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EMPIRICAL DISTRIBUTIONS IN SELECTION BIAS MODELS

By Y. VARDI
ATE&T Bell Laboratories

The following problem is treated: Given s not-necessarily-random sam-
ples from an unknown distribution F, and assuming that we know the
sampling rule of each sample, is it possible to combine the samples in order
to estimate F, and if so what is the natural way of doing it? More formally,
this translates to the problem of determining whether there exists a nonpara-
metric maximum likelihood estimate (NPMLE) of F on the basis of s samples
from weighted versions of F, with known weight functions, and if it exists,
how to construct it? We give a simple necessary and sufficient condition,
which can be checked graphically, for the existence and uniqueness of the
NPMLE and, under this condition, we describe a simple method for con-
structing it. The method is numerically efficient and mathematically inter-
esting because it reduces the problem to one of solving s — 1 nonlinear
equations with s — 1 unknowns, the unique solution of which is easily obtained
by the iterative, Gauss-Seidel type, scheme described in the paper. Extensions
for the case where the weight functions are not completely specified and for
censored samples, applications, numerical examples, and statistical properties
of the NPMLE, are discussed. In particular, we prove under this condition
that the NPMLE is a sufficient statistic for F.

The technique has many potential applications, because it is not limited
to the case where the sampled items are univariate. A FORTRAN program
for the described algorithm is available from the author.

1. Introduction. Let y; = (yi, ---, ¥in), n: = 1, be a random sample from
the cumulative distribution function (cdf)

t

(1.1) Fi(t) = Wi(F)_lf wi(u) dFw), 1=1, .-, s,

where F is an unknown cdf, and

1.2) Wi(F)

f w;(w) dF(u), i=1, -..,s.
We assume that the weight functions, w;, are known, nonnegative, real functions
that satisfy 0 < Wi(F) < oo, i = 1, ..., s. The problem we consider is that of
finding the nonparametric maximum likelihood estimator (NPMLE) of the cdf
F on the basis of the data y;, ---, y.. To avoid uninteresting discussions, we
assume throughout the paper that for each i, the set of all t’s for which w;(¢) is
strictly positive has positive F measure, that w;(t) = 0 for t’s outside the support
of F, and that the union of the supports of the F;s is the support of F. (The
support of a cdf F is the smallest closed set D for which [p dF = 1.) The case of
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a single sample from a weighted distribution is simple (see Section 8) and hence
we also assume throughout that s = 2. The s samples are assumed independent.

When the cdf of a sample is a weighted version of F (i.e. it is of the form
(1.1)), it can be thought of as if the sampled items were drawn from a population
whose cdf is F, but the sampling mechanism is such that the probability of any
individual to be included in the sample is proportional to w(u), where u is the
value (size, length, etc.) of that individual, and w(.-) is the weight function. This
dependency between the selection probability and the actual values of the sampled
items (usually referred to as selection bias) makes the estimation of F, in a
nonparametric setup, an interesting and nonstandard problem. The simpler
problem of estimating F on the basis of a single sample from a weighted version
of F has been treated by various authors for certain weight functions of interest,
and Patil and Rao (1977) survey this literature. Nevertheless, nothing in the
literature would answer the following simple question: Suppose three scientists,
independently of each other, are recording measurements of a certain, uncon-
trolled, natural phenomenon whose cdf is F (to be estimated). The first scientist,
because of limited experimental conditions, can observe the phenomenon only in
the range 10 to 20. Outside this range the phenomenon, even if it occurred, would
pass unnoticed. He reports his measurements to be 13, 15, 16, 18. The second
scientist has slightly better equipment than the first one. In the range 10 to 20
he can always detect the phenomenon, but outside this range there is a 50 percent
chance that an observation would pass unnoticed. He reports his measurements
to be 9, 11, 17, 18. The third scientist can observe the phenomenon throughout
its entire range, and his measurements are: 8, 11, 13, 16, 16, 17, 22. These sets of
measurements are assumed to be statistically independent, and the question is
then how to combine them in order to get a NPMLE, F, of F (i.e. an equivalent
of the empirical distribution function in regular sampling from F)? In the
following section we show that a NPMLE of F need not always exist, or may
exist but be nonunique, and we describe explicitly the types of weight functions
and data sets for which a unique NPMLE does exist. We then give a simple
method for deriving it, when it exists, and demonstrate how this works on the
above and other examples. The method is efficient from a computational stand-
point, and interesting from a mathematical standpoint, because it reduces the
problem to one of solving s — 1 simple equations with s — 1 unknowns.

