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Abstract. The work described here pertains to ICICLE, an intelligent tutoring system for which
we have designed a user model to supply data for intelligent natural language parse disambigua-
tion. This model attempts to capture the user’s mastery of various grammatical units and thus
can be used to predict the grammar rules he or she is most likely using when producing language.
Because ICICLE’s user modeling component must infer the user’s language mastery on the basis
of limited writing samples, it makes use of an inferencing mechanism that will require knowledge
of stereotypic acquisition sequences in the user population.We discuss in this paper the meth-
odology of how we have applied an empirical investigation into user performance in order to
derive the sequence of stereotypes that forms the basis of our modeling component’s reasoning
capabilities.
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1. Introduction

We are currently developing the ICICLE system, a Computer Assisted Language
Learning (CALL) system which instructs on English as a second language through
the paradigm of a writing tutor (Michaud and McCoy, 2000; Michaud and McCoy,
2001; Michaud and McCoy, 2003; Michaud et al., 2000; Michaud et al., 2001).
The name ICICLE represents ‘Interactive Computer Identi¢cation and Correction
of Language Errors.’ The system’s long-term goal is to employ natural language
processing and generation to tutor students on grammatical components of
their freeform written English. Of paramount importance of this goal is the correct
analysis of the source and nature of user-generated language errors, and the
production of tutorial feedback to student performance that is both correct and
individualized to the student.

Our target audience for this work has been the native or near-native users of
American Sign Language (ASL). Since ASL is a distinct and vastly di¡erent
language from English (Baker and Cokely, 1980; Stokoe, 1976) and written English
y This work was completed while the primary author was a graduate student in the Department of Computer
and Information Sciences at the University of Delaware.
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(understandably) is a truly di⁄cult language for many deaf individuals to master
(Charrow, 1975; Charrow and Fletcher, 1974; Charrow and Wilbur, 1975; Quigley
et al., 1977; Wilbur, 1977), we view the acquisition of written English skills to
be a task in second language acquisition for these learners (Michaud and McCoy,
1998; Michaud et al., 2000). Because some deaf individuals achieve a high level
of success with English while others struggle with basic elements of the language
(Padden and Ramsey, 1998; Stewart, 2001; Swisher, 1989), and our system endea-
vors to accurately address the needs of as broad a spectrum of users as possible,
user adaptivity through user modeling has been a primary focus of our system
development e¡orts.

It has been said that a well-designed tutoring system actively undertakes two
tasks: that of the diagnostician, discovering the nature and extent of the student’s
knowledge, and that of the strategist, planning a response (such as the communica-
tion of information) using its ¢ndings about the learner (Glaser et al., 1987; Spada,
1993). A user model typically serves as a repository for the information serving both
of these two processes, representing what has been discovered about the learner
and making that data available to drive the decisions of the adaptive system.

The diagnostician and strategist aspects of ICICLE enable it to process a sample
of writing and interact with its user through a cycle of user input and system
response. This cycle begins when a user submits a new piece of writing to review
by the system1. The diagnosis module of the system performs an analysis on this
writing, determining its grammatical errors. The user modeling component aids this
determination by indicating the most likely diagnosis of student performance on
the basis of what it has observed in the previous writing samples from this student.
The ‘strategist’ part of the system then constructs a response in the form of tutorial
feedback. This feedback is aimed toward making the student aware of the nature
of the errors found in the writing and toward giving him or her the information
needed to correct them. When the student makes those corrections and/or other
revisions to the piece, it may be re-submitted for analysis and the cycle begins again.

Since the system is intended to be used by an individual over time and across many
pieces of writing, these roles and the cycle they represent will be performed many
times with any given user. At the same time, we expect the user to be changing
as the learning process unfolds. We therefore envision a user model participating
in this interactive cycle in several capacities. First, the analysis of user performance
can feed data about the user’s command of the language to the model. In this
way, each iteration of the cycle provides more data to tune the model. Next, the
model can serve up the data from previous interactions with the user to inform both
the analysis and tutoring processes so that the most likely analysis of the user’s text
is selected and so that tutoring can be appropriately focused. Finally, the user model
is dynamic and £exible, following the user as he or she learns. Since the user’s
mastery of the language is constantly changing, the model must attempt to provide

1The ICICLE system takes as input free-form, multi-sentence essays.

318 L. N. MICHAUD AND K. F. McCOY



data which re£ects the current moment. In some cases, this may mean that the model
may need to predict aspects of the user’s mastery which are not yet readily apparent
in his or her language production, but which may be inferred from a combination
of observed performance and knowledge about the typical learning patterns of
the population. Because of this last characteristic of our user model, it is necessary
for us to investigate a modeling architecture which allows for inferring data beyond
what is directly observed.

1.1. AN INFERENCE-BASED USER MODEL FOR ICICLE

ICICLE’s current implementation is a prototype application which uses a text parser
to syntactically interpret potentially large samples of user-written text and provide
simple feedback through ‘canned’ one-sentence comments on the errors it ¢nds.
The parser utilizes an augmented CFG grammar for Allen’s TRAINS parser (a
parser related to that which was presented in Allen (1995), version 4.0. Mal-rules,
or ‘buggy’ rules, represent commonly-committed grammatical errors based on
analysis of a corpus of writing samples from our user population (Suri, 1993; Suri
and McCoy, 1993). With this augmentation, the system is able to recognize many
morphosyntactic2 errors. The coverage of this grammar was originally explored
by Schneider and McCoy (1998) and is a focus of current evaluation.

One di⁄culty faced by the diagnosis process is that there are often multiple inter-
pretations for a particular input sentence, some possibly indicating di¡erent errors.
The current system selects between competing parses which span each utterance
by choosing arbitrarily, with no selection criteria. Since determining the nature
and cause of student errors is an integral step to deciding how to approach student
instruction (Matz, 1982), the parser must be able to make principled decisions
between these options.

To determine which of the parse possibilities best describes the student’s actual
performance, we have decided to augment our system’s capabilities with a model
of the student that indicates which grammar rules he or she is most likely to be
using. These rules can be correct or incorrect, depending on the student’s status
in the acquisition of the grammatical concepts involved. We can then choose between
structurally-di¡erentiated parses by selecting the parse that uses the most likely
rules.

We contend that one way to determine which rules a user is most likely to employ
is to observe the user’s correct (or incorrect) use of the various grammatical
constructs. Essentially, we expect the user to use (Michaud and McCoy, 2001;
McCoy et al., 1996):

^ correct rules for grammatical constructs which he or she has successfully
acquired

^ both correct and incorrect (mal-) rules for those constructs currently being
acquired (but not fully mastered at this time)

2Spanning both word morphology and sentence syntax.
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^ incorrect (mal-) rules for those structures which are beyond the user’s current
mastery of English

However, the system will have access to a ¢nite amount of writing from the user, and
it is not likely to cover all of the possible grammatical constructs about which
the user modeling component desires to collect data3. Therefore, direct observation
of the user through his or her interaction with ICICLE is going to reveal information
about a large but limited (and most likely incomplete) number of grammatical con-
structs. Thus, these observations must be augmented. We contend that if we had
a sequence of stereotypical acquisition states, we could extend the data we have
on the user by adding information from the stereotypical state that the user’s current
acquisition status most closely resembles. Having a sequence of these states could
only be possible if indeed there were a typical order in which grammatical consti-
tuents were acquired by second language learners. Support for the existence of such
an order can be found in empirical studies on the acquisition of English (Bailey
et al., 1974; Dulay and Burt, 1975; Gass, 1979; Larsen-Freeman, 1976; Krashen,
1982; Schwartz, 1998; Schwartz and Sprouse, 1996), where it is sometimes called
a ‘built-in syllabus’ for second language (L2) acquisition (Corder, 1967; Higgins,
1995).

The intuition underlying our use of the stereotypical sequence of acquisition is
that we can deduce through observation that certain grammatical constructions
are acquired, being-acquired, or unacquired. We can then infer the acquisition status
of a number of other grammatical constructs by selecting a stereotypical acquisition
state which most closely matches our observations. This state would allow us to
‘¢ll in the blanks’ on the structures on which we have little or no data according
to how well a typical learner at this stage has usually mastered these components
of the grammar.

