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INTRODUCTION 

In the last three decades the asymptotic theory of rank tests has re­

:eived considerable attention. The early work in this area concerns the 

iSymptotic noxmality of linear rank statistics under the hypothesis, i.e. 

Ln the case where the sample elements are independent and identically dis­

:ributed (i.i.d.). Next, asymptotic noLmality under alternatives, where 

:he sample consists of at most a finite number of independent groups of 

L.i.d. elements, was proved for fixed alternatives as well as for contigu­

)US alternatives which tend to the hypothesis at a required rate. For the 

:ontiguous case these results were extended to e.g. regression alterna­

tives, where the sample elements are independent but each has a different 

iistribution belonging to a paramatric family of distributions. For the 

~esults quoted so far we refer to HAJEK and ~IDAK (1967). These results 

Jlace a severe restriction on the alternatives considered • 
• 

The study of the asymptotic behaviour of rank statistics for the gen­

:ral case where the sample elements are independent but may each have a 

:lifferent distribution and where their joint distribution is not necessar-
- V 

ily contiguous to the hypothesis, was initiated by HAJEK (1968) and DUPAC 
.,. 

~nd HAJEK (1969). In continuation of this study, but following a different 

~pproach, we shall present in this thesis some theorems establishing asymp­

totic normality of rank statistics in a model which is by far more general 

than the models one encounters in the literature. We consider rank statis­

tics of a very general type based on sample elements which are allowed to 

~ave different multivariate distribution functions. 

Our way of dealing with the asymptotic distribution of statistics 

based on ranks - as they occur in nonparametric statistics - relies on 

the possibility to express these statistics in terms of empirical distri-
• 

bution functions. In this approach the empirical distribution functions 

and their properties serve as a probabilistic tool to arrive at results 

for the rank statistics. However, these properties are known in the i.i.d. 

case only and our situation requires knowledge of the empirical d.f. in 

the non-standard situation suggested above. 

These fundamental properties of the empirical distribution functions 

in the non-i.i.d. case will be derived in Chapter I. It is rather striking 
• 

that these properties carry over from the i.i.d. case to the non-i.i.d • 
• 

case without any additional condition. 
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In Chapter II the asymptotic nozmality is established for standardized 

versions of rank statistics in the multivariate non-i.i.d. case of the type 

-1 = N 

N 

I 
n=l 

where, for ni = 1,2, •.• ,N, i = 1,2, ... ,k, the ¾(n1 ,n2 , ••• ,nk) are given 

real numbers, called scores; for n = 1,2, ... ,N, the cnN are given real 

constants, called regression constants, and where RinN denotes the rank of 

the i-th coordinate of then-th sample element among all i-th coordinates. 

Here N denotes the sample size and k is the dimension of the sample ele­

ments. The statistics SN are called multivariate linear rank statistics. 

For methodological reasons the regression constants cnN will be intro­

duced with the aid of an additional set of random variables, the 0-th co­

ordinates of the sample elements, which are chosen such that with proba­

bility one the ranks of these 0-th coordinates are fixed. Clearly these 

0-th coordinates then have different distribution functions. However the 

introduction of this additional randomness does not essentially complicate 

the problem of establishing.the asymptotic noLma.lity of standardized ver-
• 

sions of the statistics SN, since we are studying the non-i.i.d. case any­

how. On the other hand the introduction of the d1Jmmy random variables has 
• 

the advantage that it enables us to express the statistics SN entirely in 

terros of the multivariate empirical distribution function and its univari­

ate marginal e1npirical distribution functions. 



1.0. INTRODUCTION 

CHAPTER I 

SOME FUNDAMENTAL PROPERTIES OF THE 

EMPIRICAL DF IN THE NON-I.I.D. CASE 

Let k be a fixed positive integer and for each N = 1,2, ... , let 

XnN = (XlnN'x2nN'··-,xknN), n = 1,2, •.. ,N, be N mutually independent k­

dimensional random vectors with joint distribution functions (d.f.'s) 

(1.0.1) 

3 

for all-~< x. < 00 , i = 1,2, ... ,k, 
1 

and marginal d.f.'s F
1 

,F
2 

, ••• ,Fk , 
nN nN nN 

• i.e. 

(1.0.2) F. N(x) = P(X. N~x), 
J.n l.n 

for all - 00 < x < 00 , i = 1,2, ... ,k. 

All random vectors are supposed to be defined on a single probability 

space cn,A,P). For each N, moreover, let us define the joint empirical 

d. f. F N of x1N'x2N' .•• ,XNN by taking NJF N (xl ,x2, ... ,xk) to be the n11mhP.r 

of elements in the set {X : X ~ x X 
nN lnN 1' 2nN 

..• ,N}, for all - 00 < x. 
l. 

and FiN' i = 1,2, ••• ,k, 

(1.0.3) 

< 00 I 

as 

N 

i = 1,2, ..• ,k, 

N 

l 
n=l 

~ x 2 , • • • , xknN ~ xk , n =. 1,2, 
-and the averaged d.f.'s 

for - 00 < x. < oo, 
1 

i = 1,2, ... ,k, 

(1.0.4) FiN(x) = :t-1-1 I F. N(x), 
in 

for - 00 < x < oo. 

n=1 

We remark that FN has all the properties of a k-variate d.f. and that its 

marginal d.f.'s are the F. , i = 1,2, ••• ,k. 
J..N 
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The classical theory on empirical d.f. 1 s deals with the case where 

the N random vectors x
1 

,x
2 

, ••• ,x are independent and identically dis-
N N NN 

tributed (i.i.d.). our main purpose in this chapter is to derive some fun-

damental properties of the empirical d.f. in the non-i.i.d. case, where 

the N sample elements are asst1med to be independent, but not necessarily 

identically distributed. In particular, we shall generalize results ob­

tained by SHORACK (1970), GOVINDARAJULU, LECAM and RAGHAVACHARI (1967), 

RUYMGAART, SHORACK and VAN ZWET ( 197 2) and VAN ZWE'I'. VAN ZWET' s theorem is 

published in RUYMGAART (1974). It is rather striking that most of the 

theorems considered in the i.i.d. case remain valid in the non-i.i.d. case 

without any additional condition. Apart from the fact that the authors 

mentioned above derived these theorems in the i.i.d. case, they also as­

s11med - with the exception of VAN ZWET - the underlying distribution func­

tions to be continuous. It is our second aim in this chapter to give a 

rigorous demonstration of the fact that, even in the non-i.i.d. case, most 

of the theorems considered also hold without this ass11mption . 
• 

Sections 1.1 and 1.2 deal with univariate and multivariate empirical 
• 

d.f.'s in the case of continuous underlying d.f.'s. In section 1.3 it will 

be shown that the continuity ass1Jmption is superfluous in almost all 

theorems derived. 

The theorems are useful for proving asymptotic normality of rank sta­

tistics in a situation where the multivariate sample elements are allowed 

to have different d.f.'s and where the scores generating functions are 

allowed to tend to infinity near the boundary of the unit interval and to 

have a finite 1111mber of discontinuities of the first kind. The theorems 

may also be of interest in their own right. 

The basic tools for our study are two related results 0£ HOEFFDING 

(1956), who showed that in a certain sense the non-i.i.d. case is not less 

favourable than the i.i.d. case, and a theorem of BILLINGSLEY (1968), page 

94, on fluctuations of partial s1.1ms of random variables. we shall present 
k • 

these t_heorems without proofs. 

Suppose that z , 
n 1 ~ n ~ N, are independent random variables {r.v.'s) 

with • 

(1.0.5) P(Z =1) = 1 - P{Z =0) = p n n n' 

and suppose that 



(1.0.6) 0 < p = -1 
N 

N 

I 
n=l 

p < 1. 
n 

THEOREM 1.0.1 (HOEFFDING). If 

(1.0.7) f (k+2) - 2f (k+l) + f (k) > 0, k = 0, 1 , .... , N-2. 

then 

(1.0.8) 
N 

~ I 
k=O 

where equality holds if and only if p
1 

- p -- -2 

THEOREM 1.0.2 (HOEFFDING). Let band c be two integers such that 

-0 $ b $Np$ c $ N. 

Then 

C 

I 
n=b 

N 

s I 
n=l 

z n 1 • 

5 

Both bounds_are attained. The lower bound is attained only if p
1 

= p
2 

= ... 
... = PN = p unless b = O and c = N. 

Let ~1 , .•. ,~m be random variables which need not be independent or 

identically distributed. Let sk = ~
1 

+ •.• + ~k (s
0
=0), and put 

(1.0.9) M 
m 

-- max 
0:Sk:Sm 

THEOREM 1.0.3 (BILLINGSLEY). Suppose that there exists y 2! o., a.> 1., and 

nonnegative numbers u
1
,u

2
, ••• ,um such tha.t 

(1.0.10) E Is. -s. I y 
J l. 

< - ul 
l=i+l 

, -P.o~ o _< • < · < JI.I.~ l. - J - m. 

Then, there e:cists a positive nwnber K = K(y,a.), only depending on y 

and a.., suah that for all >. > o., 

(1.0.11) P(M ~>-.) 
m • 



• 
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1.1. PROPERTIES OF THE UNIVARIATE EMPIRICAL DF IN THE CASE OF CONTINUOUS 

UNDERLYING DF'S 

In this section we shall deal with the case that k = 1, so that for 

N = 1, 2, ••. , the univariate empirical d. f.. F N is based on the N 1:andom 

variables x ,x , ... ,X , with d.f.'s F 1 ,F2N, .•• ,FNN respectively. More-
lN 2N NN N 

over, fort.he time being we shall assume the underlying d.f. 's to be con-

tinuous. Before stating the theorems we first have to introduce some fur­

ther notation. 
-1 N 

we recall that the averaged univariate d.f. N rn=l F is denoted 
nN 

by FN. For the set x ,x , ... ,x , let us denote the order statistics by 
1N 2N NN 

(1.1.1) 

Let F be a d.f. on (-00 , 00 ), which is always taken to be right continu­

ous. Define an inverse of this function by 

' 

(1.1.2) for O < u ~ 1, 

whereas F-1 (0) is defined to be minus infinity. Here by way of exception 

a function is introduced which may ass11me an infinite value. According to 

(1.1.2), F- 1 (u) is non-decreasing, left continuous and satisfies 
-1 

F(F (u)) ~ u, for all O ~ u ~ 1 1 with equality if and only if Fis contin-

uous. Furthern1ore it has the property that F-l (F (y)) ~ y, for all 

y € (- 00 , 00), with equality if and only if Fis strictly increasing. 

We are now in a position to foxmulate our first theorem. It is a 

generalization to the non-i.i.d. case of a well-known result of SHORACK 

(1970), (1972). His result has been applied succesfully to the theory of 

rank tests in RUYMGAART, SHORACK and VAN ZWET (1972), RUYMGAART (1974) and 

to linear combinations of order statistics in SHORACK (1972). In Chapter II 

our generalization of SHORACK's result will be applied similarly in the 

non-i .. i .d. situa:i:i'on for rank tests, whereas the application to linear 

combinations of order statistics will be discussed in Remark 1.1.3. 

In the asymptotic theory the theorem makes it possible to bound certain 

random functions by other non random functions, see Lermnd 2.3.2. 

THEOREM 1.1.1 For evepy BE (0,1), every a;r,pay of continuous underlying 

d.f. 's F 1N,F2N, ... ,FNN, N = 1,2, ••• and for every N = 1,2, ••• ~ we have 

• 



(1.1.3) 

and 

(1.1.4) 

P F (x) 
N 

for x E (- 00 , 00 ) ?: 1 -

?: 1 -

2 1r2 S(l-S)-4 
3 

2 2 
3 1T 82 (1-13)-4 • 

For n = 1,2, ..• ,N we define the r.v.'s X~N by X~:= 

F~N the d.f. of X~N' and by F~ the empirical d.f. based 

X' We have NN. 

-X . Denote by 
nN 

on xiN' x2N' ... , 

(1.1.5) -1 
F~(x):= N 

N 

I 
n=l 

-1 = N 

N 

1 
n=1 

7 

for - 00 < x < 00 , 

and for n = 1,2, ..• ,N, 

(1.1.6) X' 
n:N 

- -x - . N-n+l :N 

Moreover, it is clear from the definitions and from (1.1.6) that the ran­

dom functions 1 - F ~ ( -x) and lF N (x) are simple step functions having j11mps 
-1 

of height N in the order statistics xl:N'x2 :N'··-,XN:N' and that 

Since 1 - F~(-x) is left continuous whereas FN(x) is right continuous, it 

follows from (1.1.7) that 

(1.1.8) for x E ( - 00 , 00 ) • 

In view of (1.1.5) - (1.1.8) and the fact that lFN is right continuous 

whereas FN is continuous, we obtain for O < S < 1, N = 1,2, ••• , 

(1.1.9) F' (x) S 
N 

FN(x) 

for x E 

for X E (-00 , 00 ) , 
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and 

(1.1 .. 10) 

- { x1 , x2 , ••• , xN N} 
·N ·N • • • • 

From (1.1.9) and (1.1.10) the following corollary of Theorem 1.1.1 

mediate: 

• • is im-

COROLLARY 1 .• 1.1 FOP every € (0,1), every array of continuous underlying 

d. f. '8 F 1N'F 2N, ••. , F NN-' N = 1, 2,. • • and every N = 1, 2, ••• ., we have 

(1.1.11) fOT' X € 

(1.1.12) 

1 - 2 
3 

;?:: 1 -

,...., 

2 1T2 $2(1-$)-4 .. 
3 

1.1.1. For n = 1,2, .•. ,N we introduce the r.v.'s X := F (X N). nN N n 
We -----­~ 

denote by FnN the d.f. of XnN' and 
~ "' ~ 

the empirical d.f. based on 
,..., 

x1N'x2N'·••t . Following SHORACK 

by FN 

(1973) we call FN the reduced empiri-

cal d.f. of x1N,x2N, •.• ,xNN. Since the F1N,F2N, ••• ,FNN are assumed to be 

continuous and are clearly constant on any interval where F is constant, 
N ,..., ~ "' 

we have that the F lN'F2N, •.• ,FNN a.re continuous on [0,1 J and in view of 

the remark below (1.1.2) that 

...., 
(1.1.13) 

and 

(1.1.14) 
N 

I 
n=l 

F (t) 
nN 

• 

fort E [0,1], n = 1,2, ••• ,N, 

-1 
=N 

N 

I 
n=l 
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DISCUSSION OF THEOREM 1.1.1. Theorem 1.1.1 and Corollary 1.1.1, applied to 

the reduced empirical d.f. defined in Remark 1.1.1, shows that for every 

E > 0, there exist an angle a= a(s), O <a< n/4, such that for every 

array of continuous d.f.'s F 1N,F2N, •.. ,FNN, N = 1,2, •.. and for every 

N = 1,2, ... , we have, with 13 = tga (see Fig.1.1.1), that 

(1 .. 1 .. 15) p -1 
:5 S t, for t E [ 0, 1] n 

L. 

n 
,.._, ,..., 

FN(t) 5 1 - 8(1-t), fort E [O ,XN:N) · n 

n 
,..,, 

:2: St, fort E 
~ l 

[Xl :N'l] j ~ 1 - £. 

"' ,.._, 
Of course, Xl:N(XN:N) denotes the smallest (largest) order statistic of 

,...,, ,..,_, ,..,, 
the set x1N,x2N, ••• ,xNN. 

' 

• 

0 

I --:;, / // 
- / / / I 

I / / / / / 
/ / / / / // 
I///// 
// / / / / I 

/ / I 
I////// 
/ / / / -✓ -,-

/ /_ / Ct 

Fig. 1 .. 1.1 

8 

1 

....., 
Hence, apart from possible exceptions for the intervals [O ,xl:N) and 

,.... 

[~:N'1], the angle a can be chosen, no matter the continuous underlying 

d.f.'s or N, such that with arbitrary high probability the reduced 
,.._, 

empirical d. f. F N moves in the shaded area of Fig. 1 • 1 . 1 • It is clear 

that there can be no hope for enlarging in the theorem the interval 

[X1:N'oo) to (-00,00). 

PROOF OF THEOREM 1.1.1. Let Z, 1 $ n $ N, be N independent BERNOULLI (p) 
n n 

r.v.'s as defined in (1.0.5). Theorem 1.0.1 together with MARKOV's 

inequality jmplies that for j > Np, 
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N 
p L z ~ 

• < J -n n=l 
N 

$ p l I z Np I > • - NP < - J - -Il n=l 

(1.1.16) 

(j-Np) -4 
N _,4 

< E I z < - Np) - -n 
n=l 

N 4 L (k-Np) --
k=O 

= (j-Np)-4 (p(1-p)) 2 (3N
2

-6N) + Np(l-p) < -

' 

Choose N € {1,2, ... }, continuous d.f.'s F
1 

,F
2 

, •.• ,F and 8 e (0,1). 
N N NN 

First let us prove (1.1.3). From BONFERRONI's inequality and the fact that 

• 

(1.1.17) --

N J :N 
for j = 1,2, ••. ,N > -

N 
SjN-l > 1 I p FN(Xj:N) < -- --

j=1 
N N 

1 I p I z > • - - J - - , 
n 

j=l n=l 

where z , 
n 

1 ~ n ~ N, are independent BERNOULLI (p) r.v.'s with 
n 

-1 N --1 -1 
From (1.1.16) with p = N t 1F N(FN (SjN )) = 

n= n.r 
it is now in1tr1ediate that, for j = 1,2, •.• ,N, 

N 
(1.1.18) p I 

n=1 
z n J 

-1 = BjN , 

Relation (1.1.3) follows from (1.1.17), (1.1.18) and the fact that 
't'(X) • -2 2/6 
l.;, 1 J = 1f .• 

J= 

For the proof of (1.1.4) essentially the ~amP. method can be used. 
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We have 

(1.1.19) --
N r \ p n > B FN(Xj:N) > - LFN(Xj:N-) - ) - -

j=2 
N 

S-l(j-l)N-l I > 1 - p FN(Xj:N) 
..__ -- , -

j=2 

[SN]+l 
- 1 - I p FN(Xj:N) > -

j=2 

where [SN] 

be omitted 

guaranteed 

is the greatest integer in BN. The terms with j >[SN]+ 1 may 
-1 -1 

because S (j-1)N > 1 for these terms. Since j ~ 2 we are 
-1 -1 

that O < S (j-1) N :S 1 for every terxn. 

Now for j = 2,3, ... , [SN]+ 1, 

( 1 • 1 • 20) 
-1 -1 

PF (X. ) > 8 (j-l)N 
, N J :N , 

N 

= p I 
n=1 

where z1 ,z2 , ••. ,ZN are independent BERNOULLI 

= 1 -

Z ~N-j+l, 
n 

(p ) r • v . • s with 
n 

for n = 1,2, •.• ,N. 

