macaskill’s

regression and used the inverse of the total sample size as the

independent variable.

These various methods have been frequently applied to

assess publication bias in systematic reviews, and some have

been compared in simulation studies.17–19 It is generally rec-

ognized that Begg’s rank test has lower statistical power than

others.12,14,16 However, comparison between these tests using

empirical data, as opposed to simulation, is unavailable. Also,

some simulation settings could be fairly unrealistic; for exam-

ple, studies may be unpublished because of non-significant P

values,20 or negative effect sizes,21 or some other obscure

editorial criteria.22 Therefore, the exact mechanism of publi-

cation bias in a real meta-analysis cannot be reliably

reproduced by simulation.

In this study, we apply seven commonly-used publication

bias tests to a large collection of meta-analyses published in

the Cochrane Library. We investigate the proportion of meta-

analyses that have statistically significant publication bias

detected by each test. We evaluate the agreement among the

results produced by these tests and the effect of meta-analysis

size on results. These empirical comparisons will aid re-

searchers in properly assessing publication bias and

interpreting test results in future systematic reviews.

METHODS

Data Source

The Cochrane Collaboration is a non-for-profit and non-

governmental organization that produces systematic reviews

on various healthcare-related topics. The Cochrane reviews

are regularly updated, so a single review may have several

versions. Also, some newly published reviews may be

Table 1 Brief Descriptions for Various Publication Bias Tests and Summary of Test Results for the Cochrane Meta-Analyses

Test Designed
for

Description No. of meta-analyses with P value < 0.1

Based on all eligible
meta-analyses

Based on the
restricted dataseta

Non-
binaryb

Binaryc Non-
binaryd

Binarye

Begg’s rank test All
outcomes

Use the rank correlation test to assess the association
between standardized effect size and its standard error

766
(7.2%)

1479
(8.2%)

108
(8.4%)

165
(8.7%)

Trim-and-fill
method

All
outcomes

Estimate the number of suppressed studies, and calculate
P value using its negative binomial distribution in the
absence of publication bias

706
(6.7%)

1815
(10.1%)

102
(7.9%)

224
(11.8%)

Egger’s
regression test

All
outcomes

Weighted linear regression of y on s, with weights 1/s2 1426
(13.5%)

2842
(15.7%)

190
(14.7%)

337
(17.7%)

Tang’s
regression test

All
outcomes

Weighted linear regression of y on 1=
ffiffiffiffiffi

N
p

, with weights N 1045f

(11.0%f)
2064
(11.4%)

128g

(11.1%g)
236
(12.4%)

Macaskill’s
regression test

Binary
outcomes

Weighted linear regression of y on N, with weights Ns ×
Nf/N

N/A 2554
(14.1%)

N/A 287
(15.1%)

Deeks’
regression test

Binary
outcomes

Weighted linear regression of y on 1=
ffiffiffiffiffiffi

N e

p

, with weights
Ne

N/A 2084
(11.5%)

N/A 237
(12.4%)

Peters’
regression test

Binary
outcomes

Weighted linear regression of y on 1/N, with weights Ns ×
Nf/N

N/A 2135
(11.8%)

N/A 249
(13.1%)

y, effect size; s2, within-study variance; N, total no. of patients; Ns and Nf, no. of patients with and without events for binary outcomes respectively; Ne,
effective sample size, defined as 4N0×N1/N, where N0 and N1 are sample sizes the control and treatment groups respectively; N/A, not applicable
aThe restricted dataset consists of the meta-analyses with the largest numbers of studies in the corresponding Cochrane systematic reviews
bAmong 10,600 meta-analyses with non-binary outcomes
cAmong 18,055 meta-analyses with binary outcomes
dAmong 1291 meta-analyses with non-binary outcomes in the restricted dataset
eAmong 1906 meta-analyses with binary outcomes in the restricted dataset
fAmong 9530 meta-analyses whose total sample sizes are available
gAmong 1157 meta-analyses whose total sample sizes are available in the restricted dataset
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protocols that prepare data collection and analysis, so statisti-

cal data are not available from these protocols yet. Some early

reviews have been withdrawn because they were merged into

other reviews or were found to be flawed; their statistical data

are also unavailable from the Cochrane Library.