One ‘tricky’ aspect to inferring stereotypic information in our particular
application is that we expect the user to change over time as he or she acquires
the language. Therefore, while step i in the stereotypical acquisition sequence
may best describe the user now, we expect that a step > i will better explain their
performance on a later writing sample. In order for this user model to work, we
not only need to capture the stereotypical stages of second language acquisition
and the status of all of the grammatical constructions at each stage, but we must
be able to detect when the user has left stage i and has moved on to i þ 1. Therefore,
although our basic concept of stereotype is similar to the original concept introduced
by Rich (1979) in that it represents a collection of users who typically share certain
characteristics, our approach is unique because the system is not merely tuning
a stereotype to ¢t a static individual, but is also dynamically switching the stereotype
being used in order to follow the user along the path of acquisition.

3Recall from the Introduction that the input to ICICLE is free-form in nature, rather than solicited text
which might be designed to explicitly steer the student into producing specific language structures.
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In this paper, we concentrate on the development of the stereotypical stages of
acquisition order. At each stage, we wish to determine which grammatical con-
structions are typically acquired, being acquired, or beyond the learner’s current
reach. We provide our method for empirically deriving this information from
a corpus of writing samples representing written language from individuals at
various stages of written English acquisition. We have proceeded from the
assumption that an overall pro¢ciency score assigned by experts in the evaluation
of writing by learners of English as a Second Language correlates well with
our concept of a ‘level’ of acquisition. We describe in the rest of this paper
our e¡orts to distill from our corpus the desired information on sequential stereo-
types in our domain so that we may implement a dynamic model which can sup-
plement direct knowledge about the individual with information about the
stereotypic learner.

1.2. SLALOM: AN ORGANIZATION ON GRAMMATICAL SPACE

Originally described in (McCoy et al., 1996), SLALOM (Steps of Language Acqui-
sition in a Layered Organization Model) is the architecture we have proposed to
capture these stereotypical stages of second language acquisition, and is one portion
of the ICICLE user model. As introduced above, the overall user model design must
capture the status of each of the grammatical structures of English as acquired,
being-acquired, or unacquired. In this way, the model itself is essentially of an over-
lay design. The portion of the user model directly capturing observations of user
performance is called MOGUL (Modeling Observed Grammar in the User’s
Language).

Operating in concert with MOGUL, the SLALOM architecture is an organiza-
tion on the space of grammatical concepts which enables us to capture the stereo-
typical stages of acquisition of those concepts. This allows us to augment the
MOGUL markings we can obtain from observations with inferencing capabilities
based on our concept of successive stereotypical states in order to derive data which
has not been recorded directly in the model.

A simple representation of the SLALOM architecture can be seen in Figure 1,
which is meant for illustrative purposes only. The architecture consists of hierarchies
of grammatical concepts called Knowledge Units (KUs). The bottom of each hier-
archy contains those that are generally acquired ¢rst, with successively acquired units
stacked on top of the earliest-acquired ones. In the ¢gure, we show possible hierarchies
for several di¡erent types of grammatical forms: Morphology (completely ¢lled
in), VP Forms, Sentence Forms, and Relative Clauses (each of which shows just
one representative KU). Dashed horizontal lines represent ‘layers’ in the hierarchies,
indicating KUs that are acquired at roughly the same time. In this illustration,
þs 3rd person singular and ’s possessive morphology markings are (hypothetically)
acquired at about the same time as the auxiliary ‘be,’ SV and SVO sentence forms,

and Subject Relative Clauses.
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The KU units of the SLALOM architecture are abstract grammatical concepts,
essentially ‘bundles’ of the grammatical rules in our parsing grammar4. Each
KU represents a higher-level grammatical concept on which the MOGUL portion
of the user modeling component stores the user’s mastery5. For example, one
KU mentioned earlier is Subject Relative Clauses. Bundled within this KU would
be all of the rules from the parsing grammar which implement this concept. This
includes not only those rules modeling correct execution of this type of relative
clause, but also the mal-rules which realize the ways in which this structure is
executed incorrectly by the learner population.

As introduced above, the KUs are connected to each other in SLALOM via two
dimensions, represented vertically and horizontally in the ¢gure. The ¢rst half of
SLALOM’s name, Steps of Language Acquisition, refers to how SLALOM captures
the stereotypic linear order of acquisition. We have introduced how we represent
this order graphically as occurring within constructed stacks or ‘hierarchies’6 of rela-
ted KUs. As an example, we illustrate a Morphology hierarchy based on the ¢ndings
of (Dulay and Burt, 1975)7. A given morphosyntactic KU is expected to be acquired
subsequent to those below it, and prior to those above it, according to the natural
order of a stereotypical learner from this particular L1 acquiring English8. The

Figure 1. SLALOM: Steps of language acquisition in a layered organization model.

4Section 3.1 discusses further how we have determined the relationship between grammatical concepts and
our parsing rules.
5 The term Knowledge Unit and the abbreviation KU are borrowed from (Desmarais et al., 1996).
6 The term ‘hierarchy’ refers to the fact that certain KUs are learned before others.
7 This is for example purposes only, since their morphology sequence is relatively simple. The sequences we
actually use can be found in (Michaud, 2002).
8Although some research has shown high correlation between the acquisition orders of learners from differ-
ent L1s, we wish to represent the most likely order possible and thus have restricted the model to
representing learners from a specific L1, in our case ASL.
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¢gure’s example represents the idea that ‘þing progressive’ is typically learned before
‘þs plural nouns,’ which is typically learned before ‘þed past tense.’

The hierarchies themselves are simply conceptual groupings of related structures
which we have devised, so the order-of-acquisition relationships really exist at
the global level rather than merely within the hierarchies. Therefore, we need to
illustrate these relationships by coordinating the acquisition stages between the hier-
archies. Dashed lateral connections in the ¢gure represent the second dimension
of relationship stored between the KUs in the model, namely that of concurrent
acquisition9. We call these lateral groupings ‘layers,’ and the ¢gure has one drawn
in as an example10. This is the source of the Layered Organization Model part
of SLALOM’s name, referring to these layered groupings of KUs which essentially
illustrate a progression through the acquisitional sequence representing those
KUs being learned at certain stages of acquisition. In particular, we expect that
students who are just beginning to learn written English will ¢rst struggle with those
KUs in the ‘¢rst layer’ and then will progress ‘up’ the hierarchies. A simple view
of this progression can be seen in Figure 2. In reality, some KUs participate in more
than one layer, which indicates the relative speed with which some concepts are
acquired (i.e., KUs that span more than one layer take longer to master completely).

The uniqueness of the SLALOM concept is that it captures a sequence of stereo-
types, not as a discrete set of characteristics as in canonical stereotype systems such
as Grundy (Rich, 1979), or even a discrete sequence of stereotypic user mastery
levels as in Mr. Collins (Bull et al., 1995), but rather implicitly within one interlinked
architecture. Its layers each indicate the structures which may at one stage in
the learning process form part of that stage’s stereotypical ZPD. Those layers loca-
ted ‘below’ in the model contain structures which are typically mastered before,
while those layers ‘above’ are what is typically acquired later in the learning process,
at a later stereotypical stage.

1.2.1. Using SLALOM to Assist the Modeling of a User

We describe here brie£y how ICICLE’s user modeling component will use the SLA-
LOM architecture during the modeling process. Recall that each KU in the model
represents two sets of grammar rules: those grammar rules which implement the

Figure 2. A simple view of stereotype progression in SLALOM.

9This relationship may also be indicated within a hierarchy, not shown in this figure, to capture a partial
ordering in which some structures in the same hierarchy are acquired together.
10The contents of this layer are not based on empirical findings and are for illustration only.
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KU correctly and those mal-rules which represent errors a student may make in
trying to use the KU before it is completely acquired. As ICICLE analyzes a piece
of text written by a student, its user modeling component records the results of
its analysis in the KUs which were used or attempted by the student in the text.
A positive mark, or ‘hit,’ is recorded on a KU in the MOGUL component when
rules that correctly implement a KU are used to parse the text; a negative mark,
or ‘miss,’ is recorded when mal-rules associated with the KU are used. Since we
expect the user to change over time, a user may at one point use only mal-rules
for a particular KU, then move into a period of using both mal-rules and correct
rules, and ¢nally begin to use only correct rules. Thus the positive and negative
marks on the KUs in MOGUL need to re£ect current observations, and hits
and misses may be retired after they pass outside of a certain window of the present.