From (1.1.20) and (1.1.16) with p = 1 - S-l(j-l)N-l it is immediate again 

that for j = 2,3, .•• , [BN] + 1, 

(1.1.21) 
-1 -1 

> B (j-1)N 

2 -4 -2 = 48 (1-B) (j-1) • 

Relation (1.1.4) follows from (1.1.19) and (1.1.21). 0 

1.1.2. SHORACK's proof of (1.1.15) in the i.i.d. case, which is a -------
consequence of Theorem 1.1.1 in the i.i.d. case, is based on the compari-

... 
son of the empirical process with a POISSON process and on the HAJEK-RENYI 

inequality. The present proof of the Theorem 1.1.1 in the non-i.i.d. case 

is entirel¥ different and although a more general situation is considered, 

it is more elementary • 

• 



12 

REMARK 1.1.3. In Theorem 3 of SHORACK (1973) sufficient conditions are 

given for asymptotic normality of linear combinations of functions of 

order statistics in the non-i.i.d. case. The limiting scores generating 

function J occ,1rring in this theorem has to be bounded. As remarked in 

SHORACK (1973), the restriction to bounded J could be removed if Theorem 

1.1.1 and its consequences for the quantile process were available. Hence 

our theorem fills the gap in extending the proof of Theorem 3 of SHORACK 

(1973), so that his Theorem 3 can now be claimed to hold without the as-

s11mption b 1 = b 2 == 0 (that is, for unbounded J) • 

Next, let us prove four le11:11J1as, which may be of independent interest 

and are used to derive generalizations to the non-i.i.d. case of results 

obtained in GOVI LU, LECAM and RAGHA VACHARI ( 1967) , and RUYMGAART, 

SHORACK and VAN ZWE'11 
( 197 2) .. 

The first letiirr,a 
N 

E 
1
z , 

n= n 
defined 

• 

where Z , 1 
n 

in ( 1. 0. 5) . 

supplies upper bounds for the central moments of 

s; n SN, are independent BERNOULLI 
-1 N We recall that p = N I: 

1
P. 

n= n 

(p ) r. V. 'S, 
n 

LEMMA 1.1.1 .. For every a > ~, there ex·ists M 
a e (0 , 00

), suah that for N = 1, 
2 I • • •, 

-1 M Np, for 0 < < p N - - , a 
N 

- Npl2et E/ l Zn Ma { Np ( 1-p) } a, -1 -1 (1.1.22) < for < N p s; 1 - N , - -
n=1 

-1 M N(1-p)., for 1 < < 1 • - N p - -a 

PROOF. Since the assertion is trivial for p = O or 

1.0.1 ensures that it is sufficient to prove Lemma 
p = 1 

1. 1 .1 

and et>~, Theorem 

in the case where 

-1 

Then using an inequality due to S.N. BERNSTEIN (see e.g. BAHADUR (1966), 
page 578), we have for y > 0 that 

• 

Moreover, for y 2: 1 and -1 
N ~ p s 1 -1 

- N , N = 

s 2 exp 
2 

-y 
2+ 2y 

3/Np (1-p) 

2,3, ••• , we have 

• 



so that then 

1 - F -(y) $ 2 exp 
Np 

2 exp - y 
4 • 

Hence, for N-l $ p ~ 1 - -1 
N , N = 2,3, ... , 

00 LZ - Np 2a 
E n 

✓-N=p-(-1-~p=-·-) ! 
-- 2a. 

y dFNp(y) = 2et 
2a.-1 

y ( 1-F NP"(y)) dy $ 

0 

1 00 

$ 2a. dy + 4a 

0 

so that (1.1.22) is proved 
-1 

for N :::; 

1 

p $ 1 

0 

2o.-1 y 
y exp - 4 dy, 

- N 
-1 

• 
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Let us next concentrate on the proof o 
(N-) = k) $ F. 

k! 

(1.1.22) for O < p $ 
-1 

N • For 

k = 0,1, •.. ,N, 
-1 

O<p$N ,N 

N 
we have P(En=lzn 

= 1,2, .... , 

2a. 

ln=l n 
- Np 

N 

= I 
k=O 

<X) 

< - L 
k=O 

00 

< - + L 
k=l 

' 
' --

N 

I z 
n=l 

(Np) k < 
k! -

Np 

= Np exp(exp(2a.)). 

Relation (1.1.22) for 
-1 

p ~ N by symmetry. 

,..,., 

n = k < -

-Np 1 + 

00 2a.k 
e 

k and k $ e, so that for o. > ~, 

00 

< -

L --= 
k=O k! 

1 follows from (1.1.22) for 

With FN as given in Remark 1.1.1, we define the reduced empirical 

process~ by 

(1.1.23) for Ost s 1. 
' 
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Frc•11 this definition of XN and Len:xma 1 • 1 . 1 we obtain: 

~~:.....!1:..:-.::.1.:..· ::,.2. For every a > 

a:rray of continuous d.f. 's F ,F2 , ••• ,FNN, 
1N N 

that for every 

N = 1,2, ... , every N = 1,2, ... 

and every pair s,t e [0,1], 
-1 

if O s; l t-s I s N ., 

Elx {t) - X (s) {2a s; 
a a -1 -1 

M I t-s I ( 1-1 t-s l) , if N ~ I t-s I s 1-N , 
a (1.1.24) 

1 N N 

1-a l M N (1-lt-s ), -1 I if 1-N s I t-s S 1. 
a 

PROOF. Let x(S) denote the indicator function of a set S and 1.et x(S;s) 

denote the value of this function at the points. Without loss of general-

ity takes< t. Then, 

(1.1.25) 
~ 

1
2a 

- NF ( s) - Nt + Ns = 
N 

x((s,t]; - N(t-s)l2a = z 
n 1

2a 
- N(t-s) , 

• 

where z, 
n 

(1 .. 1.3)) 

1 Sn s; N, are independent BERNOULLI (p) n 

...., ,..., 

r.v. 's, with (see 

and hence p = t - s. Relation (1.1.24) follows from (1.1.25) and Le-111111a 

1.1.1. D 

For O < o s ~ we define the function q 0 as 

(1.1 .. 26) 
~-o = { t( 1-t)} , for Os; ts; 1. 

I,en:nna 1.1.3, which will be derived from Lem11a 1.1.2, tells us what happens 

with the upper bound in 

process Xt/q0 • Throughout this 

,..,,. 

by the 

zero. 

LEMMA 1.1.3. For every a>~ there e~ists Mae (O,®) such t'hat for every 

a:.tTay of continuous d.f. 's F lN'F 2N, ••• ,F , N = 1,2, ••• , every N = 1,2, ••• , 
. -1 -1 NN . -1 

every pa1,.r s ,t E [N , 1-N J u {O} u { 1} un,,th I t-s I ~ N , and eVeT¥Jd 

o e (O,~]., 



(1.1.27) 
2a r<w 2a.o 

~ M I t-s I . 
a. 

PROOF. Without loss of generality take O ~ ·s < t 
-1 

and Lemma 1.1.2 yield for N ~ s < t ~ ½, t-s ~ 

The c -inequality 
r 

XN(s) 2a 
2 2a-1 

- --- < qc (s} -

XN(t)-XN(s) 2a 
E ------, + qo <t> 

2a. 2a-1 
2 M 

Ci. 

a 
(t-s) + 

(t/2)2a(~-o) 

1 2a 

J 

2 3a ( )2ao = M t-s a. , 

because 

for O ~ s < t ~ ~-
• 

F O t N-1 . 1· t -1 ors= , - s ~ imp ies ~ N and although now XN(s) = 0 the 

proof is still forroally correct. 0 

LEMMA 1.1.4. For every a.> ':i there 

that for every array of continuous 

every Nm 2,3, ••. , every o E (O,~] 

* * exist M E (0, 00) and M E (O,~) suah 
ex. 

d. f. 's F lN ,F 2N' ••• ,F NN' N = 2, 3, ... , 

and every c > O, 

M* (cNo) -2a, 
Ct 

15 

for, k = 2, 3, ••• ,N-2, 
{1.1.28) p -

and 

(1.1.29) 
k 
N 

* 6 -1 M (cN ) ., 

~ M* (cN ¼) - 2 a., 
a 

for k = 1 , N-1, 

fork= 1,2, ••• ,N-1. 

PROOF. We assum~ k + 1 ~ ¼N; the proof for other values of k requires only 

minor modifications. 

Suppose first that 2 s k ~ ~N-1. Then 
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(1.1.30) sup 

I t-kN - 1 1 $N-l 

sup 
-1 -1 

lt-kN ls;N 

- ----1 -1 
q

0
(kN ) 

-1 
X (t)-X (kN ) 

N N 

k+1 _ X k-1 
N ;._ N N 

k-1 
__.__ __ + 

q:o N 

1 
k-1 

N 

- 1 
k-1 
N) 

1 -

.. 

Si.nee ~ k-1 
4 N q o N 

-1 
2512 N-o, the reasoning in the proof of Lemma 1.1.3 

shows that for a.>~, 

(1.1.31) E 
2a. -2etcS 

S M' N . 
Cf. 

Applicati.on of M.AAAOV's inequality proves (1.1.28) for 2 s ks ~N-1; 

taking o =~we also obtain (1.1.29) for 2 s ks ~-1 • 
• 

Fork= 1 we note from Theorem 1.1.1 that for O < 

p 

so that 

p 

t 

IXN(t) I 
sup (t) 

t$N-1 qo 

and this proves (1.1.28) fork - 1 and c ~ 2½N-o and hence for all c > 0. 

Finally we note that for a>~, 

(1.1.32) E sup lxN(t) I 
tSN-l 

2a 
s E Ix (N-1) t + 

N 

-~ 2et 
2N S M'' N-Ct, 

Ct 

and the MARKOV inequality proves (1.1.29) fork= 1. D 

Combination of Le111:1·na 1.1.4 with Theorem 1.0. 3 leads to the following 

two fundamental theorems: 

THEOREM 1.1.2. For every a>~ there exists M >Osuch that for every 
ex 

array of continuous d.f.'s F1N,F2N1 ••• ,FNN, N = 1,2, ••. , every N = 1,2, ••• , 



every O :s; a< b :s; 1 and every c > o., 

(1.1.33) p sup I XN (t) 
s,tE[a,b] 

M 
(l 

-2a. 1-a. 
c N (b-a)., 

M c - 2a (b-a) a., 
(l 

if b-a :5 

if b-a > 

17 

-1 
N , 

-1 
N • 

PROOF .. If b-a 
-1 

:s; N , Lexr11na 1 • 1. 2 and the c -inequality imply that for <l > ~, 
r 

E sup I XN (s) 
s,tE[a,b] 

22a-1 
$ 

2a -
SE IXN(b) - XN(a) I ~ + 2N (b-a) 

2a 

and application of MARKOV'S inequality proves the first part of the theorem. 

If b-a > N-1 , let k and k+m be the smallest 

[aN,bN], so that m $ (b-a)N. Define 

Then 
• 

S = 0 
0 

and from Lerorna 1 • 1 • 2 we 

s. = 
l. 

have 

and largest 
k+i\ k 
N}-XNN 

integers in 

, i = 0,1, .... ,m. 

EIS. - S. I 2 (l :s; M 
J 1 a 

j-i 
N 

, for O $is j :s; m. 

It follows from Theorem 1.0.3 that for CL> 1, 

p max 
OSiSm 

k+i 
N 

k 
> SM' 

CL 

-2a m 
C 

N 
:s; M • 

a 
c-2a(b-a)a.. 

Combin.ing this with the second part of Lemt11a 1.1 .4 we find for a > 1, 

p sup I ~(t) 
s,tE[a,b] 

* :s; M 
ct 

< - * M 
a 

cN~ 
4 

-2a 

(m+l) + 

24a+2+M' 2 4a+1 
a 

C 
2M' 

a 4 

\ ~-c) s 2P sup 
'tE [a ,b] 

-2a. 
a 

(b-a) S 

c-2a{b-a)a. 

I ~ c/2 



' 
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Since a probability is bounded by 1, the result remains true for a>~ if 

we take M ~ 1 • 0 
a 

THEOREM 1.1.3. For every a> o and ever-yo c (O,~J there exist M > O and 

Ma,o > o suah that for every array of continuous d.f. 's F1N,F2N, ••. ,FNN, 

N = 1,2, .•• , every N = 1,2, •.. and every c > O, 

(1.1.34) p sup 
t<::[0,1] 

-2a 
S M ..re a,u + M 

-1 -o 
c N • 

PROOF. Define 

1.1.3 ensures 

s = 
i 

-1 -1 
XN{iN )/q0 (iN ) , for i = 1,2, ••. ,N, s

0 
= 0. Lemma 

that for a.>~, 

for 0 

Theorem 1.0.3 jmplies, for a> (28)-1 , 
• 

P max 
0:5:kSN 

-2a 
~ C S M ..rC • 

a,u 

Application of Len1ma 1. 1 • 4 yields 

Si S j SN • 

P sup 
tE[0,1] 

2a -2a 2a * o -2a * c -1 
~ 2 M ..r c + 2 NM ( cN ) + 4M ( cN · ) , a,u a 

which proves the theorem for a> 
-1 

(2o) and hence for every a> 0. □ 

The following corollary is immediate from Theorem 1.1.3: 

COROI,I,ARY 1.1 .. 2. For every c: > O arul every 6 c: (0, ~], thez,e exists 

M = M(e,o), such that for every array of continuous d.f. 's F
1
N,F2N, ••• ,FNN, 

N = 1 , 2 , •.• , and every N = 1 , 2 , ••• 1 

(1.1.35) p 

PROOF. Since F N is ass11med to be continuous, we have 

(1.1.36) sup 
0StS1 

sup • 
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"' Moreover, FN o FN = FN with probability 1, so that (1.1.35) follows from 

( 1. 1. 34) and ( 1. 1. 36) . 0 

Corollary 1.1.2 is basic in the asymptotic theory of rank statistics 

in the case where the sample elements are allowed to have different d.f.'s. 

In particular this corollary can be used to counterbalance the growth of 

the scores generating functions near the boundary of the unit interval. In 

the i.i.d. case Corollary 1.1.2 is proved for the first time in 

GOVINDARAJULU, LECAM and RAGHAVACHARI (1967). PYKE and SHORACK (1968) gave 

a simpl.er proof with the aid of the POISSON process and the BIRNBAUM­

MARSHALL inequality. The result in the non-i.i.d. case for continuous 

underlying d. f. 's is already given in SEN ( 1970). IIowever, it is clear from 

SHORACK (1973) that the proof given by SEN is incorrect. The proof given 

here is different from the methods used by the authors mentioned above. 

In order to fozmulate a corollary of Theorem 1.1.2 let us introduce 

for every positive integer m the function 

and 

I on [0,1] defined by 
m 

I (1) = 1 
m 

( 1 • 1 . 37) I (u) = 
m 

i-1 
m 

• 

i-1 i 
for -- :S u < m' m 

i = 1 ,2, ... ,m. 

COROLLARY 1.1.3. For every E > o and every c > o, there exist N0 = N0 (e,c) 

and m
0 

= m
0

(E,c), suah that for every array of continuous d.f. 's F 1N,F2N, 

.•• ,FNN, N = 1,2, .•. , every N ~ N0 and every m ~ m0~ 

(1.1.38) P sup Ix (I (t)) -
0:St:Sl N m 

X (t) I ~ C 
N 

:S E .. 

PROOF. Note that Theorem 1.1.2 implies that for every a>~, 

P sup Ix (I (t))-X (t) l~c 
0St<1 N m N 

m 
I p 

k=l 
sup I~ 

k-1 St< k 
m m 

k-1 
m 

-- sup jx (I (t))-X (t)l~c 
k=1 , 2, ... ,m k-1 k N m N 

--:S;t< -

:S M 
Ol. 

m m 

-2a 1-a 
c {mj,n(m,N)} • □ 

< -

Corollary 1.1.3 is a generalization to the non-i.i.d.case of a theorem 

due to RUYMGAART, SHORACK and VAN ZWET (1972). This result is especially 

useful in the asymptotic theory of rank statistics when one wants to re­

place certain integrals with respect to the measure induced by the 
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empirical d.f. by the corresponding integrals with respect to the measure 

induced by the averaged d.f •• 

A second consequence of Theorem 1 • 1 . 2 is Corollary 1 . 1. 4. It is a 

stronger statament than Theorem 1.2.1 fork= 1. 

COROLLARY 1.1.4. For every E > O there exists M = M(£)~ such that for 

every array of continuous d.f. 's F 1N,F2N, ••. ,FNN, N = 1,2, •.• , evePy 

N = 1,2, .•• , every O $a< b $ 1, 

(1.1.39) ~ M(b-a)~ 
s,tc:[a,b] 

PROOF. App1y Theorem 1.1.2 with a.= 1 and c = ~ M(b-a) • D 

The last theorem in this section is also of much help in the asymp­

totic theory of rank statistics in the non-i.i.d. case. For instance, it 

is useful when one wants to replace Theorem 1.1.1 and Corollary 1.1.2, 

which supply bounds for the empirical d.f. lFN, by similar statements 

* are given for the modified empirical. d. f. F , defined as 
N 

where bounds 
* N 

FN = N+1 ]FN (see Len11oa 2 • 3 . 1 ) • 

THEOREM 1.1.4. For NE {1,2, ••. }, c:ontinuous d.f. 's F1N'F2N'"··,FNN and 

n E (O,N}, we have 

(1.1.40) S 1 - et/N 

(1.1.41) a./N 

N 
( 1-a./N) 

N 
~ (1-a./N) 

-a. s e 

-ex 
:s; e • 

Fo~ a restricted to the intervaZ (0,1), we have, even if ~he sample ele­

ments are not independent, 

( 1 .1. 42) ~ 1 - Cl,, 

(1.1.43) PF (X ) ~ a/N ~ 1 - et. 
N 1 :N 

PROOF. Note that 

( 1 .1. 44) = p --
N 

II FnN 
n=1 

--1 
FN (1-a/N) • 
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Hence, from the concavity of logy and JENSEN's inequality we obtain, 

(1.1.45) 
N 

I N 
n=l 

1 
log FnN 

--1 
FN (1-a/N) 

1 
= N log --

which proves (1.1.40). For the proof of (1.1.41) observe that application 

of (1.1.40) to the random variables X' , n = 1,2, ..• ,N, defined above 
nN 

(1.1.5), together with (1.1.6) and (1.1.5), shows that 

= P 1 - F {-X' ) ~ 1 -
N N:N 

• 

-
P F' (X' ) ~ 1 -

N N:N 
N 

( 1-a/N) . 

In order to orove (1.1.42) we remark that BONFERRONI's inequality implies -
that 

= 1 - p 
N 

u 

:S: 1 - a./N = p 
N 

n 
n=l 

> -
n=l 

X > . nN 

N 

~ 1 - I 
n=l 

N 

= 1 - I 
n=l 

N 

--1 
PX > FN {1-a/N) 

nN 
--

- --1 
F ( 1-a./N) 

N 

--1 
F ( 1-a./N) 

N 

--

--

= 1 - I = 1 - N + NFN 
--1 \ 
FN (1-a./N)) = 

n=1 

• 

= 1 - N + N - a.= 1-a.. 

Finally, (1.1.43) can be proved again from (1.1.42) with the aid of the 

r.v. 's X' defined above (1.1.5). 
nN □ 

' 
' 
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1.1.4. The bounds derived in Theorem 1.1.4 are sharp in the sense -------
that one can construct examples where these bounds are attained. If 

then P FM(X ) ~ 1 
~"' N:N 

N 
- a/N = (1-a/N) . Moreover, 

if F 1N is chosen such that 1 
--1 

such that 1 - F FN (1-a/N) nN 

--1 
- F lN FN (1-a/N) 

= 0 for n = 2,3, ... ,N, then 

REMARK 1.1.5. The continuity of the underlying d.f.'s is essential for the 

relations (1.1.41) and (1.1.42), 

Take N = 
F2 (x) = 

2, a= 12 and for 
0 for x < b 

· 1 elsewhere· 

a< b, 

as the following counterexample shows. 
0 for x < a 
1 elsewhere' 

We conclude this section by remarking that MEHRA and RAO (1975) also 

used BII,I,INGSLEY' s Theorem 1 • 0. 3 fruitfully in their study of the one­

dimensional empirical process, divided by certain q-functions, in the sit­

uation where the sample elements do have a common d.f., but where they are 

not necessarily independent. 
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1 • 2 • A PROPERTY OF THE MULTIVARIATE EMPIRICAI, DF IN THE CASE OF CONTINUOUS 

UNDERLYING DF'S 

In this section k is an arbitrary positive integer, so that for N = 1, 

2, •.. , the multivariate d.f. FN is based on the N random vectors 

xnN = (XlnN'x2nN'···,¾nN), n = 1,2, ••• ,N, with d.f.'s F1N'F2N, ••• ,FNN 

respectively. Assuming for the moment again continuity of these underlying 

d.f.'s, we shall present a generalization of a slightly weaker version of 

a theorem due to VAN ZWET (Le-mma 4.4 in RUYM (1974)). See also 

BAHADUR (1966). In fact VAN ZWET proved that, in the i.i.d. case, Theorem 

1.2.1 below holds, without the factor (log (N+l))~ in {1.2.1). We conjec­

ture that one can dispense with this factor in the non-i.i.d. case too. 

