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Abstract—In this paper, a novel empirical data analysis 

approach (abbreviated as EDA) is introduced which is entirely 
data-driven and free from restricting assumptions and pre-
defined problem- or user-specific parameters and thresholds. It is 
well known that the traditional probability theory is restricted by 
strong prior assumptions which are often impractical and do not 
hold in real problems. Machine learning methods, on the other 
hand, are closer to the real problems but they usually rely on 
problem- or user-specific parameters or thresholds making it 
rather art than science. In this paper we introduce a theoretically 
sound yet practically unrestricted and widely applicable 
approach that is based on the density in the data space. Since the 
data may have exactly the same value multiple times we 
distinguish between the data points and unique locations in the 
data space. The number of data points, k is larger or equal to the 
number of unique locations, l and at least one data point occupies 
each unique location. The number of different data points that 
have exactly the same location in the data space (equal value), f 
can be seen as frequency. Through the combination of the spatial 
density and the frequency of occurrence of discrete data points, a 
new concept called multimodal typicality, τMM is proposed in this 
paper. It offers a closed analytical form that represents ensemble 
properties derived entirely from the empirical observations of 
data. Moreover, it is very close (yet different) from the 
histograms, from the probability density function (pdf) as well as 
from fuzzy set membership functions. Remarkably, there is no 
need to perform complicated pre-processing like clustering to get 
the multimodal representation. Moreover, the closed form for the 
case of Euclidean, Mahalanobis type of distance as well as some 
other forms (e.g. cosine-based dissimilarity) can be expressed 
recursively making it applicable to data streams and online 
algorithms. Inference/estimation of the typicality of data points 
that were not present in the data so far can be made. This new 
concept allows to rethink the very foundations of statistical and 
machine learning as well as to develop a series of anomaly 
detection, clustering, classification, prediction, control and other 
algorithms.  

Keywords—empirical data analysis; multimodal typicality; data-
driven; recursive calculation; inference; estimation. 

I.  INTRODUCTION  
Most of the human activities have already been largely 

changed in the recent decades because of the very fast 
development of information technologies and the Internet. 
Astronomical and ever increasing amount of data is being 
generated every day. As a result, data analysis is a rapidly 
growing field due to the strong need of processing large data 

sets or streams and converting the data into useful 
information. 

Traditional approaches are based on a number of 
restrictive assumptions which usually do not hold in reality. 
This applies to the fuzzy sets theory [1] with its subjective 
way of defining membership functions, assumption of smooth 
and pre-defined membership functions. It also applies to the 
probability theory [2] and statistical learning [3], [10]. They 
are an essential and widely used tool for quantitative analysis 
of data representation of stochastic type of uncertainties. 
However, they rely on a number of strong assumptions 
including pre-defined smooth and “convenient to use” types of 
probability distribution, infinite amount of observations/data 
points, independence between data points (so called iid – 
independent and identically distributed data), etc. However, in 
most practical problems, these assumptions are not satisfied. 
Till now, several alternative methods [5], [6] have been 
proposed aiming to  avoid the problem of unrealistic prior-
assumptions and get closer to the data rather than stick to the 
theoretical prior assumptions, but these methods still use at 
some point assumption of (albeit local) Gaussian/normal 
distribution.  

In this paper, we introduce a novel empirical data analysis 
(EDA) approach. It is a further development of the recently 
introduced TEDA (typicality and eccentricity data analytics) 
framework [7]-[9]. It does not require any prior assumptions 
which are usually unrealistic and restrictive, or parameters. 
Instead, it is entirely based on the empirical observations of 
discrete data points and their mutual position forming a unique 
pattern in the data space. It starts with calculating (recursively) 
the cumulative proximity, ; then the standardized 
eccentricity, ; and the density, D and finally, the multimodal 
typicality, MM. Moreover, unlike the pdf where identifying the 
number and position of modes is a well known problem 
usually solved by clustering, the multimodal typicality, MM is 
derived from the data automatically and without clustering or 
other additional algorithm. It is often quite close to the 
histograms but is not the same since it does take into account 
the mutual position of the data as well as the frequency of 
their occurrence, f.   