From this information on the user’s actual language production, we might
conclude that a KU has been acquired if it has mostly positive marks (hits), or that
it has not been acquired if it has mostly negative marks (misses). In addition, there
may be some KUs that have more of an equal balance of hits and misses. This
means that the user has sometimes implemented the KU successfully (using correct
grammar rules) and sometimes incorrectly (using mal-rules). We argue that this
latter set of KUs exhibiting signi¢cant variation corresponds to Vygotsky’s Zone
of Proximal Development (ZPD), essentially that subset of a cognitive skill which
the learner is about to master (Vygotsky, 1986). Krashen’s observation that at each
step of language learning there is some set of grammar rules which the learner
is ‘due to acquire’ (Krashen, 1982), and the fact that elements which are on
the verge of being acquired vacillate between correct and incorrect applications
(cf. (Ellis, 1994)), e¡ectively reinforce the application of this concept to our
domain. This notion of a ZPD along with our fully developed SLALOM model
can be used to infer the status of KUs that do not have su⁄cient marks to make
a judgment on the basis of actual observations.

Intuitively, at a speci¢c moment in time, a learner’s ZPD will be approximately
one ‘layer’ in the SLALOM architecture, since the layers represent structures which
are learned concurrently. As discussed above, the learner’s current ZPD layer will
progress over time, typically moving ‘up’ in the SLALOM architecture as learning
progresses. In this way, the architecture approximates a sequence of stereotypical
learner snapshots, indicating a typical progression in the acquisition of English.

The user modeling component of ICICLE can use the states in this progression to
‘¢ll in the blanks’ for the KUs in MOGUL with little or no direct data from
the user. KUs which are at the same ‘layer’ as marked structures can inherit a similar
marking; structures typically learned at earlier layers than acquired structures
can be inferred as also acquired. This empowers the ICICLE system to make intel-
ligent decisions on a user even when its knowledge of the individual is partial or
even impoverished.

Empirical experimentation on a three-layered SLALOM prototype based on
the linguistic acquisition sequences discovered in previous related work with deaf

324 L. N. MICHAUD AND K. F. McCOY



individuals (see below for references) has illustrated the potential of the SLALOM
architecture working in concert with the MOGUL performance history to re£ect
a full image of a user who is part of a learning community and yet possesses
individualistic learning traits; these results are discussed in (Michaud and McCoy,
2003). Given the exhibited strength of the model design even without data speci¢c
to our population, we have undertaken steps to further develop the SLALOM
architecture to add to its di¡erentiation power and re¢ne its granularity.

1.2.2. A Sequence of Acquisition

The primary focus of the work described in this paper is to ‘populate’ the SLALOM
architectureLto determine where the Knowledge Units of the model should be
placed in our representation of stereotypic acquisition order. Recall from Section
1.1 that there is empirical support for such an order. However, although there is
some support for the theory that this order may be universal regardless of ¢rst
language (L1) (Dulay and Burt, 1975), at least in the case of morphology acquisition,
few studies propose an order for the entire body of grammatical structures that
we wish to cover in SLALOM and none addresses our learner group in particular11.
Related e¡orts to establish orders of acquisition include that described by (Pienemann
and HMkansson, 1999), who investigated several empirical studies on the acquisition
of Swedish. Their work, like ours, covered both morphological and syntactic forms,
and their review of the existing empirical work supported a basic outline of a
prescribed order in which aspects of language are acquired.

1.3. EMPIRICALLY DEVELOPING THE SEQUENCE

In the rest of this paper we will describe how we have worked toward the empirical
derivation of a stereotypic acquisition order for our own user population, with
the ¢rst language (L1) of American Sign Language. We sought to identify: (1) which
aspects of English are mastered in what order, and (2) what groups of items are
learned around the same time. This information will enable us to complete the imple-
mentation of the SLALOM architecture.

Our empirical work centers on a thorough examination of a corpus of 106 samples
of writing by deaf individuals at various levels of English pro¢ciency. The collection
of these samples is described in (Suri, 1993; Suri and McCoy, 1993). The total length
of this corpus is 1,793 sentences12.
11Although the studies by Quigley et al.Lsummarized in Quigley et al. (1977)Ldid perform a fairly extensive
analysis of deaf acquisition of English, the studies predate the acknowledgment of ASL as a language and
therefore do not take into account the L1 background of the learners at all.We used this data in a prototype
SLALOM implementation, but since the language background of the American deaf population is very
heterogeneous and we wish to capture specifically characteristics of those with the L1 of ASL, their results
are less salient to the ICICLE project than our own studies explicitly focusing on ASL natives.
12The average sample length is 16 sentences; there is a great deal of variation in length from sample to
sample.
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The corpus has been divided into groups on the basis of an overall assessment of
the writing, described later in this paper. We hypothesize that writing samples receiv-
ing low assessment scores are representative of an individual who has not yet
acquired very many of the KUs in our model; those with higher scores, on the
other hand, are further along in the acquisition process. Thus, our methodology
has been:

1. To analyze each piece of writing to get an indication of the writer’s mastery of
various grammatical structures (KUs). This analysis is described below.

2. To divide the samples into groups representing low-to-high acquisition states of
English, using a method independent of the analysis in the previous step.

3. To verify that the samples within a particular group do indeed all capture similar
language mastery characteristics.

4. To determine the set of acquired/unacquired/ZPD markings on each of the KUs
in our user model for each group, using a statistical analysis of the grammatical
performance of writers in that group.

Our initial analysis concentrated on user errors.

2. Pro¢ling User Errors

Both Corder (1967) and Glaser et al. (1987) have made statements that the clue to
characterizing the pro¢ciency level of a learner is to study the systematic errors
he or she commits. In our ¢rst e¡orts to establish pro¢les of how learners perform
at di¡erent levels of acquisition, we concentrated on learner errors in an attempt
to characterize the ‘error pro¢le’ of each level represented by our corpus. It was
our goal to discover if a progression of such pro¢les could be determined as repre-
sentative of the marching frontier of acquisition, understanding that as a structure
becomes the focus of the linguistic Hypothesis Testing which occurs at this frontier,
the number of errors made on that structure may increase, and that number would
drastically decrease once the structure is acquired. Therefore, data indicating errors
made by beginning learners which are not made by higher-level learners would illus-
trate those linguistic structures which are mastered after the lowest levels; conver-
sely, errors which are not made until higher levels may indicate structures which
are avoided by lower-level learners until they become the focus of Hypothesis
Testing at the level where the errors ¢rst appear.

2.1. PREPARATION OF THE CORPUS

Before an analysis of the writing samples could be done, the samples needed to be
tagged by hand to mark the errors they contained. An initial analysis of the corpus
had been performed earlier in the ICICLE project. This preliminary study of
our sample corpus yielded a taxonomy of language errors which are typical of this
user population and which provided our initial directions in developing the mal-rules
to add to our grammar (McCoy et al., 1996; Suri and McCoy, 1993). During this
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analysis the samples were annotated according to the errors occurring in each
sentence. Our current study uses this ¢rst analysis as a starting point.

2.1.1. Developing a Set of Error Codes

While our initial annotation of the corpus was su⁄cient for its intended purpose in
our early explorations of the students’ errors, it proved to be too informal for
the task of developing the stereotypical acquisition sequence. The original tagging
of the corpus of writing samples had been performed by multiple individuals using
a list of error codes that had a common source with the taxonomy mentioned above;
but these error codes were frequently ill-de¢ned and often expanded in an ad
hoc fashion as new shorthand codes were added to handle errors which were
not satisfactorily covered in a previous iteration. As a result, the initial collection
of tagged samples was largely inconsistent, with di¡erent coders adopting di¡erent
‘styles’ according to their interpretation of the meanings of the tags. Some coders
even disagreed with their own tags when they were later reviewed.

These di¡erences and disagreements were further complicated by other challenges
inherent in the coding process, such as the di⁄culty of determining the writer’s intent
in ambiguous sentences, di¡erent errors whose surface realizations were identical
and thus could be confused, and the interactions of multiple errors in a sentence
(Suri, 1993). In order to standardize the tagging process, we decided to evaluate
and revise the current list of error codes and develop a coding manual to contain
formal de¢nitions and explanations of each error code.

The original list of error codes was ¢rst examined and compared against the
corpus. Several codes were discarded (if unsupported by instances in the corpus)
or subsumed into others (when a more general de¢nition was preferred), while
new codes were generated to cover errors that had not yet been addressed. The
coding manual which resulted from these revisions now contains 68 error codes, some
of which are shown in Figure 3. While some of these codes are fairly straightforward,
such as subject/verb agreement errors (sv), others required detailed explanations
in the manual. The term ‘dummy subject’ was borrowed from our grammaticist’s
rule descriptions to indicate non-referential subjects such as extraposed it (It is nice
to see you) and existential there (There is a rabbit on your chair). Some of the codes
refer to errors which are fairly unique to our user populationLfor instance, the usage
of here or there as a pronoun referring to a place rather than an adverb (I like
here/Here is nice).