This conject11re is clearly true for k = 1, where the theorem follows from 

Corollary 1.1.4. However, the present Theorem 1.2.1 is strong enough for 

our purposes in ChapterII, where it makes it possible to handle problems, 

connected with discontinuities in the scores generating functions of rank 

statistics. 
' 

By an abuse of notation we write_lFN and FN_for the measure induced 

by the d.f .. 's, thus FN{B} = JB dJFN, FN{B} = f BdFN for a Borel set B in 

mk. An interval in ef is defined as the product set of k intervals, 

closed, open or half open, on the line. 

THEOREM 1.2. l .. Let I be an interval in JR.k and let 1 * == { I : * . I -is an inter-

vaZ contained in I}. For every e > O and every positive integer k, there 

exist M = M(e,k)., such that for every array of k-variate continuous d._f. 's 

F lN'F 2N, ••• ,F NN' N = 1, 2, ••• ., every inter11,al I and every N = 1 ,2, ••. ., 

(1.2.1) P sup 
* . 

~ M -------
N 

I e.1 

Before presenting the proof of this theorem, we shall prove a le1oma 

* - * which supplies an upper bound for sup * I FN{I } - FN{I } I in te:r:111s of a 
I e 1 

maximum over a finite number of sets. 

By [a] we denote the largest integer in the number a. 

LEMMA 1~2.1. Let for N = 1,2, ••. the k-dimensional 

be continuous and Z.et I be an interval in lRk with 
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N = 1,2, ... 

and Zet 

(1 .. 2.2) 

I * * · · Z t. d. ={I: I ~s an ~nterva con a~ne ~n 

F = N 
iN 

I}., 

--1 ni2 
FiN N 

n. . e: 
J..J 

f lo,1,2, ••. , + 1 ., fo~ i = 

Then, for every w € a, N = 1,2, ••• , k =1,2, ••. we have 

(1.2.3) 

* PROOF. Let I be an arbitra~y interval in I. Define 

• 

,..., * 
I =>I 

N 

-* * ,...,1 Note that IN and !N are elements of N 

(1.2.4) 

* - * 

,.._, 

- * I cI 
N 

u ~ and that 

-1 

* If I is such that F { I } - F { I } ~ 0, . N N we have using (1.2.4), 

' 

l 

F 
inN3 

J ., 

= 1,2 • 



* F {I} -
N 

-* F {I} 
N N 

+ 2 kN - l-F { I} • 
N 
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□ 

PROOF OF THEOREM 1.2.1. If FN{I} = 0, the theorem follows immediately. It 

proves to 8 log (N+l) the cases O < F {I} s , · - and 
N e:N 

to consider be convenient 
lo<] (N+l) f 

eN , or fixed O < e: < 1, separately. Compare with 

RUYMGAART (1973), page 19 .. 

First suppose that O < FN{I} 

(2/e:) 312 • Then 

(1.2.5) 
log(N+l)FN{I} 

M-------
N 

• Moreover, since 

(1.2.6) 

-1 
$; [i (EN) log(N+l), and choose M = M1 (e:) = 

• e: 

we have from (1.2.5), (1.2.6) and MARKOV's inequality that the left-hand 

side of (1.2.1) is bounded below by 

Next we suppose 

1.2.1 shows that for 

that F {I} > 8 (e:N) -l log (N+l). Application of L.e1n11,a 

and N = 1,2, ..• , the left 

hand side of (1.2.1) is bounded below by 

(1.2.7) P max 

~ P max 

~ 1 -

1l 
/log(N+l)FN{I}\ 

~M\ N ) -

F {I} 
2k _N __ 

N 

p IF {I } - F {I } l > 
log(N+l)FN{I} 

~-------
N N N N N • 
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...., 
applicable, so that we may assume that N FN{IN} in (1.2. 7) is a binomial 

-r.v. with parameters N and FN{IN}. 

With the aid of BERNSTEIN'S inequality (see e.g. BAHADUR (1966), page 
~ - -578) we find, using max (FN{ IN}, 1 - FN{IN}) s 1, that for N = 1 ,2, ..• , 

and M > O, 

(1.2.8) 

s 2 exp -

log(N+l)FN{I} 
~M ------­

N 

Moreover, since 
-1 

F {I}> 8(e:N) log(N+1) > 
N 

-1 
8N log (N+1) 

FN{I}, we obtain the following upper bound for (1.2.8), 

and 

(1.2.9) 2 exp - -------
12/2 + M 

s 2 exp(-~M log(N+1)), 

Noting that the n1.1mb~r of elements in 

2k 

... , 

...., 
1 is bounded above by 

N 

+ 2 

(1.2.10} s M -------
N 

> -

which completes the proof of the theorem. D 

l"'w 

F {I} s; 
N N 
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1.2.1. If in Theorem 1.2.1 we take I 
k = ]R , we obtain the following 

result which is a kind of GLIVENKO-CANTELLI theorem: 

For every E > 0 and every positive integer k, there exists M = M(s,k) such 

that for every array of k-variate continuous d.f. •s F 1N,F2 N, .•. ,FNN, N = 
= 1,2, •.• , and every N = 1,2, •.• , 

(1.2.11)·· 

• 
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1.3. DISCONTINUOUS UNDERLYING DF'S 

In this section we shall establish a theorem which makes it clear 

that, without any additional condition, the most important results from 

the foregoing sections remain valid without the restriction of continuous 

underlying d.f.'s. For related results see e.g. BEHNEN (1976) and CONOVER 

( 1973). 

An interval I c lRk is defined in the introduction of section 1.2; 

the corresponding definition of the class of intervals 1 is given in 

Theorem 1.2.1. Given a set S, Sc will denote its complement, x(S) its in­

dicator function and x(S;s) the value of this fW1ction at the points, i.e. 

(1.3.1) X(S;s) = 1 for s Es, 
0 for s E sc. 

THEOREM 1.3.1. Let k be a positive integer and let F be the empirical 
N 

d.f. based on tJ k-variate sample elements x = (X ,x , ... ,X ) , 
nN 1nN 2nN · knN 

n = 1,2, •.• ,N, where the XnN are distributed indeperulentZy according to 

given, possibly discontinuous d.f. 's FnN· Let us denote for i = 1,2, .•. ,k 

l.N n=1 inN v 
v = 1,2, •.. } be the countable set of discontinuity points of F. and let 

{ i) . . { i) _ • J.N 
Pv be the he~ght of the Jump at~ of F .. F~na.Zly let I be an inteP-

k V iN 
val in E • Therae exist N k-va:r,iate Pa -zac vento y (Y y v rs = , 

2 
, ••• , 

nN lnN nN 
YknN), n = 1,2, .•. ,N, where the Y are distributed independently acaor­. nN 
ding to continuous d.f. 's G ., and an intewal I c JRk., suah that 

nN 

(1.3.2) 

= G X + ' (l) 
N 1 l pv 

\) 

and with probability one 

(1.3.3) 

and 



(1.3 .. 4) 

where tiN denotes ~he empirieaZ d.f. based on the 
-1 N 

lt,N = N Ln=l F 
nN' 

-1 ._.N 
G = N c... G N n=l nN· 
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ynN' n = 1,2, •.• ,N and 

PROOF. Let {U(in), i = 1,2, .... ,k, n = 1,2, ... ,N, v = 1,2, ••. } be a set of 
\) 

uniform (0,1) distributed r.v.•s, mutually independent and also indepen-

dent of the random vectors X , n v = 1, 2, •.. } 
nN 

contains the discontinuity points of each F. , 11 = 1, 2, ••• ,N. 
1.nN 

Since 

(1.3.5) 

for i = 1,2, .•. ,k, so that 

Let G N be the d.f. of Y 
· n nN 

XnN is transformed stochastically to YnN'" 

and let 6N be the empirical d.f. based on ylN' 
Y2N, ..• ,YNN. It is clear that all the marginal d.f.'s of GnN are continu­

ous and hence GnN is continuous. From definition (1 .. 3.5) it is inm,ediate 

that for n = 1,2, ••• ,N and i = 1,2, ••. ,k, 

(1.3.6) 

and hence 

(1.3.7) 

(1.3.8) 

(i} (i) 
X. N+Ip x((~ ,oo);X. N) 

1.n v \) 1.n 
\) 

[X. N 
in 

s; X.] 
1 

x. J 
1. 

(Y. N :S x. 
in i 

* [Y. N < X. 
in i 

From (1.3.7) it is obvious that (with 

(1.3.2) and (1.3.3) hold. 

<y <X ' (i) ([e-(i) ) X ) - . N - . N + l p X ':>\) I 00 ; • nN , 
in 1.n v 1. 

\) 

[ r(i) ) J X ( ':> , 00 ) ;x. - , 
V 1. 

(i) 
X((; , 00 ) ;x.)]. 

\) 1. 

the equalities 

lJ'ext, let us construct from the given interval I c lRk an interval 
,... k 
I cm , such that (1.3.4) is satisfied. Therefore, we define for i = 1,2, 

.•• ,k the functions f 1 and g
1 

as follows: 

(1.3.9) f. (x) = X + 
1. 

for X E (-00 , 00 ) , 
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(1.3.10) g. (x) = x + I 
l. \) 

for x E: { - 00 , 00 ) • 

Let I .:: Ilk I 
i=l i 

and let for i 

c :m, with a
1 

= 1,2, ..• ,k, 

:S b .• Let 

a. and b. 
l. l. 

be the end points of 

the ir1terval I. 
l. 

(1.3.11) 
,._, 

a. = 
l. 

,..,, 

g.(a.), 
l. l. 

f.(a.), 
1. J. 

,.._, 

l. 

for a. E I., 
l. l. 

elsewhere, 

k where • We define I - II. 1 I. I for l. -- -
1= l. ,.., ...., ,..,. ,..,,, 

and with end points a. b. and a. € I. 
1. l. l. l. 

and b. = 
J. 

,._, 

1,2, .... ,k, I . 
l.. 

iff I. , a. e: 
1 l. 

g. (b. ) , 
l. l. 

f. (b. ) , 
J. l. 

• the l.S 
,..,, ,..., 
b. € I. 

l. l. 

C 
for b. E I. , 

l. l. 

elsewhere. 

interval • JR l.Il 

iff b. I .. E 
l. l.. 

With the aid of {1.3.7) and (1.3.8) it can be verified that 

{1.3.12) and 

* Since, analogously we can construct for every interval I c I an interval 
,._,* ..... * r.,; ,...,* 
I c 1 satisfying {1.3.12) with I= I and I= I, the proof is completed. 

□ 

COROLLARY 1.3.1. Theorem 1.1.1, CoroZZaPy 1.1.1, CoroZZa:ry 1.1.2, (1.1.40), 

(1.1.43) and Theorem 1.2.1 aZso hoZd without the restriation to continuous 

underlying d.f. 's. 

PROOF. The assertion for Theorem 1.2.1 is jx1n11ediate f1.om (1.3.4). For 

k = 1, we denote by Yl:N' YN:N the first and last order statistic of the 

random va.riables YlN' Y2N, •.• , YNN, which are constructed in the proo£ of 

Theorem 1.3.1 (cf. (1.3.5)). In view of (1.3.7) we obtain 

so that (1.3.2) and (1.3.3) imply that with probability one 

(1.3.13) 

(1.3.14) 

sup 
x~Xl :N 

sup 

x<XN:N 

GN(x) 
s sup 4i (x) , 

x;?:Yl:N N 

1-FN(x) 
----< 
1-JFN(x) -

. sup 
x<Y 

N:N 



(1.3.15) 

(1.3.16) 

(1.3.17) 

sup 

sup 

lF N (x) 
---- ~ sup 

1-IF (x) 
N 

< - sup 
- 00<x<00 1-F N (x) 

sup 
-oo<x<oo 

jlF'N(x)-FN(x) I 

qo (F N (x)) 

fiN(x) 
, 

I 

I <SN (x) -GN (x) I 

qo(GN(x)) 

Moreover, with the aid of (1.3.2) one can show that 

(1.3.18) 

(1.3.19) 

The proof can be completed from (1.3.13)-(1.3.19). D 
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.. 

G (Y
1 

) . 
N :N 

REMARK 1.3.1. From Corollary 1.1.4, the proof of Corollary 1.1.2 and 

(1.3.4) it is iroroediate that fork= 1 Theorem 1.2.1 even holds without 

the factor (log (N+l))~ in (1.2.1) and without the restriction to continu­

ous underlying d.f.'s. 

REMARK 1.3.2. Of course, as in the proof of Corollary 1.4.1, one can show 

that also the transformed versions (cf. (1.1.36)) of Theorem 1.1.2 and 

Theorem 1.1.3 remain valid without the restriction to continuous d.f.'s. 
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.. R II 

ASYMPTOTIC THEORY OF RANK STATISTICS 

2.0. INTRODUCTION 

There exists a variety of theorems on asymptotic normality of both 

univariate and multivariate rank statistics. Although these results are 

obviously related, separate proofs are given and in general different tech­

niques are used. It is our purpose to give a unifying approach to these 

various results. We ~hall present three theorems establishing asymptotic 

nozmality for a general class of multivariate rank statistics and, apart 
• 

from regularity conditions, almost arbitrary underlying continuous distri­

bution functions (d.f.'s) which may correspond to the null hypothesis or 

to local or fixed alternatives. As such these theorems are more general 

than existing results. As special cases they contain or extend many of the 

results found in the literature and include e.g. asymptotic normality for 

simple linea.r rank statistics as well as rank statistics for independence, 

under the null hypothesis and under alternatives. The technique used in the 

proofs appears to be generally applicable in problems of this kind and is 

based on the properties of empirical distribution functions which are de­

rived in Chapter I. Specializing our theorems to particular cases it turns 

out that the present conditions are rather close to the best conditions 

that appear in the literature, although they are occasionally slightly 

stronger. The study in this chapter is a continuation of previous work by 

F .. H. RUYMGAART and the author. 

Let k be a fixed positive integer and for each N = 1,2, ••• let XnN = 

= (XlnN'X2nN'···,¾nN), n = 1,2, ••. ,N, be N independent k-dimensional ran­

dom vectors with joint continuous distribution function FnN and marginal 

d. f • 's F !nN'F 2nN' ••• ,FknN· For each N, moreover, let F N be the joint 

empirical d. f. based on the N random vectors X ,X , ••• , and, for i = 
1N 2N 

= 1,2, •.• ,k, denote the marginal empirical d.f. of the independent random 



variables xilN'xi2N, •.• ,xiNN by 

RilN'Ri2N, ••• ,RiNN. We have the 

F. and the ranks of these r.v.•s by iN 
relations 

(2.0.1) for i = 1,2, •.• ,k. 

All random vectors are supposed to 

space (n,A,P). We recall that FN = 
for i = 1 , 2 , ••• , k (cf . ( 1 • 0 • 3) and 

be defined 0n a single 
-1 N 

N En=l FnN and FiN = 
(1.0.4)). 

probability 

N-1 i.:N 1 F. 
n= inN 
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The rank statistics that we are interested in are called multivariate 

linear rank statistics; these are of the type 

(2.0.2) -1 
S = N 

N 

N 

L 
n=l 

Here, for ni = 1,2, ..• ,N, i = 1,2, ... ,k, the aN(n
1
,n

2
, .•• ,°k) are 

real numbers, called scores, and the cnN' for n = 1,2, ..• ,N, are 

constants, called regression constants. For this terminology see 
V -

• given 

given real 

-HAJEK and 

SIDAK (1967). An important sub-class of the statistics of the form (2.0.2) 

are those for which the scores have product structure, viz. 

• 

(2.0.3) -1 = N 
N 

l cnN 
n=l 

k 
TI 

i=l 
a.N(R. N), 

1 in 

where, for n = 1,2, ..• ,N and i = 1,2, ... ,k, 

Statistics of the more general fo.r111 

the a. (n) are the scores. 
1N 

m 
(2.0.4) I 

j=l 
A. T. , 

J JN 

with A1 ,A2 , •.• ,Am real constants 

an inter,riediate position between 

and each T. of the type (2.0.3) occupies 
JN 

( 2 • 0 • 2 ) and ( 2 . 0 .. 3 ) • 

To motivate the study of the statistics mentioned in (2.0.3) or 

(2.0.4), let us observe that most of the rank statistics considered in the 

literature are of this fo~m. In PURI and SEN (1969), (1971), functions of 

statistics of the type (2.0.3) are proposed as permutationally (condition­

ally) distribution-free tests for some specified problems; in SHIRAHATA 

(1973) it is shown that in many natural multivariate models locally most 

powerful rank tests are based on such rank statistics. To get an insight 

into the situations that are covered in the present set-up, we shall con­

sider some examples. 
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EXAMPLE 2.0.1 (simple linear rank statistics): 

Choosing k = 1, (2.0.3) reduces to 

(2.0 .. 5) 
-1 

N 

N 

l cnN a1N(RlnN) · 
n=l 

Statistics of this type are cal.led simple linear rank statistics and are 

of general importance. In particular they are locally most powerful for 

testing the null hypotheses of randomness against regression in location. 

For this terminology see HAJEK and $IDAK (1967), page 216. Under the null 

hypothesis the distribution of TlN is independent of the underlying uni­

variate continuous d.f. F and its limiting (normal) distribution can be 
... V .. 

found e.g. in HAJEK and SIDAK (1967). In the general case where the FnN 
.. 

a.r~ almost arbitrary, asymptotic noz:1nali ty· has been studied in HAJEK ( 1968) 
V 

and DUPAC and HAJEK (1969). The special case where each F 
nN 

equals one of 

the arbitrary continuous univariate d.f.'s F
1 

or F2 , both independent of 

N, has been investigated e.g. in CHERNOFF and SAVAGE (1958), 
• 

GOVI.1.~.L ""'T'>., ULU, LECAM and RAGHAVACHARI ( 196 7) and PYKE and SHORACK ( 1968) 
' 

(two-sample problem). 

EXAMPLE 2.0.2 (rank statistics for independence): 

Choosing k = 2 and cnN = 1, for n = 1,2, ... ,N, (2.0.3) reduces to 

(2.0.6) 
-1 

N 

N 

I 
n=l 

Statistics of this type are particularly well suited for testing the null 

hypothesis of independence against alternatives with an underlying bivari­

ate d.f. exhibiting a positive (negative) stochastic dependence (see e.g. 

RUYMGAART (1974)). Under the null hypothesis the distribution of T 2 N • 
J.S 

independent of the underlying bivariate continuous d.f. Moreover, it is 

well-known that, under the null hypothesis, the distribution of T2N is 

equal to that of TlN' provided we take cnN in (2.0.5) equal to a 2N(n) in 

(2.0.6). An example of a fixed alternative arises when each F equals an 
nN 

arbitrary bivariate continuous d.f. F, independent of N, which is not of 

product type. In this case the limiting (normal) d.f. of T2N has been de­

rived in BHUCHONGKUL (1964), RUYMGAART, SHORACK and VAN ZWET (1972) and 

RUYMGAART (1973), (1974). 