We searched for all reviews in the Cochrane Library from

2003 Issue 1 to 2017 Issue 12. The issues before 2003 were

not available online. All statistical data contained in each

Cochrane review were downloaded at the link in the form of

http://onlinelibrary.wiley.com/doi/10.1002/14651858.

CDXXXXXX.pubY/downloadstats, where XXXXXX repre-

sents the Cochrane ID of the systematic review, and Y repre-

sents the review’s most current version. If a systematic review

had only one version, the character string “.pubY” was re-

moved from the foregoing link. We downloaded the data of all

reviews iteratively using the R package “RCurl”23 on 6 De-

cember, 2017.

Analysis Approach

We classified the meta-analyses in the Cochrane reviews into

those with non-binary or binary outcomes. For binary out-

comes, regardless the analyses performed in the original re-

views, we used the odds ratio as the effect size, because the

methods of Macaskill’s, Deeks’, and Peters’ regressions were

designed for the odds ratio. If the 2×2 table of a study

contained zero data cell in one arm only, we added a continuity

correction of 0.5 to all four cells so that the odds ratio and its

variance can be properly estimated.24,25 Studies with zero data

cells in both treatment and control arms were excluded be-

cause their odds ratios were not estimable.25–27We considered

meta-analyses containing at least five studies.

For meta-analyses with non-binary outcomes, we applied

Begg’s rank test, the trim-and-fill method, and Egger’s and

Tang’s regression tests to assess publication bias, as they

were proposed for all types of outcomes.11,13,20,21 For meta-

analyses with binary outcomes, we additionally considered

Macaskill’s, Deeks’, and Peters’ regression tests, which

were originally designed for binary outcomes to control

false positive rates.15–17 The statistical significance level

was set to 0.1 because the statistical power of the publica-

tion bias tests is generally low.11,16,20 Moreover, Cohen’s κ,

a coefficient upper bounded by 1, was used to measure

pairwise agreement among the publication bias tests.28

Typically, κ < 0 indicates no agreement; agreement is con-

sidered weak, moderate, and strong if κ lies in 0–0.4, 0.4–

0.6, and 0.6–1, respectively.29

Multiple meta-analyses may be performed on different out-

comes and treatment comparisons within a single review, but

they probably used information from some common popula-

tions and thus may be dependent.30 To reduce the impact of

such correlations, we also conducted the analysis using a

restricted dataset. Specifically, the meta-analysis with the larg-

est number of studies was chosen from each review. If a

review contained more than one meta-analysis with the same

largest number of studies, the meta-analysis with the largest

total sample size was selected. If the total sample sizes were

still equal, one meta-analysis was randomly chosen from those

with the largest numbers of studies and total sample sizes.

Figure 1 shows the process of meta-analysis selection.

RESULTS

A total of 9707 systematic reviews were collected for this

empirical study. Among them, 2417 reviews had only one

version, 4623, 1805, 656, 165, 33, 7 reviews had two, three,

four, five, six, and seven versions respectively, and only one

review had eight versions. In addition, 2985 reviews were

protocols or had been withdrawn without statistical data in

the Cochrane Library. After extracting the meta-analyses with

at least five studies from the remaining 6722 reviews, we

obtained a total of 28,655 meta-analyses; among them,

10,600 and 18,055 had non-binary and binary outcomes,

respectively. Finally, for the restricted dataset, we obtained

1291 and 1906 unique meta-analyses with non-binary and

binary outcomes respectively that were deemed independent.

Figures 2 and 3 show the P values produced by the various

publication bias tests for meta-analyses with non-binary and

binary outcomes, respectively. The horizontal axis presents

each meta-analysis sorted by its size (i.e., the number of

included studies); the meta-analyses with the same size are

sorted by their Cochrane IDs. The vertical axis shows the P

values transformed by negative logarithm with base 10, and

three statistical significance levels, 0.01, 0.05, and 0.1, are

displayed. Both figures illustrate that the area representing

small meta-analyses was much wider than that representing

large meta-analyses, and most Cochrane meta-analyses

contained less than 10 studies. Specifically, among the entire

28,655 meta-analyses with all types of outcomes, 7256 meta-

analyses contained 5 studies, while only 191 meta-analyses

contained 20 studies. The median number of studies was 7,

and the lower and upper quartiles were 5 and 20, respectively.