The material in the paper is organized as follows: In Theorems 1 and 1’ of
Section 2 we give a necessary and sufficient condition for the existence of a
unique NPMLE. Appendix A then replaces the algebraic condition of Theorem
1’ with an easy-to-verify graphical criterion. Theorem 2 of Section 3 reduces the
problem of constructing the NPMLE (assuming it exists) to one of solving s — 1
equations with s — 1 unknowns. In Section 4 we give an algorithm for solving
these s — 1 equations. The algorithm is summarized in (4.1). In Section 5 we look
at some numerical examples (including the one described above). In Section 6
we show, under the existence and uniqueness condition, that given the weight
functions and the sample sizes, the NPMLE is a sufficient statistic for F. Thus,
anything that can be learned about F from the raw data can be learned from the
NPMLE. In order to simplify the presentation we have assumed until Section 7
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that the y,’s are univariate random variables; in Section 7 we point out that the
methodology remains applicable when the y;’s are random elements from a
general sample space (i.e., the y;’s could be random vectors, time series, etc.). In
Section 8 we discuss an extension of the method to allow for censored samples,
some more applications (including a multivariate one), and other related topics.

2. The likelihood function and the data. Let ¢ <t < ... < ¢, be the
values occurring in the pooled sample y, U - - - U y,, arranged in increasing order
(h =n; + --- + n,, because of possible ties), and let 7y be the multiplicity of
observations from y;at ¢;, j=1, ---, hand i =1, - - -, 5. The total multiplicity of
observations at ¢; is denoted r;, so that

— —_ h
rp= D1 Nij» and n; = Zj=1 ij-

Throughout the paper the subscript F, say, in various probability computations
indicates that the computation is done under the assumption that F is the true
cdf. With this notation, the probability of our data is written as

PF(data) = PF(yly Y ys) = PF{tjy Nijs ** 5 Nsjs ] = ]-a Pty h}

_m gzmmﬂwyﬂ
H1=1 ‘le=1 <__—VZ(F) I .

Clearly Pr = 0 if any ¢; is a point of continuity of F, while Pr > 0 if
dF(t) > 0,1 < j < h. Now, if F assigns a positive mass to any (Borel) set outside
{t1, - - -, ts}, then the cdf G, defined by

Jdr@)/1—8) t=t, -t
l te{tly"'vth}

where A is the total mass assigned by F to R — {t,, - - -, t,}, satisfies Pr(data) <
Pg(data). Thus, in order to find a cdf that maximizes (2.1), we can restrict our
search to the class of discrete cdf’s which have positive jumps at each of the
points t;, - - -, s, and only there. Put p; = dF(t,), - - -, pr = dF(t;) and denote the
likelihood function by

L(p) = L(p|data) = Py(y1, - - -, ¥s);

then our problem becomes:

(2.1)

dG(t) =

.. R [ s wyp; \"
(2.2) maximize L(p) = [[j= '1Hi=1 <m> }
subject to
2.3) 21 pi=1, p>0,
where we put w; = w;(t), i = , S, J = -, h,andp = (p,, -- -, ps) so that

(2.4) Widp) = Ej wyp;, i=1,---,s.
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If the solution of (2.2) is denoted p, then our estimate of F is, of course,

F(t) = thst ﬁj
and it satisfies Pg(data) < Pp(data) for all cdf’s G. We therefore call F a
nonparametric maximum likelihood estimate (NPMLE) of F. (Also see Scholz,
1980.) Nevertheless, there exist weight functions and data sets for which the

solution to the problem (2.2-2.3) is not unique or may not even exist. To see
this, consider the following two simple examples.