Figure 3. Example of codes from our error coding mannual.
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Many of these codes focus on syntactic errors that the system could be expected
to recognize with its sentence-level interpretations. Each mal-rule in the parsing
grammar is represented by an error code in the manual. Other error codes capture
semantic or discourse-level errors that the system is not currently capable of recog-
nizing. We have included these error codes in the manual for completeness in order
to aid the development of future versions of the system.

2.1.2. Tagging the Corpus

The process of applying these error codes proceeds as follows. The human coder
reads through each writing sample one sentence at a time13:

(1) *So two of us called cab and brought us home.

The coder must decide how the sentence should be interpreted, and if there are errors,
must determine what the ‘corrected’ versionLi.e., in Standard EnglishLwould
be. This version of the sentence is then recorded. (Emphasis has been placed on
the inserted words in these examples only; the actual coding is performed in a plain
text ¢le and there is no emphasis on the corrected portions.)

(2) So two of us called a cab and it brought us home.

Given this interpretation, the error codes from the manual are then listed before the
correction to indicate what errors were found by the coder, in the order in which
they occurred in the sentence. In the case of example (1^2), the errors the coder
found were missing determiner (md) and missing subject (ms):

(3) (md ms) So two of us called a cab and it brought us home.

Essentially, the coders iterated through the sentences and processed each in a linear
fashion from the beginning of the sentence to the end, asking two questions at each
step through the sentence’s syntax:

1. Is there an error at this point in the sentence?
2. If yes, what is the error according to the manual?

Because of the variability introduced by human interpretation of the underlying
meaning behind complicated, very ‘buggy’ sentences, it turned out that the answer
to Question #1 introduced more problems than we expected. This is discussed
further below.

2.1.3. Testing Inter-Coder Reliability

After the completion of our formal coding manual, we sought to illustrate that the
explanations enabled multiple coders to approach the task described above in
a consistent, reproduceable fashion. We randomly selected 20% of our corpus
(23 writing samples in all) and distributed them to two coders to be tagged.

13Examples in this paper have been taken from our actual annotated corpus.
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Once the two coders had both marked the same test samples, we needed a method
for determining whether or not they had separately identi¢ed the same errors
for each sentence. This would verify that our coding manual had standardized
the coding practice su⁄ciently to allow the task to be split up between multiple
individuals without fear that individual variation would make the results incompar-
able. Determining the level of coder agreement, however, was complicated by
the fact that many sentences were far more complicated than (1), so there were often
several di¡erent errors identi¢ed in a single sentenceLand in many cases only some
of those errors were the same between the two lists of codes, while others were
di¡erent.

A further complication arises from the £exibility in the coding task. Recall that at
each step in the sentence, a coder has the freedom to judge whether or not an error
has occurred. Even when the judges agree on an interpretation of a sentence, it
is possible to disagree on whether a phrase contains an error. This can result in error
code sequences of di¡ering lengths. Take for example the following sentence:

(4) *Those who argue that it will have less hazing incidents here on campus if the
abolishment of fraternities and sororities are done.

Each coder reviewed this sentence, determined corrections to be made, and wrote a
corrected version of the sentence, recording the sequence of error codes correspond-
ing to the errors they each corrected:

(5) [Coder 1] (mds ids bh ii sv) There are those who argue that there will be fewer
hazing incidents here on campus if the abolishment of fraternities and sororities
is done.

(6) [Coder 2] (mds ids sv) There are those who argue that there will be less hazing
incidents here on campus if the abolishment of fraternities and sororities is done.

One of the di¡erences between these two interpretations is introduced via the ‘gray
areas’ of grammaticality where even native speakers’ judgments may di¡er, as in
the case where in (5) Coder 1 marked that it should be ‘fewer . . . incidents’ while
in (6) Coder 2 found ‘less . . . incidents’ to be acceptable. Another reason was human
error, as when Coder 1 marked a be/have error (bh) in (5), when the error was only
created when the it was changed to there, and the coding manual instructions specify
that errors which are created only by other corrections to the sentence should not
be marked.

Our problem was how to determine the agreement between two coders in light of
the di¡erences in code sequence length like those between (5) and (6). It is clear
from this example that a simple one-for-one comparison of error code sequences
should not be performed. A simple comparison would align the two sequences
in this fashion:

ð7Þ ðmds ids bh ii svÞ
ðmds ids svÞ
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However, inspection of the original corrections provided by the coders indicates that
the be/have error (bh) marked by Coder 1 in (5) is not a disagreement with the sub-
ject/verb disagreement (sv) marked by Coder 2 in (6). Rather, the correspondence
between the two sequences is:

ð8Þ ðmds ids bh ii svÞ
ðmds ids svÞ

We therefore needed to devise a method for comparing the coding judgments of two
individuals that took into account these unequal length strings where ‘gaps’ in
one string or anotherLessentially disagreements on whether an error had occurred
hereLwere accommodated.

Note that we could have chosen to have coders indicate the part of the sentence
to which each error code pertained, for example by underlining as is seen in
Examples (5^6). Intuitively, this would have provided more information about
which codes corresponded to each other between the two sets. However, in reality
the following di⁄culties remain:

^ How should the coder de¢ne the span of an error code to underline? Does it
apply to just the word(s) which must be changed, or to the entire constituent
whose grammaticality is a¡ected by the error? Di¡erent coder perceptions
could result in overlapping but unequal boundaries de¢ning the a¡ected
segment of the sentence, complicating the matching process14.

^ When the two coders make di¡erent changes to the sentence to ‘correct’ the
same errorLmodifying one or more di¡erent words to render the sentence
in Standard English15Lthe error codes which refer to the same problem in each
string may be re£ected in non-overlapping spans, which would not be consid-
ered marking the same error if these spans were used to determine which error
codes correspond.

^ There are cases when multiple errors occur within the same boundaries. In this
case, it is still possible for one coder to record more error codes than the other,
in which case we are still faced with the necessity of determining an alignment
as found in (8) on page 16.

Because of these considerations, we felt that using location information in our coding
process would not simplify our inter-coder comparisons.

2.1.4. An Adapted Algorithm for String Comparison

Our comparison task, therefore, was faced with two sequences of error codes, often
of di¡erent lengths, usually containing between three and ten error codes apiece.
14In a similar coding task by Carletta et al. (1997) this difficulty was also encountered and had the authors
were forced to discard any coded instance where there was disagreement on the beginning and end of the
span involved.
15This is often the case when sentences are extremely ungrammatical and the coders are forced to make
larger intuitive leaps toward a reconstruction.
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We desired to determine the level of agreement between them, but the di¡ering
lengths required that we devise a method to posit gaps in order to line up the sequen-
ces in the way that most likely re£ected the actual correspondence between the
two coders’ decision processes.

To address this task, we borrowed a page from bioinformatics research, which has
developed many algorithms to compare two strings of DNA in order to determine
their similarity. These tasks treat the DNA strands as strings of nucleotide characters
and allow for the fact that a pair of strings may have some nucleotides which match,
but sometimes there will be ‘substitutions’ (one string will be GCA when the other
is GCT) or ‘gaps’ (one string has a nucleotide which has no correspondent in
the other).

Because of the similarity between our problem and this DNA matching process,
we decided to apply the Smith-Waterman algorithm (Smith and Waterman,
1981) to our task. This algorithm attempts to determine the correspondence between
two DNA strings by searching for an alignment minimizing the number of ‘mutation
events’ required to convert one string into another. This is accomplished by
computing a matrix of alignment scores where nucleotide matches are rewarded with
higher scores and substitutions or gaps are penalized by depressed scores. It is
described in (Nicholas et al., 1998) as a recursive equation which for global string
alignment speci¢es the value of each location in the alignment matrix SW as:

SWi;j ¼ max
SWi�1; j�1 þ sðai; bjÞ
SWi�k; j þ gj

SWi; j�k þ gi

8><
>:

9>=
>;

ðiÞ

Each location SWi; j in the matrix contains the Smith-Waterman score for the partial
alignment ending at residue i of sequence a and residue j of sequence b. This is
calculated by seeking the best extension of a previous partial alignment (whose score
can be found in a part of the matrix previously calculated, the ¢rst term in each
equation). These extensions involve either matching the next residues ai and bj from
each sequence (whose level of similarity, or match, is scored by the function
sðai; bjÞ) or introducing gaps in one string or another, the penalty for which is given
by the terms gj and gi.