Overall, Table 1 shows that Begg’s rank test and the trim-

and-fill method detected statistically significant publication

bias in much fewer meta-analyses than regression-based tests.

Figure 1 Flow chart of selecting the meta-analyses with non-binary
and binary outcomes from the Cochrane Library.
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In particular, for small meta-analyses, Figures 2 and 3 indicate

that the P values produced by Begg’s rank test and the trim-

and-fill method were generally larger than those produced by

regression tests. For example, among the meta-analyses con-

taining 5 studies, most P values produced by Begg’s rank test

and all P values produced by the trim-and-fill method were

greater than 0.05, while the regression tests implied substantial

publication bias with P values much less than 0.01 in some

meta-analyses. In addition, Begg’s rank test and the trim-and-

fill method were more likely to detect publication bias in large

meta-analyses than in small ones. Furthermore, note that all P

values of the trim-and-fill method were discontinuous and

massed at several specific values, because this method used

the negative binomial distribution, which was discrete, to

calculate P value.21 Many P values of Begg’s rank test were

also massed at several specific values. This is because the rank

test calculated an exact P value, taking some discontinuous

values, when the number of studies was small and the treat-

ment effects had no ties; otherwise, the P value was calculated

using the normal approximation of the rank statistic’s

distribution.

Compared with Begg’s rank test and the trim-and-fill meth-

od, the significance of publication bias assessed by regression-

based tests seemed to be less dependent on the size of meta-

analysis. Table 1 shows that Egger’s test detected statistically

significant publication bias in 13.5% of meta-analyses with

non-binary outcomes and 15.7% of those with binary out-

comes. These proportions were higher than the other

regression tests. The numbers of meta-analyses with statisti-

cally significant publication bias detected by Tang’s, Deeks’,

and Peters’ tests were similar for binary outcomes. Moreover,

the P value plots of Tang’s and Deeks’ tests in Figure 3 were

fairly similar. However, the plots of the other regression tests

were noticeably different: one test may not detect statistically

significant publication bias for a meta-analysis, while another

test could lead to an extremely small P value for the same

meta-analysis.

Table 2 quantifies the agreement among the tests using

Cohen’s κ coefficient. The upper panel analyzes all extracted

Cochrane meta-analyses, and the lower one is based on the

restricted dataset that consisted of the largest meta-analysis

from each Cochrane review. Results were in general consistent

between the two analyses. In the lower table, in which the

meta-analyses were from different reviews and may be

deemed independent, Begg’s rank test and the trim-and-fill

method had a rather weak agreement (κ ≤ 0.40), and their

agreement with the regression tests was also weak. Egger’s

test had moderate agreement with Tang’s, Deeks’, and Peters’

regression tests. Most Cohen’s κ coefficients between Tang’s,

Macaskill’s, Deeks’, and Peters’ tests were close to 0.60,

which implied moderate agreement. The Cohen’s κ coefficient

between Tang’s and Deeks’ tests was close to 1, implying a

near perfect agreement; this confirms the original observation

in Figure 3.

Categorized by the number of studies, Figure 4 describes

the proportions of meta-analyses having statistically

Figure 2 The P values produced by four publication bias tests for all 10,600 Cochrane meta-analyses with non-binary outcomes. Plus signs (+)
indicate P values < 10−7. The total sample sizes were not reported in 1070 meta-analyses, so Tang’s test was not applicable for them, and panel

(d) does not contain their results.
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significant publication bias based on the various tests and the

Wald-type 95% confidence intervals of these proportions. The

lower panel indicates that the proportion tended to be greater

for larger meta-analyses with binary outcomes. Also, the pro-

portions of the Cochrane meta-analyses having statistically

significant publication bias were approximately between 10

and 30% for most sizes of meta-analyses. Publication bias was

detected by at least one test inmore than 20%ofmeta-analyses

with non-binary outcomes and in more than 30% of meta-

analyses with binary outcomes.