The advantages of multimodal typicality, MM are obvious 
because it combines pdf, histogram and mutual distributions of 
the data points together and has a closed analytical form that 
can be manipulated further. In addition, multimodal typicality, 
MM can be calculated recursively, which makes it suitable for 
applications to online data streams. 
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Moreover, one can infer the typicality , (x) for any 
feasible value x by interpolation or extrapolation and the 
typicality can be used in a manner similar to probability 
because it has same properties of being between 0 and 1 and 
summing up to 1. It is demonstrated in this paper that it can be 
used to build a naïve typicality-based EDA Classifier [10] 
which not only provides better results than the naïve Bayes 
classifier (due to taking into account the actual distribution of 
the data) but also in comparison with the SVM classifier [11]. 
In addition to that, the naïve EDA Classifier does not require 
any prior assumption of the distribution of the data selection 
of the type of the kernel or threshold constants or iterative 
optimization as the SVM approach does.   

Another very interesting feature is that this new method is 
free from some paradoxes that the traditional probability 
density function has [12]. Additionally, it combines effectively 
the two different types of randomness representation: a) the 
one based on the ratio of number of times a discrete random 

variable occurs (
k
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 ; where k* is the number of times 

of occurrence and k is the total number of data 
points/observations), see Fig.2 and b) the one based on pdf, 
see Fig.1(d). In the probability theory and statistics literature 
the transition between a) and b) is often neglected. In fact, a) 
(the multuimodal version, MM) is suitable for games such as 
dices, coins, balls etc. or “pure” random processes, white noise 
type while b) (the unimodal typicality, τ) is applicable to most 
of the real processes which are a more complex mixture of 
deterministic and random or, more correctly, complex 
phenomena. The proposed typicality works well for both a) 
and b) and combines them in a unique closed form 
representation without assuming k a type of the 
distribution, or any user- or problem- specific parameters.   

This novel non-parametric and assumption-free empirical 
data analysis framework is very promising and attractive 
because it is entirely based on the actual discrete/digital data 
and we live in the era of big (digital) data revolution. It is 
logical to develop and use methodologies and approaches that 
are suitable and tailored to this reality rather than stick to 
methods that were introduced centuries ago analyzing 
primarily analog signals and pure random phenomena like 
games or assume distributions a priori.  

The rest of this paper is organized as follows: section II 
introduces the novel empirical data analysis (EDA) framework 
including the theoretical basis, multimodal typicality and the 
recursive calculations. Section III describes the method of 
making inference within this novel framework. An additional 
example of multimodal typicality and inference of a 
benchmark dataset is presented in section IV. The naïve EDA 
Classifier is introduced and results of its application to 
benchmark problems compared with other classifiers in 
section V. Finally, the conclusions and future directions are 
provided in section VI. 

II. EMPIRICAL DATA ANALYSIS FRAMEWORK 
First, let us introduce the main quantities that represent 

ensemble properties of the data within EDA:  

1) cumulative proximity,  
2) standardized eccentricity,   

3) density, D, and finally 
4) typicality, . 

In addition, the calculations can be recursive and the 
multimodal form of the typicality is also introduced.  

A. Theoretical Basis 
First of all, let us consider the real Hilbert space dR and 

assume a particular data set or stream denoted as 
  d

k Rxxx ,...,, 21 , where the subscripts denote the time 
instance at which the data point arrives. Within the data 
set/stream, some of the data points may repeat more than once, 
namely,i,j ji xx  . The set of unique data point locations at 
time instance k can be defined as   d

l Ruuu ,...,, 21 and the 
corresponding number of times  lfff ,...,, 21  different data 
points occupy the same unique locations ( if  can be viewed as 
frequency if it is divided by k). Obviously, always kl  , but 
more often in real problems because of having exactly the 
same values many times, kl  .  Based on  luuu ,...,, 21  
and  lfff ,...,, 21 , we can reconstruct the data set 
 kxxx ,...,, 21  exactly if needed regardless of the order of 
arrival of the data points. Further in this paper, all derivations 
are conducted at the kth time instance by default if there is no 
special declaration. 

1) Cumulative proximity 
Cumulative proximity is a measure indicating the degree 

of closeness/similarity of a particular data point to all other 
existing data points [7]-[9].  

The cumulative proximity of the unique data point iu  is 
expressed as follows: 
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where  jid uu ,  is the distance between two unique locations 

iu  and ju . The distance can be of Euclidean, Mahalanobis 
type, based on cosine [12] any other metric. 

2) Standardized eccentricity  
Eccentricity was introduced in [7]-[9] to represent the 

association of the data point with the tail of the distribution 
and the property of being an outlier/anomaly [8]. The 
standardized eccentricity of iu ( li ,...,2,1 ) is calculated as 
follows: 

   
      1,1,0,2

 lkE
E

u
ku

k

i
u
k

i
u
k u

u
uu 




                   (2) 

where, li ,...,2,1 ,     



l

j
j

u
k

u
k l

E
1

1 uu  .  