Table I illustrates the tuned values of the penalties and rewards in the algorithm in
order to intuitively re£ect the relative importance of matches, mismatches, and gaps
in our particular problem16. We wished to match identical codes when possible,
so the reward for a match was fairly high, while gaps were penalized but not severely.
Using these values, we implemented the algorithm in a C program and set it up
to automatically process the pairs of ASCII ¢les containing coder-assigned tags
for the 23 test compositions. An example output using the codes from example
sentences (5) and (6) can be seen in Figure 4. The program marked gaps with
an asterisk for each ‘empty’ code.
16These values were derived through trial and error.
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Tested on a randomly selected 10% of the sentences in the overlapped portion of
the corpus, this program produced alignments consistent with human judgment
31 of 36 times17. This is a very satisfactory performance result, particularly when
one considers that a human judge can take into account the corrected sentences
provided by each coder in order to identify each coded instance, while the automated
algorithm only has access to the error code sequences.

2.1.5. Reliability Results

The output of our alignment program provided us with correspondences between the
two sets of codes for each sentence in the corpus. In the alignments that it found,
there were several possibilities for each paired location in the two strings:

1. The paired codes could be identical, which indicated the coders agreed both that
there was an error in this location and what the error was.

2. The paired codes could be di¡erent, showing that although both coders had found
an error here, they disagreed on how that error should be tagged.

3. One error code in one sequence could be paired with a gap in the other, in which
case one of the coders had identi¢ed an error that had been ‘ignored’ by the
other18.

Of these possibilities, the last was the largest source of disagreement between our
coders. Notice that this ‘gap’ case indicates a di¡erence in the grammaticality judg-
ments between the coders, a di¡erence in their semantic or discourse interpretations
of the sentence, or human error. The instances of gaps were evenly distributed

Table I. Scoring values in our smith-waterman implementation

Term Points

Match reward þ5
sðai; bjÞ where ai ¼ bj

Mismatch penalty 0
sðai; bjÞ where i 6¼ bj

Start gap penalty g0 0
Extending gap penalty �1

g1 such that gj ¼ gi ¼ g0 þ k � g1

Figure 4. Smith-Waterman alignment program output.

17Of the five that were misaligned, four were sentences which involved serious enough errors that the coders
diverged significantly in their ‘correct’ reconstructions, leading to long and greatly different strings of error
codes. One of these four involved a series of error codes so long that it was exceedingly difficult to determine
the correspondence by hand.
18While this appears to be the primary cause of gaps, they can also be introduced through coder error is in
the case of the additional bh code in (5).
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between the two coders19. As discussed in Section 2.1.3, our goal in testing the coding
manual was to determine if the coders assigned the same code in instances where
they both intended to mark an error. Since both coders were equally quali¢ed native
speaker judges and either human interpretation could be correct, the di¡erences
in grammaticality judgments or interpretations could not be a factor in determining
whether or not the coding manual was sound. Our statistics of manual reliability,
therefore, do not count these ‘gaps’ as disagreements20.

Table II shows our agreement statistics on the ‘non-gap’ cases21. There were 432
of these cases. The PðAÞ statistic re£ects the percentage of these cases where both
coders assigned the same error code tag.

The ¢gure of 61% agreement is fairly satisfactory if one takes into account the use
of the high numberL68Lof categories (error codes) in our coding task, and it
is su⁄cient for the error analysis tasks described in this paper because of the accept-
ability of either coder’s analysis of the errors occurring in a sentence.

Recall, however, that our eventual goal in this work is to determine a sequence of
language acquisition over linguistic elements that our parser can recognize. We
would therefore prefer to have higher agreement and reliability over those errors
the parser would be able to identify. Upon further inspection of our codes, we found
that only 47% (33) of the error codes fell into this category, having been implemented
as mal-rules in our parsing grammar. Many of the remaining half had been excluded
because they were based on discourse-level information currently unavailable to
the parser, which focuses on sentence-level syntax and is unable to track other errors
such as inconsistent use of tense, person and number of referential pronouns, or
semantic distinctions between content words. Since we intended to extend our work
by comparing human choices against parse selections (see Section 3.3), and the
parses would only contain those errors implemented in the grammar, we reran
our agreement analysis looking only at those instances where both coders had used
error codes from that grammar. The results are shown in Table III.

Carletta (1996) points out that agreement statistics on this type of task should also
take into account how much of the agreement between coders is due purely to

19During the alignment process, Coder 1’s code sequences had 112 gaps introduced into them, while Coder
2’s sequences had 106 gaps inserted.
20We are therefore examining only 432 of the 794 total instances of error codes in the corpus where at least
one coder indicated an error. In addition to the gaps that were inserted by the alignment program, instances
involving the code ‘none,’ meaning no error was found in the sentence, were also not considered because
‘none’ is equivalent to intentionally positing a gap.
21We earlier reported in Michaud and McCoy (2001) and Michaud et al. (2001) a P(A) of .81 for these cases;
this figure was found to be incorrect because of a programming error and has been discarded in favor of the
results discussed here.

Table II. Agreement statistics on overlapped coding

432 Errors marked by both coders
265 Agreed errors
61% PðAÞ (bare agreement) across all instances
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chance. Therefore, we also calculated her proposed Kappa Statistic to factor out this
chance agreement. She de¢nes Kappa as:

K ¼ PðAÞ � PðEÞ
1� PðEÞ ðiiÞ

The term PðAÞ refers to the level of actual agreement between the coders (84% in this
case), while PðEÞ refers to the probability that the two coders agreed by chance.
This was calculated by looking at the frequency f ðÞ with which the two coders used
each error code ei across the coding instances being examined. The function f ðÞ
for a speci¢c coder j over the N instances being examined is given as:

fjðeiÞ ¼
countjðeiÞ

N
ðiiiÞ

Note that countjðeiÞ equals the number of times the coder j marked the code ei in
these instances. The denominator indicates how many of these instances are being
examined.

Given this de¢nition of the frequency function fjðÞ, the chance agreement is
calculated as:

PðEÞ ¼
X33
i¼1

f1ðeiÞ � f2ðeiÞ ¼ 0:05992 ðivÞ

As was re£ected in Table III, the Kappa value we obtained with this calculation was
.82, which satis¢es Carletta’s standards for strong conclusions (K 5 :8).

Con¢dent that our coders were providing our study with similar ‘human intui-
tions’ on all codes and strong agreement on those implemented in the parsing gram-
mar, we determined that our coding manual was reliable enough that we could
divide our remaining samples between the coders and have one coder code each
of the remaining samples, while retaining a reasonable belief that the results we
obtained would re£ect a consistent and reliable view of the errors committed by
the writers.

Subsequent to our satisfactory evaluation of the coding manual, the remaining
80% of the corpus was divided between the two coders and all of the sentences were
tagged with error codes. Since the test portion had been double-coded and the
judgments were similar but not identical, a random-choice program selected which
coder’s interpretation we would use for each of those samples to complete our
fully-annotated corpus.

Table III. Agreement statistics when both codes were implemented in
the parsing grammar

166 Both marked errors are implemented
140 Agreed implemented instances
84% PðAÞ for both implemented
82% Kappa value for both-implemented cases
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2.2. DETERMINING LEVELS OF PROFICIENCY

Our overall goal was to determine an error pro¢le for writers at each of various levels
of pro¢ciency, illustrating how the errors committed by a writer tend to change
as his or her mastery of the language develops. In order to do this, we had to divide
the writers represented by the samples we had obtained into groups representing
di¡erent pro¢ciency levels. The pro¢ciency levels had to be determined indepen-
dently of the identi¢cation of errors, in order for us to be able to reliably investigate
any relationship that might exist between these errors and the level of the writers.

It was therefore important that these judgments of pro¢ciency level be unin-
£uenced by the coding process previously described. In order to obtain independent,
holistic ratings representing levels of pro¢ciency, we chose to have the pro¢ciency
levels be determined by judges experienced in the assessment of pro¢ciency in
English as a Second Language. For this phase of our work, we collaborated with
four instructors at the University of Delaware’s English Language Institute
(ELI), a program which provides foreign students with English language courses.
This program serves around 1800 students each year, and in 2001 became
one of only 24 English programs in the country to achieve accreditation by the
Commission on English Language Program Accreditation (CEA). The instructors
have a high level of expertise in language assessment and were very willing to
assist us with our task.