Figures S1–S3 in the Supplementary Materials online show

the P value plots and the plot of proportions of having

publication bias based on the restricted dataset. The trends in

these plots were similar with those in Figures 2, 3, and 4,

although the 95% confidence intervals in Figure S3 were

wider than those in Figure 4 because the restricted dataset

contained much fewer meta-analyses.

DISCUSSION

Main Findings

Using a large collection of meta-analyses, this empirical study

has illustrated that publication bias is frequently found using

Figure 3 The P values produced by seven publication bias tests for all 18,055 Cochrane meta-analyses with binary outcomes. Plus signs (+)
indicate P values < 10−7.
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standard tests in meta-analyses conducted in the Cochrane

systematic reviews. This finding underscores the need to rou-

tinely assess publication bias in future evidence synthesis

research. Egger’s regression test detected statistically signifi-

cant publication bias in more meta-analyses than others.

Tang’s and Deeks’ regression tests were shown to have

almost identical performance. Tang’s method was motivated

by examining the asymmetry of the sample-size-based funnel

plot for all types of outcomes, and the regression independent

variable is the total sample size within each study.13 Deeks’

method was originally developed for meta-analysis of diag-

nostic tests, and the regression independent variable is the

“effective sample size” (Table 1).15 If the allocation ratio for

the treatment and control groups is close to 1:1, which is

common in randomized controlled trials, then the “effective

sample size” is close to the total sample size. Therefore, it is

not surprising to obtain similar results using Tang’s and

Deeks’ tests.

Table 2 Cohen’s κ Coefficients for the Agreement Among Seven Publication Bias Tests. Within Each Sub-Table, the Results in the Upper and
Lower Triangular Are Based on the Cochrane Meta-Analyses with Non-Binary and Binary Outcomes, Respectively

Based on all Cochrane meta-analyses with at least five studies:
Begg 0.22 0.45 0.30 N/A N/A N/A
0.26 T & F 0.35 0.21 N/A N/A N/A
0.45 0.42 Egger 0.48 N/A N/A N/A
0.25 0.27 0.41 Tang N/A N/A N/A
0.13 0.21 0.34 0.54 Macaskill N/A N/A
0.25 0.28 0.42 0.93 0.52 Deeks N/A
0.24 0.24 0.38 0.65 0.45 0.64 Peters

Based on the meta-analyses that are the largest in their corresponding Cochrane systematic reviews:
Begg 0.40 0.50 0.35 N/A N/A N/A
0.29 T & F 0.46 0.27 N/A N/A N/A
0.46 0.43 Egger 0.47 N/A N/A N/A
0.25 0.27 0.43 Tang N/A N/A N/A
0.14 0.21 0.38 0.56 Macaskill N/A N/A
0.25 0.27 0.44 0.94 0.54 Deeks N/A
0.23 0.25 0.43 0.68 0.50 0.67 Peters

Cohen’s κ coefficients ≥ 0.60 are in italics
Begg, the rank test; Egger, Tang, Macaskill, Deeks, and Peters, the regression tests; T & F, the trim-and-fill method; N/A, not applicable

Figure 4 Proportions of the Cochrane meta-analyses having statistically significant publication bias (P value < 0.1) based on various tests and
their 95% confidence intervals. “Any test” implies the proportion of the meta-analyses having statistically significant publication bias detected
by at least one test. The label “All” on the horizontal axis represents all the extracted meta-analyses with non-binary (upper panel) or binary

(lower panel) outcomes.
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Limitations and Strengths