EXAMPLE (non-existence of the NPMLE). Let here, and in the sequel, I] ]
denote the indicator function and suppose s = 2, wy(u) = I[4 < u < 9], wo(u) =1,
y1 = (6, 8), ¥o = (1, 3); or in words: We have a sample of size two from the cdf F
truncated to [4, 9], with observed values 6 and 8, and a sample of size two from
F, with observed values 1 and 3. The likelihood to be maximized, L(p), satisfies

P3P4
L(p) = ——
(P =Pk G b0 < T6
but
La—e,Yo—¢,¢,¢) =(o—e)?U 1%e as ¢]0,
so that indeed there does not exist an MLE. We note, however, that if the sample
from F itself, y, had included an observed value from the truncation interval

[4, 9] then L(p) would have possessed a maximum. For instance, suppose
y2 = (1, 5) (instead of (1, 3)); then the likelihood to be maximized is

D3Py
(p2 + ps + pJ)?

and this function attains its maximum at p = (%4, Y, Y, Ys).

L(p) = p1p:

EXAMPLE (nonuniqueness of the NPMLE). Consider the case s = 2,
wy(u) = Ifu < 20], we(u) = Iu = 10], ¥, = (6, 8), y» = (26, 28). Then

DP1P2P3P4
(p1 + p2)*(ps + pa)®

is maximized by any p of the form p = (¢/2, «/2, (1 — a)/2, (1 — «)/2),
O<a<l.

To give a necessary and sufficient condition for the maximization problem
(2.2-2.3) to have a unique solution, let D; be the set of t’s for which w(t;) is
positive:

(25) DtE{t}a wi(tj)>09j=19 27"'7h}7 i=1,-",3.
The set of subscripts j such that ¢; € D; is denoted D;:
ﬁtE{Jawt(tj)>Oy.’=1127ah}, i=1a"',s'

Note that the D;’s are random sets because they depend on the data. Furthermore,

L(p) =
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if a point ¢ belongs to D; then necessarily dFi(t) > 0 (since dF(t;) > 0, always,
and w;(¢;) > 0 for ¢; € D;) and so D; should be thought of as the set of “active
points” associated with the cdf F;. With the above definition of D;, we can rewrite
the likelihood function L(p) as

O ) A
(2.6) L(p) = I} IHH (2h€ﬁ,~ wikph> }’

where all the terms w;, appearing in the denominators are strictly positive. In
order not to burden the paper with excessive notation, we let y; denote both the
ith sample (yi1, - -, ¥in) and the set {y, - - -, yin}. It will always be clear from
the context which definition is used.

THEOREM 1. A necessary and sufficient condition for (2.2-2.3) to have a
unique solution is that for each proper subset B of {1, ---, s}, the set of points
Dg = Uep D; contains at least one observation from Ugg ;.

PrOOF. To prove the “necessary” part let p* be the unique solution of
(2.2-2.3), and suppose, by negation, that there exists a proper subset B of
{1, - - -, s} such that all the points of U;cp D; belong to U,z ¥:. Since the reverse
inclusion always holds, we get

Dp = Uiep i, (Uiea ) N (Uign ¥:) = 9,
and since 7; counts the multiplicity of observations from y; at t; we also have
nj=0 for (i€B,j¢&Ds) andfor (i¢B,j€E Dp).

Therefore, we can factor the likelihood function as follows:

5 4
L(p) = {HieB Iieb, <‘;U/:;(I;;)> }"{Hiesa Ijes, (&U,:’(I;) }
Now observe that since Dg N (Uies v:) =9,
Wi(p) = Yjep, wyp; for i€ B
and so if we replace p* with p°, defined by

e — [en} for j € Ds
Pi= 1@ - «0)/(1 - A)p; for j& Dy

where 1 > A = Y5, pf > 0, the first factor in the likelihood above will remain
the same while the second factor will increase provided ¢ > 0 is small enough; i.e.
for all sufficiently small e > 0

wips \"™ wyp} \"
e Tt (7425 ) = tew e (57225

wyp; \" wypf "
[ies iebs <W$Je)> z [Lies jeny (W) .
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Combining these we get L(p°) = L(p*), contradicting the uniqueness and opti-
mality of p*. This proves the “necessary” part. To prove the “sufficient” part of
the theorem we use two separate arguments; one to establish the existence of a
solution and one to establish its uniqueness.

Argument I (existence). If the condition holds, and p* is any point of supre-
mum for the problem (2.2-2.3), then necessarily p¥ >0, j=1, ---, h.

Argument II (uniqueness). If the solution of (2.2-2.3) is nonunique, then the
condition is not satisfied.