• 

EXAMPLE 2.0.3 {generalization of 
.. 

HA.~.,.,.,,:1E1< • s model) : 

Let k ~ 2. We consider a generalization to the k-djroensional 
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''regression'' .... V ... 
case of HAJEK's model, proposed in HAJEK and SIDAK { 196 7) , 

page 75. For k = 2 see also SHIRAHATA (1973). Let xnN = (X1nN'x2nN' .• • ,XknN), 

n = 1,2, ..• ,N, be random vectors defined by 

* = X. + C 1nN nN b.ZnN' i = 1,2, ... ,k, 

J...nN n= 
for i = 1,2, ••. ,k N 

and {Z } l 
nN n= are mutually independent 

and each sequence is an i. i. d. sequence of random variables, the c al·e 
nN 

known constants and~ is an unknown parameter. For i = 1,2, .•• ,k, let fiN 

denote the density function 

~ be the d.f. of ZnN· Then the density function of XnN is given by 

co 

-co 

• 

k 
II 

i=l 
f . (x . -c N.6.z) dM ( z) • 

J...N 1 n N 

Using results of SHIRAHATA {1973), we find that under regularity condi-
• 

tions the locally most powerful rank test for testing~= 0 (independence) 

against~> 0 is based on the rank statistic 

(2.0.7) 
N 

= Ez I 
nN n=1 

k 

I 
i=l 

(1) 
f. N (X .. N) 

1 1n 

f.N(X. N) 
i in 

which is of type (2.0.4), where the product in each 

duct, consisting of only one factor. 

R. 1nN 

T 
jN 

I 

is a trivial pro-

If either EznN = 0 or C = 1 
nN 

for n = 1,2, .•• ,N, then (2.0.7) reduces 

to a constant and hence is uselPss for testing purposes. In that case the 

locally most powerful rank test for testing~= 0 against~ i O is based 

on the rank statistic 

N k f ( l) (X ) ,.._, 

l . ~ Eo 
iN inN 

T3N 2 VM(ZnN) RinN 
- cnN -

f. N (X. N) n=l i, J=l l.. l..Il 

i#j 

which is of type (2.0.4), where the product in each 

factors. 

of FARLIE' s model)·: 
' • 

(1) 
f.N (X.nN) J J . Eo R. 
f 'N (X. N) JON 

J JO 

consists of two 

EXAMPLE 2.0.4 (generalization 

Let k ~ 2. We consider a generalization to the k-dimensional 

, 
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''regression'' case of FARLIE• s model, proposed in FARLIE ( 1960) • For k = 2 
• 

see also SHIRAHATA (1973). Let the sample elemer1ts Xn.N = (x1n.N,x2nN, ..... ,XknN) 

have d.f. F , n = 1,2, .•. ,N, where 
nN/\ 

k 
= TI 

i==l 
F. (x. ) { 1 + cnN 

l.N 1 

k 
II 

i=l 
g.N(F.N(x.))}, 

J. 1 J.. 

;? 0 I 

where for i = 1,2, •.• ,k, F. is a distribution function, g. is a function 
iN iN 

on [0,1], and (l) d . h d . t· the cnN are known constants. Let giN enote t e eriva ive 

of using SHIRAHATA (1973), we find that under certain regulari-

ty conditions the locally most powerful rank test for testing I::.= 0 

against 8 > 0 is based on the rank statistic 

N 
(2.0.8) T4N = l 

n=1 
cnN 

k 
II 

i=l 

( 1 ) 
EO g.N(F.N(X. N)} + F.N(X. N)g.N (F.N(X. N)) 

i i in i in i i in 
• 

which is exactly of type (2.0.3). 

If giN{s) = 1 - s, for s e: [0,1], and cnN = 1, for n = 1,2, ••• ,N, 

then (2.0.8) reduces to 

,-.., N k 
l II 

n=l i==l 
1-

2R. 
J.nN 

N+l • 

In this way we obtain a generalization to the multivariate case of 

Spearman's statistic. 

EXAMPLE 2.0 .. 5 (generalization of a model of Wl'l*l'ING and NOLLE); 

Let k ~ 2. We consider a generalisation to the k-dimensional ''regres­

sion'' case of a model proposed in WITTING and NOLLE (1970), page 130. Let 

the sample elements XnN = {XlnN'x2nN, .... , 

n = 1,2, ••• ,N, where 

( 1-c D.) 
nN 

k 
II 

i=1 

2 
F.N(x.), 

J. J. 

< 1, 



where for i = 1,2, ..• ,k, F.N is a distribution function and the c are 
i nN 

known constants. Under certain regularity conditions, we find (see 

SHIRAHATA (1973)) that the locally most powerful rank test for testing 

~ = 0 against~> 0 is based on the rank statistic 

N 

TSN = l 
n=l 

cnN 

which is of the type (2.0.3). 

k 
II 

i=1 

RinN 

N+l 

37 

Let us now return to the statistic TN. It is well-known that locally 

optimal scores can be determined if one has in mind particular paramP.tric 

alternatives. In many such cases (see also the examples given) these opti­

mal scores are so-called exact scores derived from suitable functions J. 
1. 

on (0,1) according to 

{2.0 .. 9) EJ. (~ N), 
i. n: for i = 1,2, ..• ,k, n = 1,2, ••. ,N, 

where ~n:N is then-th order statistic of a sample of size N from the uni­

for11l distribution on (0, 1) • These exact scores, however, are not only hard 
• 

to compute, but also hard to manipulate in the asymptotic theory. For this 

reason one frequently uses the scores 

(2.0.10) = J. ( E ( ~ N)) 
i. n . • 

called the approximate scores derived from 

((2.0.17) below) approximate scores are as 

i = 1,2, .•. ,k, n = 1,2, ••. ,N, 

J .. Under a suitable condition 
l. 

good as exact scores in the 

sense of PITMAN-efficiency. The regression constants cnN can always be 

generated by some function JON according to 

(2.0.11) n = 1,2, ... ,N. 

Note that in constrast to the scores, the regression constants are gener­

ated by a function which is allowed to depend on N. This has the advantage 
'· 

that we also contain in our theory rank statistics used for the regression 

problem and the k-sample problem. In fact this dependence is already 

needed to cover the two-sample situation. 

For methodological reasons it will be convenient to introduce the 
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regression constants with the aid of the additional set of mutually inde­

pendent r.v.'s x ,X , ••• ,X , independent of all random vectors con-
01N 02N ONN 

sidered so far and also defined on the same probability space. Let U b a, 
denote the uniform d.f. on the iP.terval (a,b) and let us assume that the 

d.f. FOnN of XOnN satisfies 

(2.0.12) F = LJ , OnN (n-1)/N,n/N 
for n = 1,2, ... ,N. 

For the ranks of these r.v.'s this entails that 

(2.0.13) R = n, OnN 
for n = 1,2, ... ,N, 

with probability 1. For n = 1,2, .•• ,N the joint d.f. of the (k+1)-dimen­

sional random vector (XOnN'XlnN'···,~nN) will be written as GnN, the cor­

responding (k+l)-dimensional empirical d.f. by GN and its first marginal 

empirical d.f. (based on x01 N,x02N, ... ,x0 NN) by F 0N. It should be observed 

that 

(2.0.14) G = F X 
nN OnN 

= LJ X 
(n-1)/N,n/N FnN' for n = 1,2, •. . ,N, 

and that 

to previous notation we shall write GN = N rn=l GnN· 

In order to give an alternative expression for TN in the case of ap­

proximata scores we have to introduce the modified marginal empirical d.f.'s 

(2.0.15) for i = 0,1, ••• ,k. 

Combining (2.0.3) with (2.0.1), (2.0.10), (2.0.11), (2.0.13) and (2.0.15), 

it follows that TN equals 

(2.0.16) * JON(lF ON) 

k 
II 

j=1 

with probability 1. Here the integration is extended over the (k+l)-dimen­

sional n,1mber space. The extension of each of the original k-dimensional. 

random vectors with a !-dimensional durn111y random coordinate, each having 

one of the uniform d.f.'s in (2.0.12), has the effect that the statistic 

TN can be entirely expressed in terms of empirical d.f.'s. 
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our main result - Theorem 2.1.1 in section 2.1 - is the asymptotic 

normality of a suitably standardized version of TN for approximate scores, 

where the next three points should be kept in mind. In the first place we 
• 

remark that the generating functions are allowed to tend to infinity near 

0 and 1, and to have a finite number of discontinuities of the first kind. 

The price for allowing these discontinuities is a local differentiability 

condition on the underlying d.f.'s. In the second place there appears to 

be a nat.11ral balance between the respective orders of magnitude of the gen­

erating functions near O and 1. In the particular case (2.0.5) e.g. this 

leads to quite a spectrum of possible orders of magnitude of JON 

( 1969) 

and J
1 

only two 
... 

near O and 1, whereas in HAJEK (1968) and DUPAC -and HAJEK 

possibilities are considered. In the third place the asymptotic normality 

is established for almost arbitrary triangular arrays of underlying d.f. 1 s. 

Hence asymptotic normality for a triangular array corresponding to a set 

of local alternatives is included as a special case. From the latter re-
• 

sult we can j_1oc,1ediately derive the asymptotic power of the corresponding 

tests, which is used for the computation of asymptotic relative efficien-
• 

cies. It is worthwhile noting that in contrast to e.g. the theorems in 

CHERNOFF and SAVAGE (1958) and RUYMGAART (1973) we do not need uniformity 

of the convergence on a subclass of arrays of underlying d.f.'s to achieve 

the computation of the Jimi.ting distribution under local alternatives. 

The proof of the asymptotic normality of the statistic considered 

will be given by way of a decomposition in a sum of leading terms, which 

is asymptotically nox:mally distributed, and a remainder ter111, which is 

asymptotically negligible. In section 2.2 this decomposition for the stan­

dardized version of T for approximate scores is presented and the asymp-
N 

totic normality of the leading terms is established. The proof of the 

asymptotic negligibility of the corresponding remainder term - given in 

section 2.4 - will rely almost completely on properties of the empirical 

d.f.'s as is suggested by the representation 
-

of T in (2.0.16). Apart from 
N 

a component due to the introduction of the dummy random variables XOlN' 

x02N, •• ,x0NN, and apart from the dimension, the components of this remain­

der term are very similar to the higher order terms in RUYMGAART (1973), 

(1974), the main difference being that in the present case we have N pos­

sibly different underlying d.f.'s, whereas in RUYMGAART (1973), {1974) 

there is one single fixed underlying d.f .• The proof of the asymptotic 

negligibility, however, can be given in essentially the RaroP. way, because 

it turns out that all the lerm·aas used in RUYMGAART (1973), ( 1974) remain 

valid, properly modified if necessary, under the present circumstances 
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with not necesaa:rily identical under lying d. f .. 's and with the averaged 

d,,. f.. i.n the role of the single fixed underlying d. f .. These lemmas are sum­

aarixed in :,ection 2 .. 3 and based on the properties of the empirical d.f . 

. in the non-i. i .d. case, which are obtained in Chapter I. 

Under t,he assumption that 

{2 .. 0 .. 17) * a (R ) -
iN inN 

k 
TI 

i=l 
as N + ©O , 

one i__.diately d•r1ves an asyn,l)totic result for the statistic TN in the 

ca•• of exact scores from the corresponding Theorem 2.1.1 on approximate 

scores .. Conditioo (2 .. 0 .. 17) is well known in the literature (see e.g .. 

BHOCHONGXUL ( 1964) , CHERNOFF and SAVAGE ( 1958) and RUYMGAART ( 197 3) ) .. A 

1\."erificatioo of the condition is a problem in itself (see e.g. RUYM 

(1973)). In general an additional condition on the generating functions is 

ne•d9'd. More attention will be paid to this matter in section 2 .. 5, where 

the ••~ptotic no.t:Mlity of the standardized statistic TN for exact scores 

will be establis,hed .. 

ou.r third result, presented and proved in section 2 .6, is the asymp­

totic noraa.lity of a suitably standardized version of SN (see 2 .. 0.2), in 

the case where the scores ~(n1 ,n2 , ••• ,nk) ar~ generated by some continu­
k 

ous function J on ( 0, 1) according to 

(2 .. 0.18) 111,-up1r-,,,. 

N+l' N+1 1 •·•, 
n. = 1,2, .... ,N, 

1 

i = 1,2, ••• ,k. 

Finally, in se,ction 2. 7 some further possible extensions will be dis­

cussed. 

REMARX 2 • 0. 1 • Following the PYKE-SHORACK approach, RUSCHENDORF derived in 

1976 the asymtptotic distribution of certain multivariate rank statistics 

tmder an asst1111,{'tion concerning the weak convergence of the reduced multi­

variate sequential empirical pro•cess (cf. RUSCHe:NOORF (1976), Theorem 5.1). 
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2.1. STATEMENT OF THE MAIN THEOREM 

Before presenting the theorem let us introduce some more notation and 

conventions, to be used throughout the present and the subsequent sections. 

Let the inverse of a univariate d.f. F be defined as in (1.1.2) and let us 

denote the standard normal d.f. by 

(2.1.1) 2 
exp(-z /2)dz, for y € (-00 , 00 ) • 

For convenience we shall only use q-functions and reproducing u-shaped 

functions (for a definition see the appendix in SHORACK (1972)) of a spe­

cial but common type, based on the f1.1nction 

(2.1.2) -1 
r(t) = {t(l-t)} , for t E: ( 0 , 1 ) . 

For an arbitrary positive integer m them-fold Cartesian product of a set 

S with itself wi11 be denoted by Sm. ~•or each m, moreover, let us define 

(2.1.3) F = {F: Fis an m-variate d.f. which is continuous on :Rm}. 
m 

In the theorem the d.f's FnN will be restricted to Fk. 

With respect to the generating functions we shall assume that the JON 

(N=l,2, ••• ) and J. (i=l,2, ••• ,k) have a finite number of discontinuities 
l. 

of the first kind only. Without loss of generality it can and wi11 be as-

s11med that these generating functions are right-continuous. 

For any finite set S let #s denote the numb~r of elements in Sand 
. (i) (0) 

for any function f the i-th derivative is written as f (f ~f). 

ASSUMPTION 2.1.1 (generating functions): 

(a) For N = 1,2, ••• the funation JoN has discontinuities of the first kind 

only and a aontinuous derivative Jd~) on the set (0,1) - V0 N. 

(b) For i = 1,2, ••. ,k the function J. has discontinuities of the first 
l. ( 1) 

kind only and a aon~inuous derivative Ji on the set (0,1) - V1 . 

(c) There exist positive numbers l 0 ,l1 , ••• , and l such that for 

N = 1,2, .•• and. i = 1,2, ... ,k, 

and 
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(d) There exist positive nwnbers a
0

,a1 , ••• ,¾: and, K1, satisfying 

a:= 
J= J 

N = 1,2, .... and i === 1,2, ••• ,k, 

(2.1.4) and r 
a.+v 

1 

we have for v = O, 1 , 

, 

1.vherever these functions are defined on (0,1). 

The price for discontinuities in the. scores generating functions is a 

kind of local differentiability condition on the transformations 

(2.1.5) 

shall say that 4tnN possesses a density 

measure on [0,1]k) on the BOREL set B
0 

BC Bo, we have 

(2.1.6) 

B B 

for n = 1,2, ... ,N. We 

q> (with respect to LEBESGUE 
nN k 

c [0,1] if, for each BOREL set 

To formulate the ass1J.mption on the underlying d.f. • s, let us define 

for n > 0, 

(2.1.7) 

-where V. 
1 

• , .l. = u ...., 
se:V • 

(s-n,s+n), for i = 1,2, ... ,k, 

.1.. 

is the set of discontinuity points of J .• 
l. 

Note that 
,.., 
V. 

1 
C V • 

i 

ASSUMPTION 2.1.2 (underlying d.f.'s): 

There exist positive nwribers n ,b ,b , ••• ,b and K
2 

sw:!h that -P'or 1 2 k JI 

N = 1,2, •.. , n = 1,2, ••• ,N and i = 1,2, .•• ,k, 4tnN (see (2.1.5)) has a con-

• 
I J. 

k b • 
{2 .1. 8) < K2 TI {r(t.)} J - , 

J j=1 
j;ti 



(2.1.9) sup 
n,N 

,..., 

43 

as t ➔ t ... 
J_ 

REMARK 2.1.1. If J. is continuous, 
J 

then V. =~and Qn . =~so that Assump-
J •If] 

tion 2.1.2 is vacuous for i = j. 

Ta standardize the location of the statistics TN we shall use the 

quantities 

(2.1.10) 
k 
II 

j=l 

The quantity µN arises in the fundaroP.ntal decomposition of TN in (2.2.10). 

The quantities used to standardize the scale of the TN will be given in 

the implicit form 

(2.1.11) 
k k 

= VaJt(AN+ l A.N + l A.Nd), 
'11C, 1J. J..= 1= 

where A and the A. and A. d also arise in (2.2.10). Under the conditions 
N 1Nc 1N 

of the theorem below these quantities are well defined. 

THEOREM 2. 1 .1. Let an arbitrary trian.guZcw array of underlying d.f. 's 

FnN € Fk, n = 1,2, ••• ,N, N = 1,2, ... be given, suah that for the resulting 

triangular a:Pray of transformed d.f. 's <PnN Assumption 2 .1.2 is ful.fill,ed. 

Let the generating funa~ions satisfy Assumption 2.1.1 and let the constants 

a. ( appea:r>ing in Assumption 2 .1.1) and the constants b. ( appearing in 
J J 

Asswrrption 2.1.2) satisfy a.+ b. < 1 for j = 1,2, ••• ,k. Then the quanti-
J J 

1 . · f 2 o h , m in cr > , we ave 
N>co N 

(2.1.12) 

• 
1.,.n (2.0.16), 

.. 
i... e. the case of approrimate sao~es . 
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2.2. ASYMPTOTIC NORMALITY OF THE LEADING TERMS 

the 

Before writing down the leading terms of the standardized version of 

statistic T for approximate scores let us make some introductory re­
N 

marks. 

we introduce for N = 1,2, ••. a (k+1)-djmensional random vector 

(2.2.1) with joint d.f. GN, 

where GN is defined below (2 .0 .14) • Besides the transfor·rued d. f. • s in 

(2.1.5) it will be convenient to have at our disposal the transformation 

(2.2.2) '¥ : = 
N 

' 

-1 = N 

N 

n=1 
LJ X 

(n-1)/N,n/N 
~ . 

nN 

d.f. 'l'N because of the continuity of the underlying d.f.'s and by defini-

tion all the univariate marginal d.f.'s of ~N are u0 , 1 • If Assumption 

2.1.2 holds one can show that 'l'N has, for i = 1,2, ••• ,k, a density lJ; 
· k+l i N (with respect to LEBESGUE measure on (0,1) ) on the set (0,1) x • 

,1. k-i 
x ( 0, 1 ) , where . is defined in (2.1.7). We have for n = 1,2, ••• ,N, 

, l. 

i = 1,2, ... ,k, 

(2.2.3) 

for 

( (n-1) /N ,n/N) 
i-1 

X (0,1) X 

X 

Anticipating the finiteness of all expectations and 

us consider for N = 1,2, ••• , i € {1,2, ••• ,k} and 

al expectation 

t. 
1 

integrals involved let 

€ (0,1) the condition-

(2.2.4) 
k 
II 

j=1 
j~i 

J.(F.N(Y.N)) I F.N(Y.N) = t. 
J J J 1 1 1 

• 

Under Assumption 2. 1 • 2 1 again I one of the possible deter111inations of 



(2. 2. 4) equals h.N(t.), 
l. J_ 

N 
(2.2.5) h.N(t.) = 

J_ l. 2 
n=1 

where 

(n-1 n) 
N 'N 
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X 

X 

k 
11 

j=l 

iFi 

J . ( t . ) ¢ ( t l , t 2 , • • . , tk) d t l , • • • , d t . l , d t . l , .. . • , d tk , 
J J nN i- 1+ 

provided t. is restricted to 
l. • • 

, .1. 