It is interesting to note that   l
l

i
i

u
k 2

1




u . 

3) Density 



             
(a) Cumulative proximity                                                                                          (b) Eccentricity 

             
(c) Density                                                                                                                    (d) Typicality 
Fig. 1. The cumulative proximity, standardized eccentricity, density and typicality of the unique data points of climate dataset 

Data density is inversely proportional to the standardized 
eccentricity [9]. The density of iu ( li ,...,2,1 ) is defined as 
follows: 
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4) Typicality 

Typicality is a normalized data density [9]: 
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or in terms of the cumulative proximity: 

       li
l

j
j

u
ki

u
ki

u
k ,...,2,1,

1

1

1

















 uuu                      (5) 

or in terms of the distance: 
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The cumulative proximity, ; standardized eccentricity, ; 
density, D and typicality,  for a real climate data set [13] 
measured in Manchester, England in the period 2010-2015 
taking only winter and summer days is shown in Fig. 1 as 
illustrative examples.  

B. Multimodal Typicality 
In this paper, we further introduce a multimodal typicality, 

MM which is derived directly through the combination of the 
cumulative proximity, u  and typicality, u  of the unique 
data locations  luuu ,...,, 21  and the corresponding times the 
data occupy the same unique location,  lfff ,...,, 21 . The 
multimodal typicality, MM  is defined as follows: 
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Fig.2. A simple example of multimodal typicality 

 
Fig.3. 3-dimensional multimodal typicality of the climate dataset 

where     1,1,0,0
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A simple example to illustrate how multimodal typicality 
works for small values of k (amounts of data points) and the 
fact that it coincides with the frequency-based probability, 

k
kp

k

*

lim
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 [2],[4],[10] is shown in Figure 2 where a small 

data set of 3 data points is considered in which two of them 
have exactly the same value: x={2;5;5}. Obviously, u={2;5}; 
l=2; k=3; l<k. Naturally, the value of , MM={1/3;2/3} while 
for such small number of k it is not possible to get a 
meaningful pdf, but if follow the purely frequentistic form 

k
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  [2] the result will be exactly the same. Yet, the 

typicality (defined in equations (5)-(6)) automatically starts to 
approximate the pdf (see Figure 1(d)) for larger number of 
points and if use multimodal typicality (equation (7), which 
also takes into account the frequency, f) it provides a 
multimodal likelihood quite close to the histogram, see 
Figures 3-5.       

To further investigate the advantages of the multimodal 
typicality, the 3-dimensional multimodal typicality, MM of the 
climate dataset [13] is shown in Fig. 3. A comparison of MM 
with the traditional histogram [4], [10] as well as with the 
normal (Gaussian) pdf [4], [10] is also made in a 2-D graph for 
visual clarity, shown in Figure 4. 

The advantages of the multimodal typicality, MM can be 
summarized as follows: 

1. This typicality takes the spatial density, D into 
consideration. 

2. The frequency of the occurrence, f of a certain data 
sample is also taken into account. 

3. There is no need for clustering algorithm, thresholds or 
any parameters or complicated pre-processing technology 
involved to generate the multimodal typicality distribution. 

4. It provides in a closed analytical form without any prior 
assumptions made. 

Multimodal typicality, MM  is a function having the 
following properties:  

a) it sums up to 1; 
b) it is very close to (but not the same as) the histogram;  
c) its value is within the range [0;1]; 
d) it combines the two completely different forms used so 

far: histogram and pdf in one expression; 
e) it combines the two representations of the probability 

(frequency-based and distribution-based) 
f) it is free from the paradoxes that pdf is related to [12]. 

For small values of k, the multimodal typicality is exactly 
the same as the frequentistic form of probability (see Fig. 2), 
and with large k, it tends to the pdf. For kl  or  kl  (when 
there are different data points with the same value) different 
modes will appear automatically while for cases when kl   
or kl   one may still need clustering to get a multi-modal 
representation [12]. 

C. Recursive  Calculations 
Recursive calculations play a very significant role in 

online data streams processing [14]. With the utilization of 
recursive calculation, there is no need to keep large amount of 
data samples in the memory, which is more computation and 
memory efficient. The multimodal typicality, MM can be 
updated recursively as follows. 