The pro¢ciency-scoring system which they applied to our writers is from the
national Test of Written English (TWE), a free-form essay-scoring test which
ELI uses for placing new students into the mandatory English classes which foreign
students at the University must pass in order to assume certain Teaching Assistant
duties. The TWE scores range from 1 to 6 and they are meant to represent a holistic
judgment of the student’s overall level of English mastery.

In order to obtain reliable scores on the samples of our corpus, the four ELI
volunteer judges were each assigned a random portion of the samples so that each
sample was read by two judges. If the judges disagreed on the rating, a third
arbitrated so that each ¢nal score represented either a consensus or a majority.
Figure 5 illustrates the distribution of scores among the 106 samples in our corpus.

An unexpected result of the TWE scoring of the writing samples was that they
were not well distributed; in fact, as shown in the ¢gure, 95% of our samples were
concentrated in only three levels. One reason for this is that one of our largest sources
of samples was from an English language entrance exam at a school for deaf
students. The samples we obtained from this source were those that were on the
borderline of passing this entrance requirement. These samples, therefore, are all
of a similar level of pro¢ciency.

This may have a¡ected some of the results we later obtained while trying to ¢nd
signi¢cant distinctions between samples of di¡erent levels. In future e¡orts to obtain
samples, it is clear that we will want to focus on obtaining ones which represent
a broader spectrum of pro¢ciency.
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2.3. INITIAL EXPLORATION: STATISTICAL CLUSTERING

Following the strati¢cation of our samples into these levels of competence, we had
the following data prepared for each:

^ The writer’s level of English pro¢ciency as judged on the TWE scale.
^ The number of times each of the 68 error codes had been marked in the sample.

These data were prepared for an initial exploration to con¢rm that the pro¢les of
errors committed by the learners at di¡erent levels of ability were distinguishing
characteristics of those groups22. Speci¢cally, we wished to determine if learners
in the same pro¢ciency group committed similar errors, while those in di¡erent
groups committed di¡erent kinds of errors.

We decided to approach this question by ¢rst clustering the samples together
based on the errors that had been identi¢ed. Statistical clustering algorithms had
previously been applied to identifying groups of similar users (essentially, stereo-
types) by Milne et al. (1996). If statistically-derived clusters based on the error pro-
¢les divided the samples in a similar fashion as did the ELI scorers, this would
con¢rm a correspondence between what errors were committed and what score
the sample was given. This would in turn be very strong evidence of the existence
of the stereotypes we sought, since it would verify that students placed together

Figure 5. Distribution of graded samples among the TWE scores.

22If they were not, then our study would not support the notion of a stereotypical acquisition order. This
would mean that it would not be possible to derive stereotypes in the manner we suggest, or even possibly
put into question whether the stereotypes actually exist.
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in the same group by their TWE score had committed similar errors, and that those
errors were di¡erent from those made by students in other groups.

Since our samples varied greatly in length, ranging from 2 to 58 sentences long, we
normalized the error counts by dividing them by the number of sentences in the
sample to obtain an average count per sentence ¢gure. Each sample was thus repre-
sented by a vector where each element in the vector represented an error code
and the number represented the average number of times that code occurred per
sentence in that sample. Using the statistical application SAS, we applied clustering
algorithms to our data, instructing the program to form groups or clusters of writing
samples which were minimally ‘distant’ (di¡erent) from each other, and so should
represent samples which have the same errors in approximately the same magnitude.
We report here the results of applying Ward’s Minimum-Variance method (Ward,
1963) to our error vector data.

This clustering algorithm begins by assuming that each ‘observation,’ or vector of
data (in our case, the set of 68 normalized error counts), forms a cluster CK where
the number of observations NK ¼ 1. It then recursively iterates through the clusters
and joins together those which are closest according to a calculation of distance.
At the heart of the distance calculation when considering clusters CK and CL

are the mean vectors �xK and �xL, the means of the values in the cluster so far.
Of the many di¡erent clustering algorithms applied to this set of data, while several
obtained similar results, we choose the results from Ward’s because this distance
metric most closely represented how we wanted to measure similarity between sets
of error code occurrence ¢gures.

Since we wanted to compare the clusters to the six TWE scores, we also requested
that the statistical program ‘stop’ the clustering process at some point where the
granularity of the clusters approximated that of the TWE score groups, for a total
of ¢ve ¢nal clusters. Figure 6 illustrates the relationships between the TWE scores
1-6 and the ¢ve clusters we obtained. The rows each represent one TWE score group-
ing, and the numbers in that row indicate the number of samples from that group
that were placed in each of the ¢ve clusters. These results were ¢rst discussed in
(Michaud et al., 2001).

Despite our sparse data problem with only 5% of the samples occurring at TWE
levels 1, 5, and 6, there is a clear trend with lower and higher pro¢ciency levels show-
ing a preference to di¡erent clusters, overlapping in Cluster 2. We concluded from
this that we had obtained some evidence to support our belief that the error sets
committed by learners at di¡erent levels underwent an overlapping but changing
progression from level to level. This gave us con¢dence to go on to the next step,
which was to determine whether we could establish the nature of the relationship
between the error code annotations and the TWE scores. We wanted to determine
whether or not the errors committed by a learner would help us identify his or
her TWE score (as a marker of where the learner was in the acquisition process).
By identifying the di¡erent errors committed by di¡erent score levels, we hoped
to take a step toward identifying the stereotypical sequence of acquisition.
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2.4. IDENTIFYING THE ERROR PROFILES

Essentially, our next investigative step sought to identify what precisely the ‘error
pro¢les’ were for each of the levels represented by our corpusLspeci¢cally, which
errors distinguished each pro¢ciency group by occurring signi¢cantly more often
in that group than in any other. With this data, we could potentially identify what
other errors we could expect a user to commit, given the set of errors they have
committed and the similarity of that set with one of these pro¢les.

Because we could not depend on the tiny number of samples in TWE levels 1 and 5
to independently give us reliable results, we concentrated at this stage on a
‘collapsed’ TWE score which we renamed low, middle, and high. In this modi¢ed
score, the levels with poor representation were collapsed with the central three. This
is illustrated in Table IV.

For this step of our analysis, our tool of choice was Multivariate Analysis of
Variance (MANOVA). This was selected because what we wished to test was
the relationship between the number of times a user committed each error and
the TWE score the user had been assigned. Therefore, one dependent variable
was the collapsed TWE score, and our analysis tested whether it could signi¢cantly
‘predict’ the number of times a user committed a given error. Once again we wanted
to compensate for the variable lengths of the essays, but we decided that the normali-
zed values that divided error counts by the number of sentences were a somewhat
simplistic method of accounting for length variation. Since the Analysis of Variance

Figure 6. Distribution of levels of proficiency across Ward clusters.

Table IV. Collapsed levels of pro¢ciency for MANOVA analysis

TWE score 1 2 3 4 5 6

Collapsed TWE Low Mid High
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test allows easily for multiple dependent variables, we used the length of the sample
as a second dependent variable in our tests23. The results we obtained were
previously reported in (Michaud and McCoy, 2001).

These results indicated that many of our error codes did occur at di¡erent
magnitudes between Low, Middle, and High samples. This is illustrated in
Figure 7, which shows the results on a subset of the 47 error codes for which we
obtained discernible results.

In the ¢gure, a bar indicates that this level of pro¢ciency committed this type of
error more frequently than the others. If two of the three levels are both marked,
it means that they both committed the error more frequently than the third, but
the di¡erence between those two levels was unremarkable. Solid shading indicates
results which were statistically signi¢cant (with an omnibus test yielding a signi¢-
cance level of p < :05), and intensity di¡erences (e.g., black for extra preposition
in the low level, but grey in the middle level) indicate a smaller di¡erence that

Figure 7. Illustrating the errors each level is most likely to commit.

23We did analyses in parallel using both word count and sentence count as measures of sample length, get-
ting nearly identical results both times. The results displayed in this work reflect the analysis done with the
length measured in sentences.
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was not signi¢cant. In the example we just mentioned, the low-level writers com-
mitted more extra preposition errors than the high-level writers with a signi¢cance
level of p ¼ 0:0082, and the mid-level writers also committed more of these errors
than the high-level writers with a signi¢cance of p ¼ :0083. The comparison of
the low and middle levels to each other, on the other hand, showed that the
low-level learners committed more of this error, but that the result was strongly
insigni¢cant at p ¼ :5831.