Throughout the sequel the syn1bol M will be employed as a generic con-

stant, independent of N. 

LEMMA 2.2.1. Let the function h. be 
1.N 

ditions of Theorem 2.1.1 

lh.N{t.) Is M., fort. E 

we have for 

defined as in (2.2.5). Under the con­

N = 1,2, ••. and i = 1,2, ••. ,k that 

l. l. J_ .1. 
. , where M. is a """' 

I 1. l. 
l,IJer independent of N • 

Moreover, for N = 1,2, .•. and i = 1,2, ... ,k, 
• 

oft. fort. E ., 
l. l. ,l. 

and for each i 

hiN is a continuous funation 

the set of functions {h. , N = 1,2, •.. } 
1.N ,.._ .. . . 

"Z,.8 equi.aont1.,..nuous on V . < cf • 2 • 1 . 7) • 
J. 

PROOF. From the assumptions in Theorem 2 .1 .1 it is i1m11ediate that 

lh.N(t.) I s 
l. l. 

a .+b. N 
SM l 

n=1 
J J(t.)dt

1
, ••• ,dt. 1 ,at. 

1
, •.• ,dtk= 

J 1- 1.+ 

1 

=M 

0 

(n-1 n) 
N 'N 

k 
1 

II 
j=1 

0 
j~i 

a.+b. 
J J M .• (t.) dt. -r -

J J l. 

For the second statement it suffices to show that for n = 1,2, ..• ,N, 

(2.2.6) 
k 
II 

j=l 
j~i 

is a continuous function of t. , for t. e 
1 l. 

cause of Assumption 2.1.2 in Theorem 2.1.1 

.• Let 
, 1 

we have 

t. ,t. 
1 J_ 

that 

Be-
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(2.2.7) as f;,-+- 0, 

for each {t , .•• ,t. ,t. , •.. ,t) € {0,1}k-i. The continuity of h
1
.N fol-

l 1-l .1.+1 k 
lows from (2.1.4), (2.1.8), (2.2.7) and the dominated convergence theorem 

since a.+ b. < 1 for j 
J J 

be established with the 

= 1,2, •.. ,k. Analogously, the equicontinuity can 

aid of (2.1.9). D 

In view of Ass11mption 2 .1 . 1 and the way in which we shall conduct the 

proof of Theorem 2.1.1 it is no loss of generality to assume that for 

i = 1,2, ..• ,k the generating 

ins.), so that 

functions J. have only one discontinuity 
J.. 

l. 

(2.2.8) J. (t) = J. (t) + A. c(t-s.), 
l. l.C l. 1 

where J. is the continuous part of J. and where 
l.C l. 

(2.2.9) 
• 

c(z) = 1· for z e [Q,oo), 

0 elsewhere . 

(say 

We arP- now in a position to give the basic decomposition, which holds 

with probability 1, 

k k 
(2.2.10) I 

i=1 
A. 

1Nc + I 
i=l 

AiNd + EN, 

where 

(2.2.11) 

(2.2.12) 

(2.2.13) 

A, 
J.NC 

AiNd = 

JON(FON) 

k 
TI 

j=l 

~ 
N A. h.N{s.) 

J. 1 l. 

J. (F.N) 
J J 

--1 
F.N (F.N(s.))-s. 

1 l. J. l. 
I 

and EN is a remainder term which is of second order as will be proved in 

section 2.4. Remark that for 

well defined; if A.= 0 then 
.1. 

A. > 
l. 

AiNd 

0 the conditional expectation h. {s.) is 
J.N l. 

is defined to be zero. This section is 

devoted to establishing the asymptotic normality of the A-terms, i.e. 

under the conditions of Theorem 2.1.1 we shall show, with cr defined in 
N 

( 2 . 1 • 11 ) , that 
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(2 .. 2 .. 14) sup P 
-oo<z<oo 

k 

I 
i=l 

k 
A. + 

l.NC I 
i=l 

We begin by noting that with probability 1, 

(2 .. 2.15) 

where 

(2.2.16) 

and 

(2. 2. 17) 

k 

I 
i=l 

A. + 
l.NC 

k 

znN = AnN + I 
i=l 

A 
nN 

k 

I 
i=l 

AiNd 

k 

A + I inNc . 1 l.= 

N 

I 
n=l 

z , 
nN 

k 
IT 

j=l 
J.(F.N(X. N)) - µN, 

J J Jil 

- N(z) ➔ 0 
I 

as N 00 • 

k 
(2.2.18) A. 

l..nNC 
-- c(F.N-F.N(X. N))-F.N 

i i in i 

(1 
IT J. (F .N)dGN, 

j=l J J 

j~i 

(2.2.19) ·A. Nd= A. h.N(s.) c(s.-F.N(X. N))-s .. 
in 1 i i i 1 in i 

It should be observed that the r.v. z depends on the random vector XnN 
nN 

only. Consequently these r.v.'s z1N,z2 N, ..• ,ZNN are mutually independent. 

Next we show that there exists a o > 0 such that 

(2.2.20) lim sup 
N >cc 

-1 
N 

N 

I 
n=l 

This will be achieved by proving the. stronger assertion that 

(2. 2. 21) lim sup 
N-+<o 

-1 
N 

and that for • 
l. = 1 , 2, •.. ,k, 

(2.2.22) 

(2.2.23) 

lim sup 
N+«' 

lim sup 
N »oo 

-1 
N 

-1 
N 

N 

I 
n=1 

N 

I 
n=l 

< 00, 

EI 12+0 
AinNc 
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we note in passing that this result will ensure the finiteness of the ex-
-pectations and integrals considered so far. The proof relies on HOLDER's 

inequality in the form 

(2.2.24) 
k 
n 

i=O 
f. (F. N) 

l. l. 

k 
II 

i=O 

1 ~- 711,. 
r 

l. J. ff. ( s . ) ds . J , 
J. .l. 1. 

0 

where f
0
,f

1
, •.. ,fk are measurable functions on (0,1) such that the above 

. k -1 
integrals exist and where ; 0 ,~1 , •.• ,;k > 1 satisfy ri=O ~i = 1. 

k 
Annlication of (2.2.24) with~.= a/a. (here a= E. 0 a.) yields 

,rr l. l. 1.= l. 

(2.2.25) -1 
N 

N 

I 
n=1 

k 
II 

i=O 

1 

0 

k a. (2+o) 
II 

j=1 

r( 2+o)a(s}ds 
a./a 

l. 

provided o > 0 is chosen sufficiently small to ensure that (2+o)a < 1. 

Since a < 12 by Ass,1mption 2 .1.1, this can always be achieved. Apparently 

the bound in (2.2.25) is independent of N so that (2.2.21) is proved. 

To prove (2.2.22) for arbitrary i € {1,2, ••• ,k} we note that for 

o E (0,12] and u,v E (0,1), (see RUYMGAART (1973), page 27) 

(2.2.26) I 12-o -~+o c(u-v) - u) ~ M[r(v)] [r(u)] . 

From (2. 2. 26) and Ass11mption 2. 1. 1 we find, 

-1 
N 

~ M 

N 

I 
n=l 

E IA 12+0 
inNc 

N 

I 
n=1 

1 

0 

k _ a. 
IT (r(F. )) JdG 

• O JN N J= 
j~i 

2+0 
-

Since for every o > 0, (~-o) (2+o) < 1 it suffices to consider the last 

2+0 
< -



factor in the last bound, which is bounded above by 

1 
a./[a.+(½-a-26)/k] 

(2.2.27) 
k 
II 

j=O 
jfi 

[r(s.)] J J ds. 
a.+(~-a-20)/k 

J X 
l. J 

0 
1 

(a.+~+o)/(a.+~+2o) 1a.+~+20 
l. l. l i X [r(s.)] ds.f 

1 1 

0 

-1 This follows from an application of (2.2.24) with t. 
J 

for j € {0,1, ..• ,k} but j ~ i, and ~~ 1 =a.+~+ 26. 
1 l. 

=a.+ (¼-a-28)/k 
J 

Because a < ~ we 

have for O < 28 < ~ - a that~- > 1 for j = 0,1, ..• ,k. Th~ bound in 
1 

(2.2.27) is independent of N, so that (2.2.22) is proved. 

Final.ly let us note that because of Le1r11:i1a 2. 2 .. 1 for A. > 0, 
1 

(2.2.28} 
-1 

N 

N 

I 
n=l 

E IA 1
2+ 0 

inNd 
~ MA. 

l. 
:s; Ml\. 

J. 

2+0 
M. 

J. 
I 
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so that the contribution due to the purely discrete part of the generating 

fWlctions is bounded by a finite constant independent of N. It is obvious 

that the minimum over the finite n11rnber of o • s considered so far is a o 
for which (2.2.21), (2.2.22) and (2.2.23) are simultaneously satisfied and 

hence we have proved (2.2.20). Moreover, frotn the proof of (2.2.20) and 

FuBINI's theorem it follows that 

N 
(2.2.29} E l 

n=l 
Z = 0. 

nN 

Asymptotic normality of the A-terms (2.2.14) follows by a version of the 

central limit theorem due to ESSEEN (1945), using (2.2.20}, (2.2.29) and 
2 

the fact that the oN are given to be bounded away from zero for N suffici-

ently large. 
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2.3. SOME LEMMAS ON EMPIRICAL DF'S 

In this section we produce le1,1111as on empirical d. f. ' s needed in 

section 2.4 for the proof of the asymptotic negligibility of the remainder 

term EN in (2.2.10). These lemmas are based on the fundamental properties 

of the empirical d.f.'s, which are derived in Chapter I. Theorem 1.2.1 • 
l.S 

a result on k-variate empirical d.f.'s and will be applied directly in 

section 2. 4, so that we shall not repeat this theorem here. The six le11i:mas 

that a.re given in this section concern properties of univariate empirical. 

d.f.'s based on real valued independent r.v. •s possessing not necessarily 

identical, but continuous d.f.'s. We shall adhere to the notation intro­

duced in section 2.0, so that for the d.f.'s, averaged and empirical d.f.'s 

in question we shall use the notation F. lN' .•. ,F. NN' F. N and :IF. , i = 1, 2, 
l. 1 l. J.N 

••. ,k. We denote the set of order statistics of the independent r.v. 's 

~ .•• ~ x(i). The function r is defined 
N:N 

(i) (i) 
xi1N'xi2N 1 ···,xiNN by xl:N 5 x2:N 

* in (2.1.2), the random function lFiN is defined in (2.0.15). 

LEMMA 2.3.1. For1 every e > o there exists a 8 = f3(E) e: (0,1)., auah tha-t 

for every positive integer k, every array of aon-tinuous k-varia-te d.f. 'a 
• 

{2.3.1) P 8F.N(x)SlF.N(x)S1-S(1-F. (x))., 
l. L iN for x € ~ 1 - e., 

(2.3.2) for x E 

• 

PROOF. The first part of the. le11ima is irQTI1ediate from Theorem 1 • 1 • 1 and 

* Corollary 1.1.1. Moreover, it is clear from the definition of lFiN and 

f (2 3 1) 2 (i) (i) (i) (i) 
rom • • that ( .3.2) holds with [Xi:N'\i:NJ replaced by [Xi:N'XN:N), 

so that it remains to be shown that 

{2.3.3) 

Now 

(2.3.4) 

and 

N 
N+l 

F. (X(i}):s; 1 
J.N N:N 2f3 = 1 for f3 < ~, 

• 



(2.3.5) 
N 

P N+1 < 1 - a./N, 

N 1 
with a. = -- B. If a. 2::: N then (2. 3. 5) equals 1 , so that we may ass11me 

N+1 
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~ < N. In view of (1.1.40) we obtain for (2.3.5) the following lower bound 

N -----
1 - e 

B(N+l) - 1 

;.:: 1 - e 28 1 as s+o. □ 

LEMMA 2.3.2. For every e > o and 8 > O there exists M = M(e,6), such that 

for every positive in~eger k, ever-y array of continuous k-variate d.f. 's 

F1N'F2N, .•• ,FNN, N = 1,2, ... , every N = 1,2, ••• and every i E {1,2, ..• ,k)., 

(2.3.6) 

(2.3.7) 

P sup 

[x {i) x<i}> 
XE 1 :N' N :N 

P sup 

[X(i) X(i)J 
XE 1 :N' N :N 

. 

-:; M(e:,o) 

* r(lF (x))/r(F.N(x)) 
iN l. 

S: M(e,o) ~ 1 - £. 

PROOF. The proof follows along the lines of the proof of L~mma 2.3.2 in 

RUYMGAART ( 1973) and relies on the present Leiti1na 2. 3 .1. D 

LEMMA 2.3.3. For every E > o and o E (O,~J there exists M = M(e,o)., suah 

that for every positive integer k, every array of k-variate d.f. 's 

F1N'F2N'···,FNN, N = 1,2, ... ., every N = 1,2, ••• and evecy i E {1,2, .... ,k}., 

(2.3.8) p ~ 
sup N IF iN (x) -F iN (x) I 

X€ (-en, oo) 
S M(e:,o) ~ 1 - e:, 

(2.3.9) p ~ * sup N IJF.N(x)-F.N(x) l ~-8 
r (F. (x) ) :S M ( e:, o) ;;-:: 1 - £. 

J.N 

XE 1:N' N:N 

PROOF. The first assertion is immediate from Corollary 1.1.2. The probabil­

ity in (2.3.9) is bounded below by 

(2.3.10) 

Theorem 1.1.4 implies ,J!c~ every£> O the existence of a a= B(E) E (0,1), 
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such that for every positive integer k, every array of continuous k-variate 

d. f. 's F lN ,F 2N, •.• ,F NN, N = 1, 2, ••. , every N = l., 2,. • . and every 

i e: {1,2, .•. ,k}, 

(2.3.11) P S/N S F (X (i)) 
iN N:N ~ 1 - 8/N ~ 1 - e:. 

Assertion (2.3.9) 

that for fixed S, 
follows from {2.3.8), (2.3.10), (2.3.11) and the fact 

-¼ ~-o 
N (r($/N)) is bounded for all N. D 

' 

LEMMA 2.3.4. For every e: > O there exists M = M(e:)., such that for every 

positive integer k, every array of aontinuous k-variate d.f. 's 

F1N'F2N'···,FNN, N = 1,2, .•. , every N = 1,2, •.• and every i E {1,2, •.. ,k}, 

(2.3.12) p ~ 1 - e:. 
=1,2, ••. ,N 

PROOF. The assertion is i111111ediate from (2. 3. 8) with cS = ~. D 

teger 

For any positive integer N and real number u E (0,1) the positive in­

N is uniquely determined by 
u 

(2.3.13) (N+l)u S N 
u < (N+l)u + 1. 

I,EMMA 2. 3. 5. For every e: > 0 there exists M = M ( e:), such that fo-:ra every 

posi~ive integer k, every array of continuous k-variate d.f. 's 

F 1 N, F 2N, • • • , F NN, N = 1 , 2, ••• ., every N = 1 , 2, ••• ., every i e: { 1 , 2 , ••• , k} and 
every u e (0,1)., 

(2.3.14) 

(2.3.15) 

PROOF. For fixed integer k ~ 1 , we have for M > O, N = 1 , 2 , ••• , u € { O, 1) 

and i € {1,2, ••• ,k}, 

¼ * --1 
P N r JF . N ( F 1 ( u) ) -u l s M 

i N 

¼ * = P sup N I JF iN{x) -F iN(x) I s; M 
xe::R 

€(0,1) i iN 
M 

> -



~ 
2! P sup N 

XER 

I JF iN ( X) - F iN ( X) I 

2 P sup N ~ I JF. (x) 
JR 

1N 
XE 

- F.N(x) I 
:t 

N~ 
:5 M - N+1 

~ 
~ P sup N I :IF iN (x) - F iN (x) I :5 M -

XElR 

> -

I 

so that (2.3.14) follows from (2.3.8) with 

N = 1,2, .•. , u E (0,1), i E {1,2, ..... ,k}, 

=~.Moreover, for M > 0, 

' 

2! p 

> -

-1 
- N N I + 

u 
-1 

INN -u 

-1 
- N N I 

u 
~ M -

I 

so that (2.3.15) follows from Lemma 2.3.4. D 

M 

53 

> -

For N = 1,2, ..• , i = 1,2, •.• ,k, we define the reduced empirical pro­

cess uiN as 

(2.3.16) - s , for 0 

LEMMA 2. 3 .. 6. Le·t the reduced enrpirical processes u. be defined as in 
1N 

(2.3.16) and let the function I be defined as in (1.1.37). For every 
m 

E > O and c > o, there exist N0 = N0 (e,c) and m0 = m0 (E,c), such that for 

every positive integer k, every array of continuous d.f. 's 

F1N'F2N, ..• ,FNN, N = 1,2, ... , every i E {1,2, ••. ,k} and N ~ No, m ~ mo, 

(2.3.17) P sup I u . ( I ( s ) ) - u . ( s) I ~ c ~ 1 - €: • 
SE(O,l) iN m iN 

PROOF. The random function 
--1 

F iN(F iN) is with probabiiity 1 the empirical 
I"¥ 

d.f. JFiN (say) of the set of independent r.v.'s FiN(XilN), ••• ,FiN(XiNN) 

(cf. Rema.rk 1 • 1 • 1) . Bence with probability one, 
' 
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(2.3.18) $) I for Os; s ~ 1, 

so that Le11,n1a. 2. 3 .6 is imm~diate from Corollax~y 1 .1. 3. D 

• 

• 
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2.4. ASYMPTOTIC NEGLIGIBILITY OF THE REMAINDER TERM 

Before going into the details of the proof of the asymptotic negligi-

bility of the remainder term EN 

tation. we recall (see (2.2.8)) 

(2.2.10) we have to introduce some no-

that for i = 1,2, ... ,k, s. is the only dis-
1. 

continuity 

tion 2.1.1 

point of the scores generating function J .. In view of Assump-
1 

and the way in which we shall conduct the proof it is no loss 

of generality to assuroP. that, for i = 1,2, .•. ,k, there exists only one con-
,...,, 

tinuity points. where J. is either not differentiable or its derivative 
1. l. ,...., 

is not continuous and that si < si. The same assumption is made for JON' 
,...., 

N = 1,2, .•. , where these points are denoted by s
0

N and s
0

N respectively. 

For N = 1,2, ... , i = 1,2, ... ,k, we define the reduced empirical pro­

* cess U.N, the modified reduced empirical process u. , the closed random 
1 1.N 

set ~i'N' the set 0. and for small positive y, the sets. as follows: 
iN iNy 

(2.4.1) U ( ) = N¼ iN s 

U* (} = N~ iN s 

--1 
JF iN(F iN(s) )-s 

* --1 
JF.N(F.N(s))-s 

J.. J.. 

:N 
, 

, 

, for O ~ s s; 1, 

, for O ~ s s; 1, 

OiN = X: F. (x) € 
1N 

-~ s. - MN , s. 
J.. J.. 

S.N J.. y 
--

,..._, 

X: F. (x) E y, S. - y 
J.N J. 

,..., 

u s. +y, s. -y 
J.. J. 