This study has several limitations. For example, the Cochrane

Library contains meta-analyses only in healthcare-related spe-

cialties; therefore, the results may not be generalized to other

fields. In addition, due to the lack of a gold standard test for

publication bias, we never know whether the results of this

study directly imply statistical power or true comparison of the

accuracy of these tests. For example, Egger’s test detected

publication bias in more meta-analyses than others possibly

because it was more sensitive or had a higher risk of false

positive.17

All seven tests considered in this study were based on the

funnel plot; however, the funnel plot’s asymmetry needs to be

interpreted from various perspectives. For example, since

small studies may be biased due to poor methodological

quality (e.g., design flaws such as inadequate allocation con-

cealment) and they commonly enroll high-risk individuals, the

funnel plot can be viewed as an approach to evaluating small

study effects in general, rather than publication bias in partic-

ular.14,31,32 In addition, the P value plots in Figures 2 and 3

indicate that some publication bias tests tended to detect more

statistically significant publication bias in larger meta-

analyses. As the number of studies increases, a meta-analysis

likely collects more heterogeneous or outlying studies, which

can be sources of causing the funnel plot’s asymmetry other

than publication bias. Outliers may appear in meta-analysis

due to several reasons. For example, some study results could

be extreme because of errors in the process of recording,

analyzing, or reporting data.33Also, if a review did not strictly

follow pre-specified inclusion and exclusion criteria, some

studies may be improperly included showing extreme results

(compared to other studies with proper inclusion criteria).

Outliers may lead to a heavy tail at one side of the treatment

effect distribution; thus, the funnel plot may look asymmetric,

but it is not caused by publication bias.

Heterogeneity between studies caused by differences in

patient selection, baseline disease severity, study location,

and other factors affects the interpretation of funnel plot’s

asymmetry. A random-effects meta-analysis is usually applied

to account for the heterogeneity; a normal distribution is

conventionally specified to model study-specific underlying

treatment effects.34,35 This model is appropriate if the hetero-

geneity permeates the entire collection of studies; however, the

heterogeneity may bemostly limited to several subgroups, and

the studies within each subgroup share a common overall

treatment effect. In the presence of such multiple subgroups,

even if the funnel plot within each subgroup is fairly symmet-

ric, the funnel plot based on the entire collection of studies can

be asymmetric. This asymmetry is induced by heterogeneity,

not publication bias.36,37 Performing separate analysis within

each subgroup is more appropriate for such data than pooling

the results of all studies.

Because heterogeneity is common in meta-analyses,38–40

researchers need to carefully assess heterogeneity before

making conclusions about publication bias. For example,

Ioannidis and Trikalinos30 advised that it may not be appro-

priate to use the publication bias tests if I2 statistic38,41 is

greater than 50% or Q statistic42,43 is significant with P value

< 0.1. Although these criteria may not be rigorous for deter-

mining whether the publication bias tests are appropriate, a

fairly large heterogeneity measure should alert researchers to

interpret the funnel plot’s asymmetry with great cautions.

Each Cochrane meta-analysis conducted a subgroup test to

identify potential subgroups; if the test indicated the presence

of multiple subgroups, our study extracted the meta-analysis

within each subgroup. Therefore, although it was infeasible to

examine whether a funnel plot’s asymmetry was caused by

publication bias or subgroup effect for each of the 28,655

Cochrane meta-analyses, extracting meta-analyses within sub-

groups has allowed us to reduce the subgroup effect on the

funnel plots.

Practical Implications

Decision makers rely on meta-analytic estimates to trade off

benefits and harms. If such estimates were erroneous because

of publication bias, “Evidence to Decision” frameworks44 can

be misled by skewed balance of benefits and harms and the

resulting recommendations may be erroneous or detrimental to

patient care. Because the agreement among most publication

bias tests is weak or moderate, researchers need to carefully

interpret the result produced by a single test. As publication

bias tests usually have low statistical power,11,16,20 a single test

that has a non-significant P value may lead to a false-negative

conclusion. Instead of relying on the conclusion from a single

test, researchers should assess publication bias using a variety

of methods because different tests make different assumptions

on the association between the treatment effects and precision

measures. Lastly, considering the importance of publication

bias and the challenges in statistically ascertaining its pres-

ence, systematic reviewers should resort to non-statistical

approaches. These approaches include comparing pub-

lished evidence to data available in clinical trials registries,

records of drug or device approving agencies such as the

Food and Drug Administration, and scientific conference

proceedings.
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