The cross-hatched and diagonal-striped results in the ¢gure indicate results which
did not satisfy the cuto¡ of p < :05 for signi¢cance, but were considered both inter-
esting and close enough to signi¢cance to be worth noting. The diagonal stripes have
‘less intensity’ and thus indicate the same relationship to the cross-hatched bars
as the gray does to the blackLa di¡erence in the data which indicates a lower occur-
rence of the error which is not signi¢cantly distinguished (e.g., high-level learners
committed extra relative pronoun errors less often than mid-level learners, and both
high- and mid-level learners committed it more often than the low-level learners),
but, again, not to a signi¢cant extent.

Notice that the overall shape of the ¢gure supports the notion of an order of
acquisition of structures because one can see a ‘progression’ of errors from level
to level. Very strongly supportive of this intuition are the ¢rst and last errors in
the ¢gure: ‘no parse,’ indicating that the coder was unable to understand the intent
of the sentence, occurs statistically more often at the lowest level than at the other
two levels, while ‘no errors found’ was signi¢cantly most prevalent at the highest
level. These two were our strongest results.

Other data which is more relevant to our goals also presents itself. The lowest level
exhibited higher numbers of errors on such elementary language skills as putting
plural markers on nouns, placing adjectives before the noun they modify, and using
conjunctions to concatenate clauses correctly. Both the low and middle levels strug-
gled with many issues regarding forming tenses, and also exhibited ‘ASLisms’ in
their English, such as the dropping of constituents which are either not explicitly
realized in ASL (such as determiners, prepositions, verb subjects and objects which
are established discourse entities in focus, and the verb ‘TO BE’), or the treatment
of certain discourse entities as they would be in ASL (e.g., using ‘here’ as if it were
a pronoun). While beginning learners struggled with more fundamental problems
with subordinate clauses such as missing gaps (failing to leave a gap for the rela-
tivized constituent), the more advanced learners struggled with using the correct
relative pronouns to connect those clauses to their matrix sentence. Where the lower
two levels committed more errors with missing determiners, the highest level among
our writers had learned the necessity of determiners in English but was over-
generalizing the rule and using them where they were not appropriate. Finally,
the upper level learners were beginning to experiment with more complex verb
constructions such as the passive voice. All of this begins to draw a picture of
the sequence in which these structures are mastered across these levels.
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2.5. DISCUSSION

While Figure 7 is meant to illustrate how the three di¡erent levels committed
di¡erent sets of errors, it is clear that this picture is incomplete. The low and middle
levels are insu⁄ciently distinguished from each other, and there were very few errors
committed most often by the highest level. Most importantly, many of the distinc-
tions between levels were not achieved to a signi¢cant degree.

One of the reasons for these problems is the fact that our samples are concentrated
in only three levels in the center of the TWE spectrum. We hope to address this
in the future by acquiring additional samples. Another problem which additional
samples will help to solve is the sparseness of data on error occurrence. Across
our 106 samples and 68 error codes, only 30 codes occur more than 25 times in
the corpus, and only 21 codes occur more than 50 times. Most of our insigni¢cant
di¡erences come from error codes with very low frequency, sometimes occurring
as infrequently as 7 times.

What we have established is promising, however, in that it does show statis-
tically signi¢cant data spanning nearly every syntactic categoryLnoun phrases,
verb phrases, and others are all represented in our results. As an initial step toward
characterizing learners at each level, we had made progress; however, it was clear
to us that we needed to expand our investigation beyond errors if we were
to establish the partial orders of acquisition on which to base the SLALOM
architecture.

3. Pro¢ling Overall Performance: Ongoing and Future Work

While the above experiments are an excellent start, in order to truly determine the
order in which structures are mastered, one has to look beyond the story told
by the errors made by the learners. After all, if learners A and B both commit
an error 10 times, the error count alone appears to indicate that their mastery
of the structure is about the same. However, if one were to ¢nd out that learner
B successfully executed that structure 20 times in addition to those errors while
A had no successful executions, then it appears that the mastery of the structure
is actually quite di¡erent for these two learners. For A the structure is clearly unac-
quired, but for B it is either in the ZPD or acquired, depending on what standards
of performance one is using.

Therefore, our next step in developing the SLALOM architecture has been to
obtain the success/attempt ratios which would give us a much clearer picture of
how well each learner was able to perform on each structure. We call these
‘performance pro¢les.’ Our goal is to re-apply the MANOVA analysis process, this
time looking not just at the relationship between how often the error occurs and
the level of the sample, but at the learner’s overall ratios of performance given both
failures and successes in language construction usage.
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3.1. ABSTRACTING FROM RULES TO KUS

Recall from Section 1.2 that our target user model does not deal solely with the user’s
performance on the level of rules, but also at the level of rule-abstractions which
we call Knowledge Units, or KUs. These KUs represent broader grammatical con-
structions and are realized by both positive and negative rules in the parsing gram-
mar, representing ways this structure can be executed both successfully and
unsuccessfully in the English language. What we desire to accomplish at this stage
is to analyze our users’ performance on each of these KUs; i.e., for each of these
grammatical concepts, we wish to determine the users’ rate of success and how those
rates di¡er between the levels of pro¢ciency.

We have therefore developed a database which associates each speci¢c rule and
mal-rule in the grammar with any KUs which represent the abstract grammatical
concepts realized by the rule24. These KUs are the building blocks of our user model,
each representing a grammatical concept the user may or may not have mastered
at the current time. Intuitively, occurrences of the mal-rules associated with a
KU in the writing of a user are indications that the KU has not been mastered,
while occurrences of the correct rules from the KU are positive indications of
the user’s mastery of that KU. In this way, the rule/KU relationship indicates over-
all mastery by showing that out of n times that the structure represented by that
KU was attempted (the total count of executions of all rules which participate
in that KU, it was successfully executed some m times (counting just the correct
rules).

3.2. OBTAINING THE PERFORMANCE DATA

Having established this correspondence between grammatical rules and the broader
grammatical constructs which they implement, our next step is to determine from
our samples precisely which grammatical rules (and mal-rules) are executed by stu-
dents in each of our revised TWE groups. From this data, we would be able to deter-
mine whether for a group of users a speci¢c KU is typically acquired (indicated
by students consistently using the correct grammar rules to implement the KU con-
struct), ZPD (with students showing variation between both correct and incorrect
rules) or unacquired (shown by students consistently using the incorrect mal-rules
for that KU). A MANOVA analysis on these results would reveal whether or
not signi¢cant di¡erences existed between the groups in terms of KU acquisition
status, indicating which KU are mastered at each level.

In order to generate this type of analysis, we essentially need complete syntactic
data on every sentence in our corpus, which would provide us with the full image
of every structure each writer used correctly or incorrectly. The ideal source of this
data would be the output of the ICICLE system’s parser given the entire corpus
24In the case of some very ‘flat’ rules, several grammatical concepts are involved, hence the inclusion of
some rules in multiple KUs. Since each mal-rule is specifically designed to model a specific error, the
malrules by contrast typically occur in only one KU each.

342 L. N. MICHAUD AND K. F. McCOY



as input. From the parse trees it produces, we could develop performance statistics
by counting structures used both correctly and incorrectly throughout each tree.
Unfortunately, even for those sentences that the current ICICLE prototype can
parse successfully, the parser most often comes up with multiple interpretations.
Recall that we discussed earlier how distinguishing between these possibilities
has been one of the major motivations for creating the user model. Therefore, with-
out that model yet implemented, at this time ICICLE does not have the capability
of intelligently selecting a single representative parse tree for each sentence.

Another option unavailable to us was hand-tagging the corpus with the additional
data. Marking both the errors and every correct grammatical constituent in a sen-
tence would be an overwhelming task for a human coder. An alternative would
be to have ICICLE parse the sentences and return all interpretations it could ¢nd,
and have a human inspect each of these parses trees and select the ‘correct’ one.
However, this iteration through the 1793-sentence corpus would also be exceedingly
slow and tedious. In most cases, the parser produces multiple parse trees for each
of the several hundred sentences and it is very di⁄cult to distinguish them via visual
inspection. Clearly, the most desirable approach would be a fully-automated pro-
cess, but the challenge has been to devise one that could select the right parse tree,
something that still seemed to require the assistance of ‘human intuition.’