To see why Argument I proves existence, note that it implies that for suffi-
ciently small ¢ > 0, the supremum of L(p) in the region Y p; = 1, p; > 0,
j=1, .-+, h,is the same as in the region ¥ pj=1,p;'=¢,j=1, -- -, h, and since
the latter region is compact and L( p) is continuous the supremum is a maximum.
The proof of Argument II is somewhat complicated and is deferred to Appendix
B. We continue here with the proof of Argument I: Suppose, by negation, that
the condition holds but some of the p} are zero, and let B be the subset of
{1, .. -, s} that registers all the samples which contain observations which were
assigned zero mass by p*. That is,

o B =UL, {all i’s, 1 =i < s, for which ¢ € y; and p} = 0}
@7 =Up;=0{i;tjEy,~,1si53}.

Since we assumed that some of the p}’s are zero, the set B is nonempty. We now
state and prove the following:

PROPOSITION. If pf = 0 and t; € y;, then P,(D;) = 0; consequently
(2.8) Pp(Uiep Dy) = 0.

PROOF OF THE PROPOSITION. If ; € y; then n; > 0 and so the term

Di/ Zheb, Wik D

appears in the product of L(p) in (2.6). Since p* is a point of supremum of L(p)
and since p} = 0, necessarily Yxep, wiapi = 0. But since wy, > 0 for k € D; we get
that Ysep, P = P,(D;) = 0, which proves the proposition.

Continuing with the proof of the theorem, suppose that B is a proper subset

of {1, - - -, s}. Then, since we assume that the condition holds, U,z D; also includes
observations from U,gp y;. In particular, there exist i’ and j’ such that

(2.9a) ty € Uies Dy,

(2.9b) ti € v,

(2.9¢) i" € B.
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From (2.9a) and (2.8) we have

pF=0.

But this, (2.9b), and the definition of B in (2.7), imply that i’ € B which is in
contradiction with (2.9¢c). Thus B could not be a proper subset. Suppose then
that B= {1, ..., s}. It then follows from (2.8) that

25!=1 p;k = 07

and this is, of course, also a contradiction because p* is in the closure of the
constraint region, and so

p*E€{p;Tmp=1,pz0j=1,---,hl
This finishes the proof of the theorem (except Argument II, above, which is
proved in Appendix B). O
For any subset B of {1, - - -, s}, let
Dg=UiepD; and D= U D,
Since the number of observations that fell in D3 is
Yieby 2i=1 Mj = Xjeby i = 2ne1 r;l[wy > 0 for some i € B,

and the number of sample observations that belong to Uicg ¥; is Sics n:, a more

algebraic form of Theorem 1 is the following:

THEOREM 1’. A necessary and sufficient condition for (2.2-2.3) to have a
unique solution is that for each proper subset B of {1, - - -, s},

(2.10) Yiehy Di=1 M5 > Tien Y1 My
or, equivalently,
(2.10)’ Siebg 1 = Yoy ril{wy > 0 for some i € B] > Yien ni.

The reader is referred to Appendix A for an easy-to-verify, graphical criterion
which is equivalent to condition (2.10).
The following corollary will be needed in the next section.

COROLLARY. If (2.10), or equivalently the condition described in Theorem 1,
holds for every proper subset B of {1, - - -, s}, then for each i,i=1, ---, s,

(2.11) (1/n) Xher ridlw; > 0] > 1,
and
(212)  (A/n) T rillwy> 0, wyy =0foralll <k <s k#i] <1
ProoF. (2.11) follows from (2.10) by choosing B = {i}, and (2.12) follows

from the fact that if equality holds in (2.12) then the sample y; is entirely
contained in Nyx; D = (Uge Di)°. Therefore it is impossible for U« Dy, to include



EDF’s IN SELECTION BIAS MODELS 185

an observation from y;, which is in contradiction with the assumption that the
condition is satisfied. Since the left side of (2.12) could not possibly exceed 1, the
result follows.

For the remainder of this paper we assume that the data and the weight
functions are such that (2.10) holds for every proper subset B of {1, - - ., s}, so that
a unique NPMLE exists. We note, for instance, that if w;(¢) > 0 for all ¢ in the

support of F, i =1, - - -, s, as could be the case in some interesting applications,
then the above assumption puts no restrictions on the data because then
D;=Uic; Dy, i =1, ..+, 5. Also in large samples the assumption above will

typically be satisfied so long as the w;’s satisfy a certain overlapping requirement.
It can be shown from the Lemma of Section 8(iv) that this requirement is that
there does not exist a proper subset B of {1, - - -, s} such that

(Uies Support of ) N (Uies Support of F) = @.