,.._, 

u s. +y, 
1 

, 

SONy = x: FON (x) E y, SON - y U SON+ y, SON - y U SON+ y, 1 - y 

Moreover, for N = 1,2, ••• , i = 1,2, ••. ,k, let 

(2.4.2) s 
Ny 

S.N J.. y 

--
k 
II 

j=O 
s.N, J y 

k 
II 

j=O 
j~i 

i-1 
= II 

j=O 

s.N, J y 

S.N ] y 
X JR X 

k 
IT 

j=i+l 
S.N, J y 

• 
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t:,. = 
N 

k 
II 

j=O 

Since F. is 
l.N 

constant on an 

stant on this interval (cf. 

interval if and only if FilN, ••• ,FiNN are con­

Remark 1.1.1), we have for every x € IR that 

(2.4.3) = F. N(x), 
in 

n = 1,2, ... ,N, i = 0,1, ... ,k, 

no matter what the form of the d.f.'s FilN, ... ,FiNN is (continuous or not)• 

Denoting by 

(2.4.4) w : JF iN for all x e: JR, .i = 0, 1, ••• ,k 

and N = 1 , 2 , • • • , 

we have from (2.4.3) that P(Q0 ) = 1. 

For small y > 0 we adopt the notation 

(2.4.5) 

and remark 

= N~(lF -
iN 

(2 .. 4.6) 

* Q 
yN 

--
k 
n 

j=l 

that 

* J. (F. N) 
l.C l. 

w : sup * I JF jN - F f 
jtJ 

< y/2 

for i = 1,2, •.. ,k, 

FiN) and 

for 

val 

all XE ~iN n siNy' 

with end points FiN 

where the random number 

* 
lies in the open inter-

and lF. • 
1.N 

Next, let us introduce for N = 1, 2, ••• , i = 1, 2, ••• ,k and given num-

hers s. , 
1. 

(2.4.7) 

the positive integers Ni= N8 . uniquely defined as 
1. 

( N+ 1 ) s • ~ N . < ( !i+ 1 ) s i + 1 , 
1. 1. 

and the random sets r. as 
iN 

(2.4.8) r. 
J..N 

-- • x: min 
--1 
F.N(s.) 

J.. l. 

(i) 
< max ~- :N' 

l. 
• 

____ 2_~_4_._1. For every£> O and every positive integer k, there exists 

M = M(e:,k) suah that for every arreay of aontinuous k-variate d.f. 's 

F1N'F2N, .•. ,FNN, N = 1,2, ••• , every N = 1,2, ••• and evep-y i E {1,2, ••• ,k}, 
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(2.4.9) 

* . * k-i Here the supremum is taken over aiz. inteMJaZ.s Iii c IR1
, ri

2 
c JR , with 

does not oa(.'!'l.,t.r for i = k. 

PROOF. Choose€> 0, the integer k ~ 1, NE {1,2, ..• }, i E {1,2, ... ,k} and 

continuous k-variate d.f.'s F
1

N,F2N, ..• ,FNN. 

tence of a finite positive number M
1 

= M
1 

(E) 

Lemma 2.3.5 implies the exis­

such that 

(2.4.10) 

Let 

(i) 
p F iN ( XN . : N) E 

J.. 

,.., 

OiN = X: F. (X) € 
1.N 

s. + 
l. 

M N-~l 
1 J 

• 

, 

i ,..., k-i and apply Theorem 1 ·• 2. 1 in (k+l) dimensions, with I = IN = JR x O iN x JR 
...., -~ 

and hence with GN{ I} = F iN{O iN} = 2M1 N • We find that there exists a n1Jm-

ber M = 2 

(2 .4.11) p sup 

* * * I. 1 ,r.,r.
2 l. l. l. 

Here the supremuro is taken over all intervals i 
C ]R I 

* k-i 
Ii2 C :m. , * ,..., 

I. c O.N. From (2.4.10) and (2.4.11) it is now irm11ediate 
l. l. that (2.4.9) 

holds, since 

...., ...., 
~ 0. ~ r. C Q 
'I;, N 1.·N· J..N l. □ 

Let x(s) denote the indicator function of a set Sas defined in 

(1.3.1). 

2.4.2. 

fined as in 
* * = {Iil: 1 i1 

1 1. 1.N l.N 1.N 1. 

(2.4.7)., (2.4.8)., (2.4.1)., {2.4.4) and (2.1.2). Let I.
1 

= 
• l. 

interval contained in JRk-i}. 3 6 
Denote nNc = n0 n cnj=lnjNo> n cnj=4njN>., 

an 

> -
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with, for positive M, o, a., 
l. 

i = 1 , 2 , .... , k., ~N' N = 1 , 2 , ••. , and positive 
• 1,,nteger k, 

(2.4.12} 

• 

k 
n 

i=1 

k 
n 

i=l 

k 
n 

i=l 

k 
n == n 

4N . l 
J.= 

k 
n = n 

SN i=l 

* UiN(FiN) 

- MN-1i S s. 
l. 

k 
= n 

i=l 
r sup 
L. * 
· I.lEI.1 

.1. . J. 

* Ii2e:Ii2 

S M on 

on 

* --1 
F.N(F.N(s.)) :5: s. 

1 .l. J. .l. 

* * 

S Mr 

+ MN-~, 

on l 
t:.iN J ' 

a.+1 
l. 

(F iN) on ~iN , 

(i) 
X E 0

1
. N , 

N. :N 
J._ 

For every€> o, everry positive integer k, evePy o E (O,~] and every 

positive ai, i = 1,2, ••• ,k, there e:r;ists a "-"er M = M(e: ,k, o, a 1 , ••• ,~) ~ 1 

and a sequence sN = sN(€,k,o), deareasing to zero as N tenas to infinity, 

suah that the set nNo has probability P{&1N0) ~ 1 - e, for N = 1,2, ••• and 

every ar~ay of k-variate continuous underlying d.f. 's F 1N,F2N, ••• ,FNN, 

N = 1,2, . ... 

Moreover, on nNo we have for i = 1,2, •.• ,k, 

(2.4.13) * lc(F.N(x)-s.) - c(F.N(x)-s.) I ::;; xcriN;x) ::;; xco. ;x). 
1 1 J. 1 iN 

PROOF. The first assertion is j mn1ediate from the 

* the fact that for every we: n0 we 

( 2 . 3 • 11 ) and the Le11i1oas 2 • 3 • 5 and 

have I u. (F. N) 
J.N 1 

2.4.1. The second assertion follows from 

Lemma 3.3.4 in RUYMGAART (1973). 0 

Let us notice the following property of the set n4N. For i = 1,2, 
,._, ,..,, 

••• ,k let, for each w, ~iN =.~(w) be a function defined on 8iN' satisfying 

(2.4.14) . - * 
ml n (F iN' lF iN) 

,.., 
* max(F.N,F. ) 

l. J.N 
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Then, independently of the continuous d.f.'s F 1N,F2N, ..• ,FNN, we have for 

i = 1,2, .•. ,k on ~iN' 

(2.4.15) S M r 

for each w E n4N. 

The last auxiliary result we need is the following statement: 

LEMMA 2.4.3. Suppose that the numbers (l . . I 

l.J 
1 sis k, 1 s j s N, satisfy 

,.. <_ 
,...i2 • • • < ,..., 

- '-1,.iN' for 1 sis k. 

Then 

N 
(2 .. 4 .. 16) I 

j=l 

for every set of k permut~tions {(rr 1 (1), ••• ,n1 (N)), (rr2 (1}, ••• ,n
2

(N)), ••• , 

(nk(l), ..• ,nk(N))} of trze. numbers 1,2, .•. ,N • 

• 

PROOF. The lemma can be proved by induction on k. Fork= 1 the assertion 

(2.4.16) is trivially true. Suppose that {2.4.16) holds for a fixed k ~ 1. 

We shall show that 

(2.4 .. 17) 
N 

I 
j=1 

N 

s I 
j=1 

for a set of (k-1) permutations {(n3(1), ••• ,n3(N)), (n4(1), ..• ,n4(N)), .... , 

( n k+l ( 1) , ••• , nk+l (N)) } of the n11.mbers 1, 2, .... , N. 

~irst we therefore prove that 

N 
(2.4 .. 18) I 

j=l 

for a set of (k-1) permutations {(n3(1), .•• ,~3(N)), (n4(1), .•• ,n4(N)), •.• , 

(nk+l (1), ... ,nk+l (N))} of the numbers 1,2, ••• ,N and two permutations 
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(1ri{1), ••• ,n-i(N-1)), (n;2(1), .... ,TI2(N-1)) of the n11mbers 1,2, ••• ,N-1. 

Nam~ly, if TI
1 

(j) = n
2

(j) = N for some j, then (2.4.18) is trivially true. 

So suppose 

and denote 

y = 

For$~ y we have 

because 

and hence 

so that (2.4.18) is proved. 

Applying the same reasoning to 

times, gives us (2.4.17). 

for some j and l with j #: l, 

N-1 
1: . 1 J= 

> -

~ 0. Analougsly we find for S < y that 

The lemma now follows directly from (2.4.17) using the induction hy-

pothesis, because 

N 

I 
j=l 

' 

a111'1 (j)a2Tr2(j)···•-ak+1 

□ 
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Since we now have collected the basic tools for the proof of the 

asymptotic negligibility of the remainder term, let us return to the sta­

tistic TN, defined in (2.0.16). Writing 

(2.4.19) 

(2.4.20) C = 
N 

k 

I 
i=l 

* J. (IF. N) 
.1. J. 

k 

• 

J. (F. N) , 
J J 

it is immediate from (2.0.16), (2.1.10), (2.2.11), (2 .. 4.19) and (2.4 .. 20) 

that with probability one, 

(2.4.21} A + N~ 
N 

dG + N~ 
N 

LEMMA 2.4.4. Under the aonditions of Theorem 2.1.1 there exists for every 

e: > O and every positive integer k a positive integer N0~ depending one, 
• 

k and the constants in Assumptions 2.1 .. 1 and 2.1.2, such that for every 

N ~ N
0 

we 'ha.ve 

(2.4.22) ~ 1 - e:. 

PROOF. We remark that 

where 

(2.4.23) 

(2.4.24} 

C dG = N~ 
N N 

and for i = 2,3, •.. ,k-1, 

(2.4.25) * = [J. (lF .N) 
.1. 1 

k 
rr 

j=l 

k-1 
I 

i=l 

* J.(lF.N), 
J J 

* J.(lF.N) -
J J 

k 
II 

j=2 
J. (F 'N} 

J J 

i-1 
TI 

j=l 
J. (F. N) 

J J 

-

k 
* IT J. (F .N) -

j=i+l J J 
k 
II 

j=i+l 
J. (F. N) 

J J 

, 

• 
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First let us deal with the asymptotic negligibility of the teLm 
ls k-1 

N-J~ ri=l CiN d~N. From (2.2.8), Assumption 2.1.1, Lemma 2.4.2, possibly 

step~wise application of the mean value theorem, together with (2.4.15), 

it follows that for every w E nNo and i = 1,2, ••• ,k we have on 6iN' 

(2.4.26) A r 

Moreover, from (2.4.24), (2.4.25), (2.4.26) and Assumption 2.1.1 we have 

(2.4.27) 

/J. 
N 

k-1 k 
!S; M I I 

i=l j=i+1 

k-1 

I C 'N dGN . 1 l i= 

• 

< -

k 
IT 

h=O 
hFi,j 

a 
r h (F ) dGN + 

hN 

k a.+~+o k ~ I r J • + M • {F jN) 
1,j=l 

iFj 

k-1 k 
+ M I l 

i=1 j=i+l 

x(OiN) IT 
h=0 

hFi,j 

k 
TI 

h=O 
h#i,j 

r {FhN) dG + 
N 

• 

From HOLDER's inequality {see 2.2.24), using the same ~•s as in (2.2.27), 

it is straightforward that the first two te:r.ms in the upper bound above 

converge to zero as N tends to infinity. As far as the last term in the 

upper bound is concerned we remark that from Ass1Jmption 2 .1.2 and from 
,.., ,..,, 

(2 .2 .3) we obtain for N ~ N0 = N0 (n), with n as in Ass1Jmption 2 .1.2 and 

~N as in (2.2.2), that 

(2.4.28) 

k 
X Il 

h=O 
h;,,?i,j 

k 
TI 

h=O 
h#i, j 

-~ -~ X([s.-MN ,s.+.MN ];t.) 
l. 1 1 

-~ -~ 
X ( [ s . -MN - , s . +MN J ; t . ) X 

J J J 



k b 
X IT 

h=l 
h~i 

-~ -~ X([s.-MN ,s.+MN ];t,) 
J J J 

k 
II 

h=O 
h#i, j 
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a 

which converges to zero as N + 00 , as can be seen from the dominated conver-

gence theorem 

Secondly 
1.:i 

(a.+b.<l;. Compare with SHIRAHATA (1975), Remark 2. 
J J 

let us prove the asymptotic negligibility of the term 

{see (2 .4. 23), due to the introduction of the d11mmy random 

variables x01N,x02N, ..• ,x0NN. Denotir,.g by JONc the continuous part of JON' 

and by AON the height of the j11mp in sON' N = 1 ,2, ... , we have 

(2.4.29) 

N 

I 
n=l 

N 

I 
n=l 

= N-~A 
ON 

N 

I 
n=l 

N 

I 
n=1 

JONc 
n 

N+l 

k 
IT 

j=l 

k 
II 

j=l 

Let n
0 

be the 
-1 

index such that (n0 -1)N < s
0

N 

k 
IT 

j=l 

k 
IT 

j=l 

I J . ( F ~N ( X . N) ) I = 
J J ]Il 

--

+ 

R. N Jn 
Jj N+1 • 

probability 

one we have that the first term in the upper bound in {2.4.29) is bounded 

above by 

k 
II 

j=l 

a. 
r J N 

N+1 
, 

k 
TI 

j=l 
J. 

J 

R. N 
Jno 

N+l 

which converges to zero as N tends to infinity since 
k 

E. 1 a. 
J= J 
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Next we consider the -~ N I 
sum N I:n=l JONc 

....., 

n 
N+l 

k 

- JON cxo N> I ·-n 
C n . l 

]= 

J. 
J 

R. 
.. JnN 
N+1 • 

We recall that s 0N is the only continuity point of 
( 1 ) 

JONc' where JONc either 
,.._, 

does not exist or is not continuous. Let n
0

·be the index such that 
,..._, -1 "' ...., -1 ,..,., 

(n0-1)N < s 0N $ n0N • For sufficiently large N we have n
0 

~ 1,N. 

Since it is not hard to show that every single teLm in the s11m above is 

asymptotical.ly negligible, we restrict attention to the su.m 

JONc 
n 

N+l - J X ONc OnN 

k 
n 

j=l 

R.nN 
, J 

Jj N+1 

• 

I 

• 
which, in view of Assumption 2.1.1 and Lemm~ 2.4.3, is bounded above by 

• 

N 

I 
n=1 

-~ N 
$ M N l 

n=1 

3 --2 
=MN 

N 

I 
n=l 

a+l 
r 

n 
N+l 

n 
N+l 

n 
N+1 

k 
TI 

j=l 

a. 
r J 

R. N Jil •• 

N+l 

k 
II 

j=l 

a. 
r J n 

N+l 
--

as N ➔ 00 • 

This completes the proof of the asymptotic negligibility of the c
0

N-tezm. 

The reader should note that this proof is a matter of straightforward cal­

culus only. This could be expected as the appearance of the r.v. c
0

N is 

merely due to the introduction of the dummy uniformly distributed r.v.'s 
• XOnN and hence ought not give rise to any serious trouble. D 

B • 
l.Il Our next aim is to show that the 

k 
be approximated by the texm Ei=l (AiNc+AiNd) in (2.2.10). 

In view of (2.2.8) we have 

k 

I (B.N +B.Nd), 
'1 l.C l. J.= 

where, for i = 1,2, ••• ,k, 

(2.4.30) B. iNc 
-- * J. ( F .N) -

l.C l. 

k 
II 

j=l 
j#i 

(2.4.21) can 



(2.4.31) 
k 
TI 

j=1 
j~i 

J. (F. N) • 
J J 
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From now on in this section let i € {1,2, •.. ,k} be fixed. We have the fol­

lowing decompositions 

(2.4.32) 

(2.4.33) 8 iNd 

- A iNc 
--

6 

I 
j=l 

10 

I 
j=7 

~ 

D . . , 
JNl. 

D. . I 
JNl. 

,.._, * 
where, with~- , n , 

iN yN 
u. , 

l.N 
* UiN' s , 

NY S.N l. y 
as defined in ( 2 • 4 • 6) , ( 2 • 4 • 5) , 

(2 .4 .1) and (2.4.2), 

s 

* * D1Ni = x<nyN) uiN(FiN) J ~ 1 ) ( ¢ . ) _ J ~ 1 ) (F. ) 
ic iN ic iN JON (FON) 

SNY 

* D2Ni = X (QyN) * U .N(F .N) - U .N(F. N) 
1 · J.. l. 1 

8N-y 

* - (1) = x<n N) u.N(F.N) J. (F.N) y l. l. l.C l. 

SNy 

D4Ni 

* 

J.(l) (F. ) J (F ) 
ic 1N ON ON 

k 
II J . (F . ) 

. 1 J JN ]= 

j;fi 

k 

k 

TI J. (F. N) dlGN, 
j=l J J 

j~i 

k 
TI J . (F. N) 

j=l J J 

j~i 

DSNi J. (lF. N) -
1.C l. 

J. (F. N) 
1C l. 

IT J. (F .N) 
j=1 J J 

D6 . NJ.. 
B a~ -A 

'N cN 'N 1. C l. C 

LlN 

* c (F. N-s.) -
1. l. 

- A.h.N(s.) u.N(s.), 
11. 1 1 l. 

j;fi 

I 

dG -
N 
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~ o
9 

. =- -N A. 
Ni 1 

,..., 

...., C 

S.N l. y 

* . C ( lF. N-s.) -
.l. l. 

* c(F -s.} 
iN 1 

c (F. N-s.) 
.l. l. JON(FON) 

JON(FON) 

- c(F.N-s.) 
J.. l.. 

k 
II 

j==1 
jFi 

k 
II 

j=l 
j;i'i 

k 
rr 

j==l 
jli 

LEMMA 2.4.5. Under the conditions of Theorem 2.1.1 there exists for everzJ 

e > o and every positive iiiteger k a positive y 0 .., depending on e., k and 

the constants in Assumptions 2.1.1 and 2.1.2.., such that for every 

O < y < Yo~ and every N = 1,2, ... ~e ha:ve 

(2.4.34} for h = 4,5,9,10. 

PROOF .. From Ass,imption 2 .1.1 and Lemma 2. 4. 2 it is .immediate that 

a.+~+o k a 
l. • 

< M (FiN) rr dGN. r r -
j=O S C 
j;ti Ny 

As far as D
5 

. is 
Ni 

concerned, step-wise application of the mean value 

theorem (see also (2.4.26)) implies that 

-
DNy --

and hence 

M 

SC 
Ny 

S C 
Ny 

a.+~+o 
l.. 