Therefore, we developed a method of using the human intuition that had already
been provided to us for each sentenceLnamely, the error codesLto enable the
ICICLE parser to identify the parse trees closest to a human’s interpretation.
To do this, we essentially needed to develop a way to compare the competing parse
trees the ICICLE prototype could produce against the interpretation which had been
implicitly recorded during the error coding process. The rest of this section details
how we were able to convert the hierarchical parse trees into a form which could
be compared against the error code sequences to ¢nd the closest match.

3.3. SELECTING PARSE TREES

We determined that the best way to use the existing corpus to provide the system with
the judgments it needed was to perform the following:

1. Obtain a log of all competing parse trees for each sentence in the corpus.
2. Since each mal-rule has a corresponding error code in our manual, extract from

each parse tree the ordered sequence of error codes corresponding to the
mal-rules in the tree, e.g. (mds ids sv) as in Example (6).

3. Using the Smith-Waterman alignment algorithm, compare the competing sequen-
ces generated by the parser against the sequence assigned by a human coder.

4. Select a parse with the closest match to the human-assigned codes.
5. Derive performance statistics from the selected parse.

We began this process by modifying the existing ICICLE user interface to create a
spin-o¡ application we called ‘Tree¢le,’ whose primary function was to take a
set of sample ¢les as input, run ICICLE’s parser on each in turn, and log all parse
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trees spanning the input to text ¢les25. The output from this is then run through a
parse disambiguation process based on the steps listed above.

We had previously determined the correspondence between the mal-rules of the
system’s parsing grammar and the error codes that we used in our coding process.
Recall that our investigation of the reliability of the coding manual also included
very strong results speci¢cally for those error codes which were represented in
the parsing grammar. Since no error code which is not represented in the grammar
could be produced as a translation from a system-generated parse, the high reliability
of this smaller set is highly relevant to this task.

Our disambiguation program therefore has as its task the comparison of a set of
hierarchical parse trees on the one handLeach node of each tree representing a
grammar rule which may be a mal-ruleLand a single, linear sequence of error codes
on the other hand, ordered according to the moment in the sentence where the coder
encountered the error. Although the conversion of a mal-rule to its corresponding
error code is straightforward, the comparison of a hierarchical tree to a linear
sequence is not. If the mal-rules were placed only at the leaves, a simple depth-¢rst
traversal would extract them in the proper order. However, in this situation they
are located throughout the tree, even possibly at the root node itself.

A depth-¢rst traversal is still desirable in order to encounter the constituents of
the sentence in order; what remains to be determined is how to process the nodes
in a hierarchical fashion that comes as close to possible to the order in which
the human coder would indicate the errors as they are found. The choice is between
adding a mal-rule corresponding to a root of a subtree prior to adding those repre-
senting its children or subsequent to them26.

In our current implementation, the root node is processed before its children. This
is partly motivated by one of our most common mal-rules, the one which represents
subject-verb disagreement. This mal-rule occurs at the uni¢cation of the subject with
the ‘verb phrase’ which involves the verb plus any complement. The spans of these
two constituents are indicated in example (9):

ð9Þ � It make me so excited to meet lot of Deaf students :

As shown in Figure 8, this uni¢cation occurs at or near the root of the entire parse,
and it spans the entire clause. Therefore, the algorithm traversing the parse tree
will encounter a mal-rule which it translates to ‘sv’ (shown next to the tree node)
as an ancestor node to any other errors in this sentence. There is in fact another
error in this sentence, contained within the verb complement. The human coder
who reviewed this sentence annotated it as follows:

ð10Þ
�It make me so excited to meet lot of Deaf students:
ðsv plÞ It makes me so excited to meet lots of Deaf students.

25Thanks are due to Greg Silber for creating this application.
26Although a third option existsLto insert the parent in the midst of its childrenLit would be difficult to
determine this placement when the number of children exceeded two.
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If the algorithm was reading through a parse tree containing an identical interpre-
tation, and it placed the error code of a parent node after those of its children,
it would derive the sequence (pl sv). On the other hand, if it placed the parent before
its children, it would derive the sequence (sv pl), and our alignment algorithm would
be able to more easily identify this tree as containing the same interpretation as
was chosen by our human coder.

It is obvious that the parent-prior choice would not have been as successful if
the child errors had been in the subject rather than the verb complement.
In that case, they should have been ordered before, rather than after, their
parent. But for the sv case in general, our corpus tends to have longer, more
complicated verb complements than subjects. There is more opportunity for
error there and, in general, the parent-prior technique has enjoyed a high level
of success.

Following the acquisition of the system-generated error code sequences to be
matched against the human-generated sequence, the modi¢ed Smith-Waterman
algorithm we described in this paper is then run on all competing sequences,
comparing them against the one representing human intuition. Since this matching
algorithm computes an alignment score in the last position of the alignment matrix
to represent the ¢tness of the total alignment of both strings, we use this score to
select a parse whose error-code alignment is the best match with the sequence
generated by the human coder.

At this time, the ICICLE parser is undergoing revision to improve its gram-
matical coverage in order to better address the task of parsing the entire corpus.
When it is completed, we will generate the statistics of user performance at dif-
ferent levels of competence according to the disambiguation process described
above.

Figure 8. A parse tree and the possible resultant error code sequences.
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3.4. FROM DATA TO SLALOM

This data will provide us with the inference knowledge we require in order to
complete the sequences represented by the SLALOM architecture. By establishing
which grammatical constructions are mastered to which degree at which levels
of pro¢ciency, we will have identi¢ed the order in which structures are typically
acquired, and those structures which are being acquired concurrently by learners
at the same level. With this information, we will be able to build the links in the
inference network that will enable SLALOM to provide data on structures
previously unseen in a user’s language production. This will essentially result in
a probabilistic model of language development based on our observations of the
users at each level of the acquisition ladder.

4. Conclusion

This paper has addressed the application of an empirical methodology toward the
acquisition of stereotypical data on a user population. Although our speci¢c domain
is the learning of written English by deaf users of American Sign Language, we wish
to note that this method could be easily generalized to any domain in which one
wanted to establish user stereotypes.

The steps of our methodology that we have described in this paper are
summarized below:

1. Identify a sample set of users from which to collect information about the general
user population. In our case, we collected writing samples from several colleges
of the deaf.

2. Classify these users into the groups which are representative of the stereotypes
desired. We applied the expert judgments of certi¢ed English instructors to
our classi¢cation task.

3. Decide what data needs to be collected from these users in order to give mean-
ingful support to the user stereotypes. In our case, we wished to determine
the users’ levels of knowledge on the KUs in the SLALOM architecture.
We did a ¢rst pass on data collection by marking just the errors on those
KUs, looking for beginner errors which ‘disappeared’ from the performance
of more experienced learners, indicating KUs which had been mastered after
the early stages, or errors which did not appear at all until the KUs involved
with those structures ¢rst came under the focus of the ZPD.

4. Collect the data through a veri¢able process. In our case, we used a coding manual
to standardize the error marking process, and we veri¢ed its reliability.

5. Apply statistical analysis to the collected data to determine the associations
between the characteristics displayed in the data and the classi¢cations of
the users. We are accomplishing this through the application of MANOVA
analyses, ¢rst to the errors marked in the samples, and then to the KU
performance ratios.
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This method is general enough to be applied to any domain, whether or not the
stereotypes are being derived to represent a progression of knowledge. In a general
sense, the steps outlined above can be used to procure information on what char-
acteristics of the sample users are unique to each stereotype grouping. This infor-
mation can then enable a system to do intelligent stereotype-selection for a new
user, and enable inferencing behavior to ¢ll in the data the stereotype can provide.

In the speci¢c sense of knowledge acquisition stereotypes, the initial classi¢cation
of the users into groups imposes an ordered sequence on the stereotypes from begin-
ner to advanced. A system such as ICICLE can then attempt to track a user as
he or she progresses through this order, using the stereotypes again to ¢ll in data
that has not been directly provided through observation of the student. We provided
the SLALOM architecture as a way to implicitly encode such a sequence within
an inference-capable overlay user model.

Finally, recall that we addressed in Section 1.2.1 the notion of user model data
re£ecting only the ‘current’ moment in time. Since a distinctive quality of this kind
of stereotype is that we expect the user to change over time, user data should prob-
ably have a decay feature so that ‘old’ performance data is retired in order for per-
formance statistics to re£ect the current time only. We are presently investigating
methods of maintaining a ‘sliding window’ within the user model that allows us
to look only at data which is relevant to the user’s current status in his or her
progression toward language mastery.
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