Thus if, for instance, w;(¢) > 0 for all ¢’s in the support of F, then as the sample
sizes go to infinity, with probability one a unique NPMLE exists.

Finally we remark that if indeed we are in a situation where the NPMLE does
not exist or it exists but it is not unique then, as demonstrated by the two
examples preceding Theorem 1, we should think hard about what are the
quantities that we are legitimately allowed to estimate with some degree of
confidence. In this connection the reader is invited to interpret the estimates
p=(Y—¢ Yo —¢ ¢ ¢ and p = (a/2, a/2, (1 — @)/2, (1 — @)/2) in these
examples.

3. The NPMLE. First we note that L(p) is homogeneous of degree zero
and so, in order to simplify the mathematics, it is advantageous to replace the
maximization problem (2.2-2.3) with a slightly modified problem, in which one
of the samples, say the sth sample, plays a pivotal role. For ¢ = (g1, - - -, gn), let

ni
(3.1) L*q) = [T} ‘{(wsjqj')"‘f = <E£,=—lf”h;> J},
and consider the problem:

3.2) maximize L*(q)

subject to

(3.3) C Shwg=1 >0, j=1 - h

LEMMA 1. Ifp = (py, - -, D) is a solution of (2.2-2.3) then § = p/Th1 weDr
is a solution of (3.2-3.3). Conversely, if ¢ = (¢, - - -, Gn) is a solution of (3.2-3.3)
then p = §/¥%; §; is a solution of (2.2-2.3).

The lemma is easily proved using the fact that L(p) is homogeneous of degree
zero, and the fact that in the region (3.3) L and L* coincide. We omit the details.

We now proceed to solve (3.2-3.3) which, because of the lemma above, is
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equivalent to solving (2.2-2.3). For the remainder of this paper, whenever the
indices i and j appear without a specified range it is understood that they run from
1t0os— 1and from 1 to h, respectively.

Recall that
(34) rp= 2$=1 Nijy J = 1, Ty h’

and define for A, >0, ..+, A1 >0

-1 Wi .
. ) , vy A1) = Aj . — —= 1, =.]_’...’ — 1.
(3 5) H(Al A 1) A 2] (nswsj + Ei=11 nkwijkl) 2 S

So that Hy, ---, H,_, are s — 1 functions from the positive orthant of R*"! into
the positive reals.

THEOREM 2. Assume that (2.10) holds. Then the unique solution of (3.2-3.3)
Is
T

(3.6) g = iy S mwg VL j=1,---, h,
where (Vl, cee, V. 1) is the unique solution of the simultaneous equations

(3.7) HiA, - A =1, i=1,---,5—1,

in the range A, > 0, ---, A,—; > 0. The unique solution p = (py, -+, Dn), Of
(2.2-2.3) 1s then derived from G = (g1, - - -, Gr) by setting

(3.8) Pi=Ng, j=1,---,h

where

(3.9) A=1/3 g

Furthermore, we have

(3.10a) A= 3k wyp = WD),

(3.10b) Wip) = Y wspi=AV;, i=1,---,s—1.

Proor. In Appendix B we show that (3.2-3.3) is equivalent to
(3.11) minimize([]; g7 )(IL; u)

subject to
2 wyg < 1,
ui' Y wigis1, i=1,...,5—1,

(3.12) .
u,>0, 1=1,..-.,s—1,

g>0, j=1,---, h

(Note that (3.11-3.12) is a standard form of a Geometric Programming problem-—
e.g. Zangwill, 1969—which may suggest an alternative solution to the one we
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describe here, in situations where software for such problems is available.) Upon
substituting g; = e~% and u; = €% (3.11-3.12) becomes

(3.13) minimize exp{Y; rja; + X n:Bi}
subject to
Y wgeT v < 1,

3.14
(319 Y wieT ™ =1, i=1,...,5-1,

which is a problem of minimizing a convex function over a convex region. Now,
because of the convexity, the Kuhn-Tucker (KT) conditions are necessary and
sufficient for optimality in (3.13-3.14) (e.g. Zangwill, 1969, Theorem 2.19(e)) and
by mapping these conditions back to the original variables we get that a necessary
and sufficient condition for § to solve (3.2-3.3) is that -