If the data point that arrives at time instance k+1, xk+1 is 
not unique (there is already a point with exactly the same 
value), then the multimodal typicality can be updated as 
follows: 
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(a) Temperature 

 
(b) Wind speed 

Fig.4. Comparison of the multimodal typicality, histogram and Gaussian pdf 
of the climate dataset in 2-D 

 
(a) Interpolation 

 
(b) Extrapolation 

 
(c) 3D multimodal typicality with inferences of 5 arbitrary data points 

Fig.5. Examples of inference of multimodal typicality 

In case, when the new coming data point, xk+1 has unique 
new location, 1lu   then the set of unique locations  
 luuu ,...,, 21  is being appended by 11   kl xu  becoming 
 121 ,,...,, ll uuuu and lfff ,...,, 21 is also appended 
by 11 lf becoming  121 ,,...,, ll ffff  or  1,,...,, 21 lfff . 

The cumulative proximity can be updated as follows: 
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For the case when Euclidean distance is considered it 
becomes [7]-[9]: 
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After updating of the cumulative proximities, the typicality 
of all the unique data points including the new one at time 

instance k+1 can be updated using (6) as well as their 
corresponding multimodal typicality at time instance k+1 can 
be updated using equation (7). 

III. INFERENCE USING THE MULTIMODAL TYPICALITY 
In this section, the inference mechanism based on the 



 
(a) Temperature 

 
(b) Wind speed 

Fig.6. Curves of empirical likelihood of the climate dataset in 2-D 

proposed empirical data analysis framework, EDA will be 
introduced. The inference only applies to feasible points and 
therefore, first step is to check if a data point is feasible or not 
which is problem dependent, e.g. there cannot be a negative 
mass, distance, age, etc. For feasible values, we can then 
estimate the typicality as follows. 

For the data sample that occupies a new unseen location, 
the set of unique locations is first updated by appending ul+1: 
 121 ,,...,, ll uuuu . Then  1l  and 1lU  are recursively 
updated using equations (11) and (12), and then, most 
importantly, calculate  1l

u
k u  using equations (6)-(10). 

If the data point at which an estimate/inference of the 
typicality is made is within the range of the dataset (that is, 
perform an interpolation, see Fig. 5(a), the red line) then the 
frequency 1lf  is estimated as the average of the frequencies 
of the two nearest data points of each dimension: 

   
 




 




d

i iLiR

iLiliRiRiLil
l uu

fuufuu
d

f
1 ,,

,,1,,,,1
1

1              (13) 

where iRu ,  and iLu ,  are the ith dimensional values of iR ,u and 

iL,u  that are the nearest to 1lu in the ith dimension and satisfy  

iRiliL uuu ,,1,   .  

If the data point is outside of the range (that is, 
extrapolation, see Figure 5(b), the red line), the frequency is 
set to 1: 11 lf . Because such points for which inference is 
made do not actually exist (they are virtual), they should not 
influence the typicality of the other really existing data points. 
The density of the virtual data point is: 
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Therefore, using equation (7) the typicality of any new 
data point can easily be estimated using  1l

u
kD u  and 1lf : 
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Fig. 5(c) depicts a 3D example with five feasible points for 
which an inference is made shown in red. In Fig. 6 inference 
for many points is made (in red) which leads to a typicality 
graph that looks like continuous (it is not continuous because 
the number of actual data points, k plus the points for which 
the inference is made is not infinite).  

IV. EXAMPLE 
In this section, another example of multimodal typicality, 

MM and inference for a benchmark dataset is presented. The 
benchmark dataset in question is a wrist-worn accelerometer 
(3 dimensional) data set for activities of daily life (ADL) 
recognition described in [15]. In this paper, only part of the 
data is used (5 clusters with 150 data points per cluster). The 
data is real and interesting because they are clearly not uni-
modal. The proposed multimodal typicality can be determined 
without any clustering. It is visually very similar to the 
histograms that can be obtained. The 3D graph of the 
multimodal typicality and inference of the wrist-worn dataset 
is shown in Fig. 7(a) (the inference made for several points is 
shown in red). The 2-D curves of the empirical likelihood of 
the data in 3 dimensions (x-axis, y-axis, z-axis) shown 
respectively in Fig. 7(b)-(d). 