{F iN) r 
k 
II 

j=O 
jFi 

k 
TI 

j=O 
j#i 

a. 
d6 N' 

a. 
J 

r (F jN) 

Now, for sufficiently small o > 0, we obtain with the aid of HOLDER'S ine­

quality and of (2.2.27), 

,.._, 

En 
Ny 

< - r 
a.+~+o k a l. . 

j=O 
j#i 

1+0 
(l+o)-l 



k 

2 
i=O SC 

iNy 

o ( 1+6) -l 

-1 -1 
s M(1+6) {6(k+l)y}8(1+6) , 

< -

which converges to zero as yiO, uniformly in N. 
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With respect to 

s11mption 2 . 1 . 1 , that 

the term o9 . we have, in view of Lemma 2.4.2 and As­
Ni 

(2.4.35) 

-

k 
TI 

j=O 
jfi 

From Ass1Jmption 2 • 1 • 2 and HOLDER' s inequality again it fallows that the 
• 

upper bound in (2.4.35) converges to zero as y~O, unifoLmly in N. Since 

E ( X cnNo) ID 1 ONi I ) has the same upper bound the proof of the len,ma is com­

pleted. D 

LEMMA 2.4.6. Under the conditions of Theorem 2.1.1 there exists for every 

E > o, everiy O < < T/2 and every positive integer k a positive integer 

N
0

, depending on E, y, k and the constants in Assumptions 2.1.1 and 2.1.2, 

such that for every N ~ N0 we have 

(2.4.36) for h = 1,2,3,6,7,8. 

PROOF. Choose e > 0, 0 < y < t/2, and the integer k ~ 1. The lP.mma is im­

mediate from the remarks we shall make for the different cases correspon­

ding to different values of h. 

Case h = 6 

We note that 

* P { w : sup I lF iN - F iN I ~ Y / 2} < -
X 

• 

* . P { w : sup [ I :IF iN {x) -F iN (x) I+ ) lF iN ( x) - F iN (x) I J ~ Y / 2} 
X 

, 
X 

which converges to zero as N tends to infinity because of (2.3.8) with 
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Hence ➔ 1 as N ➔ 00 since P(QO) = 1. 

Case h;: 2 

Because of Ass11mption 2. 1 • 1 there exists a positive nt1rober 

depending on N, such that 

(2.4.37) 

In view of Lemma 2.4.2 we obtain 

Case h = 1 . 

M 
y 

k 
TI 

j=l 
j~i 

➔ o, 

J,(F.N)I ~ 
J J 

M • 
y 

as N ➔ 00 • 

Assumption 2.1.1 implies the existence of a positive number 

depending on N, such that 

(2.4.38) sup 

T.N i y 

k 
' 

II 
j=l 
j~i 

...., 
J. (F. N) I ~ M • 

J J y 

Lemma 2.4.2 and (2.4.38) imply that 

(2.4.39) 
rv 

MM y sup 

S.N i y 

( 1) 
J. (F. N) 
ic i 

• 

M, 
y 

,...., 
M , 

y 

not 

not 

' . . ( 1 ) 
For fixed O < Y < T/2 we remark that the function J. is unifozmly continu-

1.c ,.., -
ous on [y/2, s. - y/2] u [s. + y/2, s. - y/2] u [s. + y/2, 1 - y/2]. Since 

l. i i l. ,..,, - * I~ iN - F iNI s I IF iN - F iN I, assertion (2. 3. 9) with o = ~ yields the conver-

gence to zero in probability of the right-hand side of (2.4.39), as N 

tends to infinity. 

Case h = 3 

For positive integers 

o3N. . , where 

m and N the r . v • I o3 . l 
Ni is bounded above by 

3 
E. 1 J= 

D3N" 1 = , m 

l.mJ 

UiN(FiN) J ~ 1) (F. ) 
ic iN 

- U. N (I (F. N)) 
l. m i 

• 

J ~ l} ( I (F. ) ) 
l.C m J.N 

k 
II 

j=l 
j;afi 

J. (F .N) -
J J 

k 
II 

j=l 
jli 

J. ( I {F. N)) 
J m J 

• 



D = 
3Nim2 

D = 
3Nim3 

s 
Ny 

SNy 

U.N(I (F 
l. m 

(1) - - k 

l.C m 

ji6i 

k 
TI 

j=l 
j;'i 

J. ( I (F. N) } -
J m J 
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J~l) (F. ) 
l.C l.N 

k 
TI 

j=l 
j~i 

J.(F.N) 
J J 

dG, 
N 

and the function I on [0,1] is defined in (1.1.37). 
m 

It suffices to show that each of the r.v.'s above can be made arbitrarily 

small with arbitrarily high probability for some common positive integer 

m, provided N is large enough. 

Consider n
3

Niml and o3Nim3 , which are both bounded by the supremum of 

the integrand over the closed set 

hard to check that, for fixed O < 

SNy. From AsS1lmption 2. 1 • 1 it is not 

y < T /2, there exist p11mbP.rs ~ , inde­my 
. 

pendent of N and with ~ ➔ 0 as m ➔ 00 , such that 
my 

(2. 4 .. 40) 

(1) - - k 

l.C 

j#i 

Denoting M = 
1 

(2.4.37) that on nNo' 

- U.N(I (F.N)) 
l. m l. 

< - sup 
0S::tS1 

(1) - - k 
'N)-J. (I (F.N))JON(I (FON)) TI J.(I (F.N)) 
J 1.c m 1. m . 1 J m J 

J= 
j;,'i 

-~+o r (t), we have from ~mmr1. 2 • 4 • 2 , ( 2 • 4 • 40) and 

( 1) 
J. (F. N) 

l.C .1. JON(FON) 

J~l)(I (F. )) 
l.C m 1.N 

- u.N(I Ct)) IM 
i m y 

k 
IT 

j=l 
j,'i 

J. (F 'N) -
J J 

k 
n 

j=1 
j,'i 

+ M1~ • my 

J.(I (F.N)) 
J m J 

< -

The desired result for the terms o3Niml and n3Nim3 follows after appli­

cation of Le111rna 2. 3. 6. 

Next let us consider o3Nim2 for fixed positive integer m. For each w, 

, 
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the integrand in the expression for this r.v. is a simple step function 

ass\1ming the value ZimNl (w) (say) on the rectangle 

,...,, 
--

k 
II 

j=O 

€ { 1 , 2, ••• , m} • 

X. : 
J 

F.N(x.) E 
J J 

.e..-1 
J 
m 

, 
l. 

J 
m 

n s , 
Ny 

where £
0
,!1 , ••. , 

Because lzimNll ~ M (M +E; ) 
y my on QNo' with M 

y 
■ as in ( 2 • 4 • 3 7) and ~ as in 

my 
(2.4.40), we have 

m 
$ M (M +~ ) l c;N 

y my o o "'· =1 

,.._, 

.(..0 '.{..1' ..... '-.. 

for fixed y and mas N ➔ 00 (Remark 1.2.1). 

The ~symptotic negligibility of 

bination of these partial results. 

Case h = 8 

o3 . follows 
Ni 

,.._, 

by straightforward com-

For every positive integer m and N we can make the decomposition 
3 

x(QNo)DBNi = Ej=l DSNimj' where (see Lemma 3.3.4 in RUYMGAART (1973)) 

D8Nim1 
--1 (i) 

sgn{F.N(s.)-X ) x 
l. l. N.:N 

X 
i-1 k 
II s xr X II 

DBN' 2 J m 

X 

D8Nim3 

~ = A. X (Q i-)N 
l. Nu 

k 
rr 

j=1 
j,'i 

,..,, 

...., 

S.N 
1. y 

S.N l. y 

]. 

k 
TI 

j=l 
j;ei 

* [ C ( ]F . N-s . ) - c ( F . N-s . ) ] x 
]. l. ]. ]. 

* [ C ( JF . N-s . ) -
l. l. 

k 
II 

j=1 
j~i 

l J.(I (F.N))J d~ I 
J m J N 

c(F.N-s.)] x 
1. J.. 

• 



X 

k 
TI 

j=1 
j~i 

k 
IT 

j=l 
j~i 

J. (F .N) 
) J 
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Because of Assumption 2.1.1 again (compare with (2.4.40)), there exist for 
,..... ,...., 

fixed O < y < -r/2, positive 

as m ➔ 00 , such that 

n1,1mhers f,: , independent of N and with ~ ➔ O 
my my 

(2.4.41) t.: .. my 

Since the marginal d.f. 's of GN are uniform, we obtain with the aid of 

Lemmq 2.4.2 that 

• 

(2.4.42) ln8Nim31 
....., - ,..,. 

which converges to zero as m tends to infinity. 

For the term o8Nim2 a similar argument applies. 
' 

With respect 
k 

JON(Im(FON)) rrj=l 

to the term 

J.(I (F.N)) 
J m J 

n8 . 1 we remark that the function 
Nim 

ass11mes the value zimNl (w) {say) on the set 

...., 

and 

that 

(2. 2. 43) 

j;;l:i 

,.._, 

,-.,; 

where 

i-1 
IT 

j=O 

k 
IT 

j=i+1 

X. : 
J 

F .N (x.) E 
J J 

n 
i-1 

IT 
j=O 

s.N, 
J y 

X. : 
J 

F.N(x.) e: 
J J 

l..-1 
J 
m 

, 
l. 
-2 
m 

n 
k 
II 

j=i+l 
s.N, 

J y 

E {1,2, ... ,m}. Note that from (2.4.38) and 

M 
y 

....., 

+ ~my. Because nl'Io c n6N we have 

I 0 aNim1 I s 

m 

I 
l 0 , ••• ,l. 

1
,l. 1 , •.• , 

1- l.+ 

,..._, 

z. 
=1 iIIlNl. 

y 

m 

la,··-,l.i-1'.e.i+1'···, 

,.., ,.._, 

X 8 iylm1xriNxsiylm.2 

fiN 
=1 

....,; ,..., 
s xr xs -

iylm.1 iN iy.f.m2 

....., ,..,, 
- G S xf xs. 0 _ 

N iylml iN iyun2 
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,..., ,..., 
M +~ 

Y my 
for fixed mas N + 00 • 

The asymptotic negligibility of DSNi follows again by straightforward 

combination of (2.4.42), the remark below (2.4.42) and (2.4.43). 

Case h = 7 

Using Le11w1a 3 • 3 • 4 of RUYM 

x(QNo)D7Ni = D7Ni1 + D7Ni2' where 

(1973) with u 

D7 . Ni 
= A N1l 

• 
l. 

sgn 

- A.h.N(s.) u.N(s.), 
J.. l. l. l. 1. 

s. 
J. \ h. (t. ) dt.) 

* --1 l.N l. J. 
2s.-lF.N(F.N(s.)) 

1. 1. l. l. 

* --1 
2s.-JF.N(F.N(s.)) 

l. l. J.. l. 

= s. we can write 
l. 

k 
IT 

j=l 
j;ii 

J. (F. ) dGN -
J JN 

- A.h. Cs.) u.N(s.) 
l. J.N l. J.. l.. 

h.N(t.) 
l. l. 

dt .. 
l. 

Let us first consider the 

function oft. on ....,.. . (Lemma 2.2.1) and since 2s. - F.N(F.N(s.)) € 

, 

-1l l. , l. l. J. l. l. 

E [si - MN , si + MN-~] on nNo' we can, for N sufficiently large, apply 

the mean value theorem for integrals. Writing~- (s.) for the random point 
J.N J.. * --1 

between si and 2si - FiN(FiN(si)), we obtain with the aid of Lemma 2.2.1, 

~ * --1 
N (F.N(F.N(s.))-s.) h.N(~.N(s.)) -U.N(s )h.N(s.) 

l. l. 1. 1. l. l. J.. l. i l. l. 
< -

• 

I * 
MU.N(s.) 

1. l. 

* --1 --1 
F. N (F. N ( s. ) ) -JF. N (F. N ( s. ) ) 

1. l. l. 1. l. l. 

I I ¼ -1 
M h . N ( ~ . N ( s . ) ) -h . N ( s . ) + MN ( N+ 1 ) 

l. l. l. l. l. • 

As nN~ c n5N, we have that for each w En~ the random point~- (s.) sat-
u -~ Nu J.N J. 

isfies l~.N(s.) - s. Is MN , so that Lemma 2.2.1 implies that the upper 
l. l. J. 

bound for ln7Nill converges to zero as N tends to infinity. 

The r.v. ·D?Ni2 is bounded above by 

< -
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+ 

--1 
lF. N (F. N ( s. ) ) 

.l. .l. .l. 
- s • 

J. 
+ 

* --1 
lF. N (F. N ( s . ) ) 

1. l. .l. 

--1 (i) 
- lF . N ( F . N ( s ' ) ) + JF . N { XN • N-) 

]. .l. 1. 1 .• 

J . k . 1 
6 IR.1 xr XJR-l.L _G 
NL iN f N 

-1 
(N+l) + 

.l. 

+ 

• 

- s • 
]. 

on nNo this upper bound converges to zero as N tends to infinity as a con-

sequence of the definition of N. 
]. 

• 
.l.Il (2.4.7) and because D 

Straightforward combination of Le11,r,1a 2. 4. 5 and Lemma 2. 4. 6 leads to 
½ 

the asymptotic negligibility of the term N f 1:,_ .. (B.N + B.Nd)dcG -(A.N +A.Nd) 
N l.C l. N 1C J. 

for i = 1,2, .•• ,k (see (2.4.30)-(2.4.33)) and hence of 

k 

L 
i=l 

• 

A.N + 
1. C 

k 

I 
i=1 

This result, together with Lemo1a 2 .. 4 .4, yields the asymptotic negl.igibil-
• 

ity of the term EN (see (2.2.10) and (2.4.21)), which completes the proof 

of Theorem 2.1.1. 

REMARK 2.4.1. Theorem 2.1.1 can be generalized in the sense that one can 

allow the scores generating 

equicontinuity condition on 

functions J. to depend also on N. However an 
1 

J,emma 2.4.6 in the cases h = 1, 3 and 8. 

< -
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2.5. EXACT SCORES 

Theorem 2.1.1 is an asymptotic result on rank statistics in the case 

where approximate scores (cf. (2.0.10)) are used. Clearly, a result like 

Theorem 2.1.1 also holds in the case where exact scores (cf. (2.0.9)) are 

used, provided condition (2 .0. 17) is satisfied. Ass1Jmption 2. 5 .1 is a 

strengthening of Ass11mption 2 .1.1 which ensures that condition (2 .0 .17) 

holds. 

ASSUMPTION 2.5.1 (generating functions): 
• 

(a) For N = 1,2, ••. the function JoN has discontinuities of the first kind 

oniy and a continuous denvative JdJ> on the set (0,1) - V
0

N. 

(b) For 1 = 1,2, ... ,k the funation J. is continuous on (0,1) and has a 
l. 

second derivative J~
2 ) on the set (0,1) - V~. 

l. l. 

{c} There exist positive numbers £
0

,£
1

, ••. , and T such that for 

N = 1,2, •.. and i = 1,2, ... ,k, 

(d) 

a ·-.-

(T,1-T)., 

' 

#V < ON - * and V. 
l. 

C ( 1' , 1-T) _, 

There exist positive numbers a
0
,a

1
, ••• ,~ and K

1
, 

k 
rj=Oaj <~,such that, with r defined in (2.1.2), 

ao+v 

l . . 
l. 

satisfying 

we have 

(2.5.1) IJ<v> I < Kl for v 0 t 1 I 1,2, .•• , r - N -- - -ON 

IJ~v) I 
a.+v 

l. 
for v 0,1,2, $ Kl r • 1 , 2 , ••• , k., - l. -- -l. 

wherever these functions are defined on (0,1). 

LEMMA 2.5.1. Let for n = 1,2, .•• ,N, N = 1,2, .•. , i = 1,2, ••• ,k, the exaat 

scores a~N(n) and the approximate scores aiN(n) be defined as in (2.0.9) 

and (2.0.10) respectiveiy. Suppose that Assumption 2.5.1 is satisfied. 
Then, with probability one, 

N k 
(2.5.2) l cnN 

n=l 
I rt 
i=l 

* a.N(R. N) -
J. in 

k 
rr 

i=1 
a.N(R. N) I 

i in as N -+ oo ., 

uni-t:'orrnZy in the continuous underZyinn d.f. 's F F F N 1 2 
J ' '"" 1 N' 2N' ••• ' NN' = ' ' • . • . 



PROOF. First we remark that 

(2.5.3) 
k 
IT 

i=l 

k 

= I 

* a.N(R. N) -
i in 

k 
n 

i=l 

i=l 

i-1 
rr 

j=l 
a.NCR. N) 

J Jil 

a.N(R. N) = 
i in 

* (a. N (R. N) 
i J.n 

- a.N(R. N}] 
1 in 

k 
IT 

j=i+l 
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With the aid of Assumption 2.5.1, (2.0.9), (2.0.10), (2.0.11) and the re­

marks in RUYMGAART (1973), page 87, we find for every i E {1,2, ... ,k} that 

with probability one 

(2.5 .. 4) 
N 

-12 \ 
N l c 

n=l nN 

N 
N-~ \ 

s; M L 
n=l 

N 

I 
n=l 

=MN-~ 
N 

I 
n=l 

i-1 k 
* * II a.N{R. N)[ai.N(R. N) - a.N(R. N)] IT aJ.N(R.nN) 

j = 1 J J n in i in j =i + 1 J 

k 
rr 

j=O 
j~i 

k 
rr 

j=O 
j#i 

k a. R. 
IT J ( JnN) 

r N+1 
j=l 
j,'i 

a. R. 
J ( JnN_) 

r N+l 

a. 0. N 
J,-;;1:-} 

r N+l 

--

where, for j = 0,1, .•• ,k, j # i, (Q. 1 ,Q. 2 , ••. ,Q.NN) is a random permuta-
J N J N J 

tion of (1,2, •.• ,N). From the derivation of (7.14) and from (7.25) in 

CHERNOFF and SAVAGE (1958} it is clear that 

(2. 5. 5) MN 

and, for 1 < n $ N/2, that 

(2.5.6) 

a. 
l. , 

+ 1 +--1-
N l+a. 

n J. 

where the fWl.ction N is defined in (2.1 .. 1). Hence, 

L [N/2] k a. Q. 
M N-'"2 I IT r Jc ]IlN) 

· n=l j=O N+l 

j;'i 

, 

• 



76 

+ M 

k a a 
j( N )Ni+ 

r N+1 11 
j=O 
jFi 

k 
n r 

n=2 j=O 
j#i 

a a. 
j ( N -) N l. 

N+1 

[rl/2] k 
+ M N-1:i l IT 

a. Q. N 
J ( Jn ) 

r N+l 
n=2 j=O 

j;-fi 

-rn 
N M 

-1 
+ N + n 

-1-a 

• 

• 
J... 

+ 

It is obvious that the first two terms in this expression converge to zero 

as N tends to infinity. Application of the mean value theorem shows that 

the last term is bounded above by 

-3/2 
MN 

[N/2] 

l 
n=2 

k 
IT 

j=O 
j;-fi 

a. Q. N 
J ( Jn ) r 

r N+l 

a.+1 
i n 

(N+l), 

,ihich, in view of Lemma 2. 4. 3 1 is bounded a.hove by 

-3/2 MN 
N 

I 
n=l 

a+l( n) 
r N+l ➔ 0 as N + co. 