(8.15)  q;(0l/ag) |5 = r; — G(3s nawy Wil(Q) + nawg) =0, j=1, -, h.
Here
lq) = log L*(q) — nd(X; wyg; — 1)

is the Lagrangian of log L*(q), and n, is the Lagrange multiplier, so that (3.15)
are the KT conditions for (3.2-3.3). In particular, since (2.10) implies that the
original problem has a unique solution, it follows that (3.15) has a unique solution.
Continuing with the proof, we note (see the argument in (3.16-3. 17) below)
that if (Vl, . s—l) solves (3.7) and ¢ is defined by (3.6), then ¢; > 0 and
Y wyd; = V,, and so § is a solution of (3.15); i.e., it is a point of maximum. This,
however, does not establish yet that (3.7) has a unique solution. To prove this
we first note that if § is the solution of (3.15) then A; = ¥; w;g;, i = 1, ---,
s — 1, is a solution of (3.7), and so it has at least one solution. To see that it
has exactly one solution assume, by negation, that A* = (A}, ..., A¥,) and
At = (Af, ... AL)) are two different solutions of (3.7); then, from (3.7) and the
definition of the H;’s,

q;k = rj/(nswsj + Zi niwijA:'k_l)y ] = 13 ] h7

and

I
=
o

¢! = r/(nwg + T nwzAF?), j=

satisfy A} = ¥; wyq} and Af = 3; wyq!, and since A* # A, we have ¢* # ¢*.
This, however, is a contradlctlon to the fact that (3.15) has a unique solution,
because both g* and g* are solutions of (3.15), and so (3.6-3.7) is proved. The
proof of (3.8) follows from L.emma 1, and the proof of (3.10) follows from the
substitution (3.8-3.9) and the fact that if ( Vl, ceey V._,) is a solution of (3.7) and
G is defined by (3.6), then by multiplying (3.6) by w;; and summing it over j we
get, using (3.7),

(3.16) V,-=Z,-wi,~é,~, i=1, ---,S'—l,
and by multiplying (3.6) by the denominator of its right side, and summing it



188 Y. VARDI

over j we get, using (3.16),

ne Y wyd; + Yot ni= T .
Since ¥, ri=n; + - - - + n,, indeed
(3.17) Y wyd; = 1.

(3.10a) now follows from (3.17), and (3.10b) follows from (3.16) and (3.17). This
ends the proof of Theorem 2.0

To solve (3.7) one can use any method designed to solve a system of nonlinear
equations, or, alternatively, any optimization method that would find the (unique)
minimum of ¥; (Hi(A:, ---, A1) — 1)* in the range 4, > 0, ---, 4,; > 0.
Nevertheless, since the theorem suggests that all the work in finding p lies in
solving these equations, it would be more efficient, computationally, to use a
method that is tailored to the nice mathematical properties of the H;’s, rather
than a general purpose nonlinear equations solver. To derive such a method we
first note that for each i, H; is monotone in each of its s — 1 variables. It is
decreasing in A; for fixed A, (k # i) and increasing in A, (k # i) when we hold
all the variables but the kth fixed. Furthermore, from (2.11) and (2.12) we have

Hi(Aly Sty Ai—l, 07 Ai+19 ttty Als—l)

= (l/n,) E;’L=1 rjI[wij >0]>1,
(3.18)
Hi(Ab ) Ai—l’ 0, Ai+ly ) As—l)

= (1/n) Sy rdw; >0, wy =0foralll sk s k#i]<1

and so, because of the monotonicity of H;, for fixed but arbitrary a; (k # i), the
equation

(3.19) Hiay, ---, @1, Ai; Gy, -+, Gy) = 1

has a unique solution in A;, say a/.
Furthermore, in the special case where wg > 0 for j =1, - - -, h then, regardless
of the values of ay, - - -, @;—1, Giv1, - -+, Qs—1, Wwe must have