V. NAÏVE EDA CLASSIFIER 
So called naïve Bayes classifier have been extensively 

studied and widely used in various fields [6],[10]. Naïve 
Bayes classifiers conduct classification based on a pre-defined 
pdf assuming usually normal (Gaussian) distribution of the 
data which is obviously not the case in reality (as seen above). 
In this paper, a new simple, yet quite effective (especially for 
complex problems) classifier is introduced, called Naïve EDA 
classifier using essentially the same concept but representing 
the data distribution with their multimodal typicality instead of 
a pre-defined smooth (but idealized) pdf.   



                     
(a) 3D multimodal typicality with inferences of 10 arbitrary data points                        (b) x-axis 

 

                      
(c) y-axis                                                                                                                         (d) z-axis 

Fig.7. Example of wrist-worn dataset 

TABLE I.  CONFUSION MATRIX FOR THE VALIDATION DATA 

 

Method 

Classification Results 

Actual\Classification Negative Positive 

(proposed) 
Naïve EDA 
Classifier 

Negative 
76.09% 

(35 Samples) 

23.91% 

(11 Samples) 

Positive 
9.68% 

(3 Samples) 

90.32% 

(28 Samples) 

Naïve Bayes 
Classifier 

Negative 
82.61% 

(38 Samples) 

17.39% 

(8 Samples) 

Positive 
29.03% 

(9 Samples) 

70.97% 

(22 Samples) 

SVM 
Classifier 

Negative 
82.61% 

(38 Samples) 

17.39% 

(8 Samples) 

Positive 
25.81% 

(8 Samples) 

74.19% 

(23 Samples) 

 

Assuming there are C classes, the class label for newly 
arriving data points will be determined by: 
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where, the multimodal typicality of x  in the vth class is 
defined per class as follows: 

   

 
 


C

j

l

i
ij

u
jkij

u
vklvMM

vk j

v

Df

Df

1 1
,,,

,1,
,

u

x
x                                         (17) 

where the index vl  indicates the number of points in the vth 
class;  

 xu
vkD ,  is calculated by equation (14) per class and 

1, vlvf  is calculated by equation (13).  

Indeed, the class label for x  is decided by the multimodal 
typicality which has highest value among all classes.  



The performance of the proposed naïve EDA classifier was 
tested on a well known challenging problem called PIMA 
dataset [16]. The performance of the proposed naïve EDA 
classifier was compared with the best known classifier SVM 
and with the naïve Bayes classifier which it resembles. First, 
90% (691 points) of the data set were used for training. The 
PIMA dataset is described in [16]; in this paper we only use 
the following attributes:  

1) number of times pregnant;  
2) plasma glucose concentration a 2 hours in an oral 

glucose tolerance test;  
3) diastolic blood pressure (mm Hg);  
4) triceps skin fold thickness (mm).  
The results are depicted in Table I in the form of a 

confusion matrix. The proposed naïve EDA classifier provides 
81.8% accuracy compared with the 79.2% for the SVM 
classifier using linear kernel function [11] and 77.9% of the 
naïve Bayes classifier using Gaussian distribution. Obviously, 
the performance of the proposed naïve EDA classifier is the 
best which is not unexpected, because it does take into account 
the real data distribution rather than idealize it. Moreover, it 
does not require the decision maker to make a choice of a 
distribution or parameters or have iterative optimization but is 
an entirely data driven (objective) approach and is free from 
problem- and user- specific parameters and assumptions.  

VI. CONCLUSION AND FUTURE DIRECTION 
In this paper, a novel non-parametric empirical data 

analysis approach is introduced which is free from any prior 
assumptions. This approach is entirely based on empirical 
observations of discrete data points and the ensemble data 
properties are extracted from the data directly and 
automatically. A new concept, called multimodal typicality, is 
also proposed within this framework. Multimodal typicality 
takes the mutual distributions and frequencies of occurrence of 
the data points into account at the same time and combines 
classical pdf, histogram into one expression. It also combines 
the frequentistic and the distribution-based interpretation of 
probability. There is no need for any complicated 
preprocessing technology or clustering algorithm to generate 
multimodal typicality, and it also can be calculated 
recursively. Within this new framework, inferences of 
multimodal typicality of virtual data points can be made 

entirely based on the existing data points, and a curve of 
empirical likelihood can be drawn optionally. This new 
empirical data analysis approach is very powerful in real cases 
and will be a promising tool in the field of data analytics. 

As future work, this novel empirical data analysis 
approach will be applied to various machine learning 
problems such as anomaly detection, clustering, more 
sophisticated classification algorithms, data prediction, etc.  
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