By a sy111111etric arg1Jment we can cover the range N/2 < n ~ N" so that (2. 5. 4) 

converges to zero as N tends to infinity. Combination of this with (2.5.3) 

completes the proof of (2.5.2). D 

THEOREM 2.5.1. Let an arbitPary triangular array of underlying d.f. 's 

FnN E Fk, n = 1,2, •.. ,N, N = 1,2, •.. be given and Zet the generating func­

tions satisfy Assw-rrption 2.5.1. Then the quantitiesµ and a 2 , defined in 
N N 

(2.1.10) and {2.1.11) are finite. If, moreover, lim inf oN2 > o, we have 
N4«1 

(2.5.7) 

for TN as in (2.0.3) with aiN replaaed by 

aase of exaat scores. 

as N + 00, 

* aiN defined in (2.0.9), the 

PROOF. Immediate from Theorem 2 .1 .1, Le11u11a 2. 5 .1 and the equality 

k k 
-1 \ * 

N l cnN TI a.N(R. N)-µN 
1 . 1 i 1.n 

n= i= 

~ -1 = N cr 
N 

l N k 
N- l cnN TI a.N(R. N)-µN + 

1 . 1 J.. in n= i= 



k * k 
rr a. N (R. N) - TI 

. 1 i in . 1 1= 1= 
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a.N(R. N) 
1 .1.n I 

for N sufficiently large. 0 
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2.6. SCORES GENERATING FUNCTIONS WHICH ARE CONTINUOUS, BUT NOT NECESSARILY 

OF PRODUCT TYPE 

In this section we shall present a theorem extablishing asymptotic 

normality of suitably standardized statistics SN (cf. (2.0.2)) of the type 

(2.6.1) -1 = N 
N 

l cnN 
n=l 

Here, for ni = 1,2, .•• ,N, i = 1,2, .•• ,k, the aN(n1 ,n2 , .•. ,nk) are given 

real ntimhers, called scores, and the c , for n = 1,2, .•. ,N are given real 
nN 

constants, called regression constants. Again, we shall suppose these re-

gression constants c to be generated by some function 
nN 

according to 

(2.0.11). However, in contrast to the foregoing sections we shall assume 
k that the scores are generated hy a function Jon (0,1) , according to 

(2.6.2) 
nl n2 

= J(N+l' N+1 1 ••· 1 n. = 1,2, .... ,N, 
l. 

i = 1,2, .•. ,k. 

With the aid of the dummy r.v.'s x 01 N,x02N, ••. ,x
0

NN, defined in and above 

(2.0.12), the statistic SN can be entirely expressed in terms of empirical 

d.f.'s. Namely, in the notation of section 2.0, we obtain after combination 

of ( 2 • 6. 1) with ( 2 • 6 • 2) , ( 2 • 0. 11 ) , ( 2 • 0 . 1 ) , ( 2 • 0 • 13) and ( 2 .. 0 • 1 5) , that 

(2.6. 3) 

where the integration is extended over the (k+l)-dimensional number space 

(cf. (2.0.16)). 

To standardize the location of the statistics s we shall use the 
N 

quantities 

(2.6 .. 4) 

The quantities used to standardize the scale of s will be given in the 
N 

implicit fo:r.m 

k 
(2.6.5) I , 

i=1 

where~ and the AiN arise in the fundamental decomposition of SN in (2.6.13). 
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In this section we shall assume the scores generating function J to 
• 

• J.. 
be continuous. By J we denote the partial derivative of J with respect to 

the i-th coordinate. The function r is defined in (2.1.2). 

ASSUMPTION 2.6.1 (generating functions): 

(a) Far N = 1,2, .•• the function 

only and a continuous 

(b) The function J is 

derivative 
• con t1.,nuous 

• 

continuous partial derivative Ji 

(c) There exist positive numbers 

N = 1 , 2 , • • • and i = 1 , 2 , ••• , k, 

JON has discontinuities of the f~rst kind 

J6t) on the set (0,1) - voN· 
on (O,l)k and has, for i = 1,2, ... ,k, a 

k on the set IT. 1{(0,1) - V.}. 
J= l. 

£..0 ,l1 , •• - , arid -r such that for 

#V. s; l .. 
l. l. 

(d) There exist pos·itive numbers a 0 ,a
1

, ... ,ak and K
1

, satisfying 
k a:= I. 0 a. < ¼, suah that on (0,1), 
J= J 

(2 .6.6) 

a:nd on 

(2 .6. 7) 

and 

(2.6.8) 

k 
{O, 1) , for i = 1 , 2, ••. , k, 

k 
rr 

j=l 

v = 0,1, N= 1,2, .•. ., 

k 
rr 

j=l 
j;'i 

a. 
[r(t.)] J., 

J 

a. 
[r(t.)] J., 

J 

wherever these functions are defined. 

THEOREM 2.6.1. Let an arbitrary t;rianguZar ar,ray of underlying d.f. 's 

F € F, n = 1,2, .•. ,N, N = 1,2, ... be given and let the generating func­

tions. satisfy Assumption 2.6.1. Then the quant1.,t~es µNan-. aN' e ~ne ~n 

SN defined in (2.6.1) that 
N >oo 

(2.6.9) - N<z> I ➔ o, as N -+ 00 • 
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PROOF. Without loss of 

--• • • 

generality we may assume (compare 

= 1 in l\ss11mption 2. 6. 1 , so that 

with (2 .2 .8)) 

V. = {s.}, say. 
1 l. 

For small positive y we define the sets 

(2.6.10) s. - y] u [s. + y, 1 - y]}. 
l. l. 

With SONy defined in (2.4.1), let 

(2.6.11) ~ 

~ 
A = 

N 

k 
TI 

j=1 

k 
rr 

j=1 

s.N, 
J y 

,-.., 

s 
Ny' 

- r x(O) x(O) l 
AN - L 1:N' N:NJ 

,..,,, 
X l I 

N 

and * * let n N,u.N,u. be defined as in (2.4.5) and (2.4.1). 
y J. J.N * 

For every w E .nyN the multivariate mean value theorem yields 

(2.6.12) ¼ * * * ~ 
N J(F1N'F2N' ••• ,JFkN) = N J(F1N'F2N' •.• ,FkN) + 

k 

+ I 
i=1 

- ,..., 
for all (x1 ,x2 , ... ,~) E AN n SNY, where for i = 1,2, ... ,k, the random 

n11mber iJ..N lies in the open interval with end points F. and F~ . 
1N i.N 

From (2.6.3) together with {2.6.4) it is i111n1ediate that with proba-

bility one 

(2.6.13) 

where 

AiN = 

A + 
N 

JON(FON) 

k 

I 
i=l 

AiN + 

• 

+ C , 
N 

k 

• 



• 

dG. 
N 

Moreover, (2.6.12) leads to the following decomposition of BN, 

k 
(2.6.14) I 

i=1 

where, 

5 

I 
j=l 

D. 'N, l.J 

• 
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* * - - i 
Di2N = xcnyN) (UiN(FiN)-UiN(FiN)]J (FlN 1 ···,FkN)JON(FON)dGN, 

. SNy 

First, let us look at the A-terms in (2.6.13). As in section 2.2 we 

shall establish the asymptotic normality of these A-terms, i.e. we shall 

show, with crN defined in (2.6.5), that 

(2.6.15} sup 
-oo<z<co 

- N(z) ➔ 0 as N -+- 00 • 

Again we begin by noting that with probability one, 

(2.6.16) A + 
N 

k 

I 
i=l 

N 

I 
n=l 

znN' 
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where 

(2.6.17) 

with 

(2.6.18) 

(2.6.19) 

znN = A + nN 

AinN = 

k 

I 
i=l 

A. N' in 

and the function c defined in (2.2.9}. The r.v. ZnN depends on the random 

vector xnN only, so that the r.v.'s z 1N,z 2N, ... ,ZNN are mutually indepen-

dent. 

Furthermore, in view of Assumption 2.6.1, one can show by following a 

sjmilar reasoning as in the proof of (2.2.25) and (2.2.26) that there 

exists a o > O, such that 

(2.6.20) lim sup 
N-+«' 

-1 
N 
• 

and for i = 1,2, •.• ,k, 

(2.6.21) lim sup 
N··>co 

-1 
N 

N 

I < 00, 
n=1 

N 

I 
.n=l 

EI 12+0 
.AinN 

Relations (2.6.20), (2.6.21) imply the existence of a 8 > 0 such that 

(2.6.22) l lm sup 
N.+00 

-1 
N 

N 

2 
n=l 

Moreover, from the proof of (2 .6.22) and FUBINI' s theorem it follows that· 

N 
(2 .. 6.23) E l 

n=l 

Asymptotic IlOIIOd lity of the A-terms (2. 6 .15} follows by ESSEEN' s 

are given to be 

bounded away fron1 zero for N sufficiently large. 

Our next aim is to show the asymptotic negligibility of the terms BN 

and CN in ( 2 • 6 .. 13) • 

The asymptotic negligibility of the C -term 
N 

is immediate from a 
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reasoning similar to the proof of the asymptotic negligibility of the t(:!:tm 

i.mplies that 

(2 .6.24) 
RlnN 

J-­
N+l ' 

R2nN ¾.nN\ 
N+ 1 ' • " • ' N+ 1 ) :; K 1 

k 
IT 

j=l 
r N+1 } j • 

As far as the components of the B -term in (2.6.14) is concerned we begin 
N 

by remarking that from Assumption 2.6.1 and Lellllna 2.4.2 it follows that 

(2.6.25) 

sc 
Ny 

k 
IT 

j=O 
j~i 

a. 
J r (F jN) 

Step-wise application of the mean value theorem (see (2.6.12)), together 

with Assumption 6. 1. 1 and Le1i1Jna 2. 4. 5 imply that 

(2.6.26) 
k a.+½+o k a . 

1D2NI I .1. 
IT J dl6 • < M r r (FjN) - N i=l j=O sc 

j#i Ny 
• 

In Lemma 2.4.5 it is shown that the upper bounds in (2.6.25) and {2.6.26) 

converge to zero as y + 0, uniforrnly in N. 

Moreover, for fixed y sufficiently small, we have for every 

i E {1,2, ..• ,k} that the terms DlN' DilN' Di2N, DiJN and Di5N converge to 

zero in p~obability as N tends to infinity, because of L~mma 2.6.1 that 

fol1ows. D 

LEMMA 2.6.1. Under the conditions of Theorem 2.6.1 the~e exists for every 
• 

€ > o, every O < y < T/2 and every positive intege~ k a positive integer 

N0, depending on£, y, k and the constants in Assumption 2.6.1, such that 

fo~ every N ~ N0 and evePy i € {1,2, ..• ,k}, we ha:ve 

(2.6.27) 

(2 .6.28) for h = 1,2,3,5. 

PROOF. The proof in Case h = 6 of Lemm~ 2.4.6 implies (2.6.27) and (2.6.28) 

for h = 5. The relation (2.6.28) for h = 1,2,3 is immediate from the re­

marks we shall make for the different cases corresponding to different 

values of h. 
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Case h = 2 

Practically the same reasoning as in the case h = 2 of Lem111a 2. 4. 6 

applies. 

Case h = 1 

Assumption 2.6.1 and Lei1u1ta. 2.4.2 imply the existence of a positive 

n11mbP.r M , 
y 

( 2 • 6. 1·1) , 

....., 
not depending on N, such that with SNy and 

...... 
6. defined in 

N 

• 

(2.6.29) - Jl. (F 1N'F 2N' ••• ,FkN) I . 

• 

For fixed O < y < T/2, the function J 1 is unifoxroly continuous on the 

closed set 

k 
II 

j=l 
{[y/2, s.-T/2] u [s.+y/2, 1-y/2]}. 

J J 

• 

c ~~yields the convergence to zero in probability of the right-hand side 
• 

of {2.6.29), as N tends to infinity • 
• 

Case h = 3 

The proof follows the lines of the proof of Case h = 3 of Le1ru11a 2. 4. 6, 
• k - (1) 

replacing throughout IT. 1. J.(F.N) J. (F.N) by the function 
J= J J l.C l. 

.l. 
J (F lN' ••• ,FkN) • 

j;,'i 
□ 
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OF PRODUCT TYPE 
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In this section we shall sketch how the results of the foregoing sec­

tions in this chapter can be combined to obtain a theorem in the case where 

the scores generating function Jon (O,l)k may exhibit discontinuities on 
• 

the hyperplanes t. = s~, for j = 1, 2, ..• 1 .e... ancl i = 1, 2, ... ,k, whe::rre 
• J. J J. • 

0 < s: < 1. Throughout this section the points s:, j = 0, 1, ... ,l. -+ 1, 
J J 1.. 

i = 1,2, ••. ,k, are fixed elements of the unit interval, satisfying 

(2.7.1) 

We write 

(2.7.2) v** 
i 

i - 1 
< $.e.,+1 = I 

for i = 1,2, ... ,k. 

l. 

i = 1 1 2, ••• 1 k. 

We begin by formulating an assumption on the generating functions. 

ASSUMPTION 2.7.1 (generating functions): 

(a) FoP N = 1,2, ... the function JoN has discontinuities of the first kind 

onty and~ continuous der>ivative Jd~) on the set (0,1) - V0N. 

k 
TI 

i=l 

1 , 2 ' • · • , 

n (0, 1) ~ 

that the scores gen-

on the set 
1' 21•••1 

h. = 1,2, .... ,l.+1, 
l. 1 

i= 1,2, .•. ,k. 

Here J is defined and continuous on 
hl ,h2, ... ,hk 

k 
n 

i=l 
n (0,1) 

and possesses a continuous pa:rtial derivative 

on 

• 

J l. ( ) 
h h h t 1 , t2, .... , tk. =· 

1' 2 1 ·••r k 

i-1 
n 

j=l 

n (0 1 1) X 

aJh h h (tl,. ·· 1 tk) 
1' 2 1

•••
1 k 
3t. • 

l. 

k 
TI 

j=i+l 

j j l 
5 h. -1 'sh. 

J J 

n (0,1), 

for h. = 1,2, ••. ,l.+1 a:nd i = 1,2, ..• ,k. 
l. l. 
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(c) There exist positive numbers 

#VON~ lo fo~ N = 1,2,.~- . 

(d} There exist positive numbers 

l
0 

and t such that 

and K
1

., satisfying 

a. < ~, suoh tha.t., with r defined in (2.1.2)., we have on (0,1), 
J 

(2.7.2) 

and on (O,l)k, for i = 1,2, ... ,k, 

{2. 7 .3) 

for v = 0,1., N = 1,2, ••. ., 

a. 
[r(t.)] J., 

J 

• 8J(t
1 
,t

2
, .... ,tk} 

at. 

a.+l k a . 
(2.7.4) I J]. ( t 1 , t 2 , • • . , tk ) I = 

J_ 

:;; K
1
[r(ti)] 1. IT [r(t.)] J, 

j=l J 

j~i 

wherever these functions are defined. 

LEMMA 2.7.1. Suppo$e that the scores generating function J(t1 , ••. ,tk) sat­

isfies Assumption 2.7.1. Then the function J(t1 ,t2 , •.. ,tk) can be written 

as a finite swn of functions of the type 

(2.7.5) 
k 
IT 

j=a.+1 
L. (t. )., 

J l. . 
J 

ers 1,2, ... ,k, where (i 1 ,i2 , ••. ,ik) is a perrn:utation of the 

a c: {O, .1, 2, •.• ,k}, and K is not neaessaPi ly 
C 

a B • 
of product type., but aontinu­

k 
ous on ( O , 1 ) • y convent1.,on K ( t. , ... , t. ) 

C l.1 1 0 
= 1 and n L. Ct ) = 1. 

j=k+l J ij 
Moreover., for some positive ""'er K

2 
these functions have the fol-

lowing properties. 

( i) For' v = 1 , 2 , , ••• , o.., the th . -, v par ti.a(,,, derivati1;e 

Ct 

exists and is continuous on ** IT {(0,1)-V. }. 
j=l J..j 

With a 1 , •.. ,¾ as in Assumption 2.7.1 these functions satisfy 

(2.7.6) 

and. for v = 1,2, ... ,a, 

a. 
TI 

j=l 
[r(t. ) ] 

l. . 
J 

a. 
]. . 

J ., 

--

(). 
on (0, 1) , 
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(2. 7. 7) 
a 
n 

j=l 
j~v 

whePever these functions are defi~ed. 

a.i. 
J 

[r(t. )] 
1. • 

J 

(ii) The funations L . ., j = a+l, ••• ,k., 
J 

are defined on (0,1) and oan be deoom-

posed into L. = L. + L.a• Here 
J JC J 

l. 
l. . 

A 
w=l 

w 

• 
l. • 

c(t-s J) 
w 

for t e: (0, 1) 
• 

and numbers A1 , ••• ,Ai.• 
. . J more, L. ~s aont~nuous 

JC ** 

The function c(•) is defined in (2.2.9). Further­

on ( O, 1) and has a continuous derivative L ~ 1 ) = L ~ 1 ) 
JC J 

on (0,1) - V . • 
l. . 

J 
With a 1 , ••• ,ak as in Assumption 2.7.1 these functions satisfy 

(2.7.8) 

a a +1 • • 
l.j 1 l.j 

J . J 

wherever these functions are defined on (0,1). 

PROOF. It suffices to prove the representation in (2.7.5) for each of the 

components of J separately. Hence let us consider 

k ,..., 
J = IT 

i=l 

- r,,, * * We write J = J + J - J, 

with 

where 

= I 
Ac{ 1, 2, .•• ,k} 

II 
hEA 

A#~ 
,..., #'-.J ,..,, 

x J 1 , 1 , ••• , 1 ( t 1 't 2 ' ••• ' tk) ' 

,..., for h A, 

for h EA, 

II 
hiA 

so that Jl,l, .•. ,! is a function of (k-j) variables. 

• 
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~ * . k * Now (J+J) is continuous on (0,1) and J is a finite sum of functions 

of the type 

II 
hE:A 

where J is a function of~, hi A, only. Since J satisfies the assumptions 

of the le1111na we have reduced the dimension of the problem. Since the lemma 

is true fork= 2 {cf. RUY (1973), page 39) the decomposition holds 

for every k by induction. By straightforward verification one finds that 

the functions obtained enjoy the properties listed under (i} and (ii) res­

pectively. D 

According to Le1111ua 2. 7. 1 a scores generating function satisfying 

Ass11mption 2. 7. 1 can be expressed as a finite s11m of products of scores 

generating functions of the types which are studied in the sections 2.1 

and 2.6 respectively . 
• ,..., 
Consider the rank statistic SN corresponding to such a product, where 

(2. 7. 9) - . -

and let 

(2.7.10) 

k 
II 

j=a.+1 

k 
11 

j=a+l 

From the basic decompositions in {2.2.10) and (2.6.13) it is not hard to 

arrive at the analogous decomposition of N~(S -µ ) in leading terms and 
N N 

remainder te:cm. Again ass11ming only one discontinuity 

we have 

of L. (say in 
J 

a. k 
(2.7.11) 2 I 

i=l i=a+l 

where 

A.N + 
J. C 

k 

k 

k 

L 
i=a+l 

JI L. (F .N) 
j=a+l J J 

j#i 

A. d + J.N 

,.._, 

s . ) , 
J 



with A. 
l. 

,,..._. 

A.h.N(s.) 
]. ]. ]. 

u.N(s.), 
l. l. 

the height of the jump of L. 
l. 
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• in s. , 
l. 

defined in (2.4.1) and 

F. N (Y, N) =s. , 
l. l. J. 

Though we have not checked the details, it seems clear that with the 

aid of the technique of sections 2.2, 2.4 and 2.6, it is possible to show 

under Ass11mption 2. 1 .. 2 on the 

underlying d.f.'s. First one shows that 

a k 
(2.7.12) p 

\ 
A+ l A + l A + A. 

N . l iN . +l iNc. +l 1Nd 
(j s; z 

N 
- N Cz) ➔ o, 

1= i=a i=a 
as N co 

where 

cr2 = Vall. 
N 

• 

2 
provided lim infN-➔oo crN >Q. The proof of the asymptotic negligibility of 

the remainder term EN can be given, as in the sections 2.4 and 2.6, with 

the aid of the properties of the empirical d.f. derived in Chapter I. 

Finally we remark that if, following the approach from this chapter 

asymptotic noxmality can be established of each element of a finite set 

of standardized statistics, then the asymptotic normality of a suitable 

standardized version of any linear combination of these statistics will 

follow. 
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