(3.20) 0 < af < AP™ < 4; = (I; rymaxiwn/ws1, - -+, Win/Wen}

where A%““f is the solution of the equation

- LW

(321) Ht(ooy sy 00, Al, 0, .+ vy OO) - 2] nswsin + niwij 1

The relations (3.20) and (3.21) follow from the monotonicity of H; and are easily
understood from Figure 1. Note that the rightmost side of (3.20) is independent
of the values of a, k # i, and so the same interval, [0, 4;], can be used in all the
iterations (4.1), below. If, however, w,; = 0 for some j’s, then the interval within
which we search for the solution a/ should be redetermined in each iteration.
This is so because when wg = 0 for some j’s, a/ may not be uniformly bounded
in a;, k # i. In this connection we call the reader’s attention to the asymptotes
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Fi16. 1. A pictorial proof of (3.20).
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F1G. 2. An illustration of the iterative scheme (4.1) for s = 3. (Note that if
ad > V, then the convergence would have been from above; that is af ! V. and
at | V1. Also note that we assumed here that w; >0, j =1, -- -, h, so that the
graph of H; =1 has an asymptote at A™, i =1, 2.)

of the graphs H; = 1 at AP, i = 1, 2, in Figure 2. Simple algebra would show
that these asymptotes may not exist when w,; = 0 for some j’s.
The above analysis suggests the following:

4. Tterative method for solving (3.7). Choose (arbitrarily) positive real
numbers ad, - - -, a%_; and solve

Hi(A,, a(Z)a Crty 02—1) =1
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for A,. Denote the solution by a] and proceed to solve
HZ(a%, A2’ ag, ] ag—l) =1
for A,. Denote the solution by a} and continue in the same manner. In general,

at the (a(s — 1) + B)th step, a«=0,1,..--andB=1,...,5s—1, solve

(41) Hﬂ(aclﬂ-l’ ) agi.%’ AB’ a§+1, ) a?—l) =1
for Ag, and denote the solution by ag*'.
This sequence of iterations is stopped when a**! = (a$*, - - ., a2*}) is sufficiently

close to a®, so that the desired accuracy has been achieved. We note that, because
of the monotonicity of Hg, in each_iteration gquation (4.1) can be solved numer-
ically by bisecting an interval (0, Ag) where A is chosen big enough to satisfy

(42) Hﬂ(aclﬁ.l; tt %y agi.%y A_B’ a§+ly Tty a:—l) < ]-

(Recall that if w; >0, j =1, ---, h, then A; can be defined as in (3.20).) Thus,
from a computational standpoint the algorithm is very simple to implement. A
FORTRAN program for finding the NPMLE as described in Theorem 2, based
on the iterative scheme (4.1), is available from the author.

In discussing the structure of the algorithm, Mallows (1985) shows that (4.1)
is an alternating-maximization scheme and so the likelihood function increases
in each iteration, This procedure is also an example of a Gauss-Seidel method
(e.g. Ortega and Rheinboldt, 1970), and for the case s = 3 it is depicted in
Figure 2.

Note that the monotonicity of the H/’s and the fact that (3.7) has a unique
solution, guarantee that the graphs of H; = 1, i = 1, 2, are monotone increasing
and intersect only once as depicted in the figure.

5. Numerical examples.

ExXaMPLE 1 (s = 3, w(u) = 1). This is the example of the introduction for
which we have w;(u) = I[10 = u =< 20], we(u) = (1 + I[10 < u =< 20])/2, and
ws(u) = 1. The data and the resulting NPMLE are summarized in Table 1.

The algorithm (4.1) was initialized at a§ = 15.0 and converged through
the following eight pairs of iterations: (1.10092, 15.00000) (1.10092, .98193)
(.72244, .98193) (.72244, .85865) (.68620, .85865) (.68620, .84281) (.69108, .84281)
(.68108, .84050) (.68033, .84050) (.68033, .84016) (.68021, .84016) (.68021, .84011)
(.68020, .84011) (.68020, .84010) (.68019, .84010) (.68019, .84010) = (V;, V2).

ExXAMPLE 2 (s = 4, wlu) =1). In this example, we assume that in addition
to the three scientists of Example 1, there is another scientist whose observations
are 15, 19, 22, 22 and 25, and we assume that his measurements are size-biased,
that is w(u) = u, u = 0. To save computations, it would be better to have w,(u)
= 1, and so we labeled this scientist third, while the scientist who is labeled third
in Example 1 is now labeled fourth; thus we have w, and w. as in Example 1,
wa(u) = u, u = 0, and wy(u) = 1. The algorithm (4.1) required 14 triple iterations
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TABLE 1
Summary of data and the corresponding NPMLE. Entries in bold face are needed as input
to the algorithm (4.1)
tj My Noj N3 ) ¥ Wy Way Waj NPMLE
8.0 0 0 1 1 0 14 1 .10660
9.0 0 1 0 1 0 14 1 .10660
11.0 0 1 1 2 1 1 1 11337
13.0 1 0 1 2 1 1 1 11337
15.0 1 0 0 1 1 1 1 .05668
16.0 1 0 2 3 1 1 1 17005
17.0 0 1 1 2 1 1 1 11337
18.0 1 1 0 2 1 1 1 11337
22.0 0 0 1 1 0 4 1 .10660
nm=4 ng=4 ng="7
TABLE 2
NPMLE for Example 2 TABLE 3
R NPMLE for Example 3
i b(t) -
8.0 08323 : b )
9.0 .08111 9.0 .18654
11.0 09015 11.0 06006
13.0 .08768 13.0 05798
15.0 .08533 15.0 11207
16.0 12631 16.0 05511
17.0 08311 17.0 05422
18.0 .08204 18.0 10671
19.0 .04050 19.0 05251
22.0 .18289 22.0 21624
25.0 .05766 25.0 .09856

to converge to (V1, \72, Vi) = (59511, .79756, 15.95222) from the initial point
(a3, a3) = (20.0, 500.0) and the resulting NPMLE is given in Table 2.

EXAMPLE 3 (s = 3, w,(u) # 1). In this example we used the algorithm (4.1)
with the data of the first, second and third scientists of Example 2 so0 that none
of the weight functions is identically 1. The initial choice was ad = 13 and after
8 pairs of iterations it converged to (Vl, V2) = (a}, ad) = (.02983, .04482). This
gave A = 16.71753, so that (Wl, Wz, Ws) = Mad, a8, 1) = (.49866, .74933,
16.71753) and the NPMLE is given in Table 3.

6. Sufficiency of the NPMLE. Aside from being an estimate of F, the
main attraction of the empirical distribution function (EDF) as a data summary
in random sampling from a cdf F, is that the pair (sample size, EDF) is a
sufficient statistic. That is, all that can be learned about F from the raw data
can be learned from the statistic (sample size, EDF). The following theorem
shows that this property carries over to the NPMLE discussed in this paper.
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THEOREM 3. Suppose condition (2.10) is satisfied and let (t, p) be the NPMLE
described in Theorem 2. Then, given that we know the weight function for each of
the s samples, (n,, - - -, ns, (¢, P)) is a sufficient statistic for F.

In other words, the theorem says that under condition (2.10) when we know
the sampling rule (this is a different way of saying that we know the weight
function), and size, for each of the s samples, the NPMLE (¢, p) is a sufficient
statistic for F.

PROOF. Since (t’ "7) = ((tl, tt tn)v ("h]’ i = 1’ BRI ] = 17 0y h))
is a sufficient statistic for F, and since (n;, ---, n,, (t, p)) is a function
of (t, n), the reader can easily check that the conditional probability
Pelys, -+, ¥l (ma, - -+, ns, (¢, P)), condition (2.10) holds] is indepenent of F if
for the random realization of the observed points, t' = (¢{, ---, t/’), and the
random multiplicities matrix, ' = {n/;i=1,-..,s,j=1, - - -, '}, the conditional
probability

(6.1) Pelt’, " | (ny, - -+, ns, (¢, P)), condition (2.10) holds]

is independent of F. Clearly, if ¢’ and »’ are such that condition (2.10) based on
¢’ and 9’ is not satisfied, or if ¢’ # t or 3; 5/ # n, for some 1 < i < s, then (6.1)
is zero, regardless of F. In the remaining case,

(62) t' = ty E;‘=1 771; = n;, i= ]-y ey S,
and 7’ is such that the NPMLE based on (¢, ') is (¢, p). For this case we get,
after some simple algebra,
(ITi=1 IT%=1 wi(t)™9) 14 dF(t)"
Ywras in 62 ([T = wit)™) %, dF ()5’

(6.3) (6.1) =

where,

! = VS ’ 7" — N8 ”
Ty = =1 My, Tj = i=1 My

Now, we can easily see from Theorem 2 that all the »’s that share the same
NPMLE must have the same marginals r;’s and so we get from (6.3) that

Mi=s IThr wilty)"s
. Twras in 62 L1 [Tl wilt)™’
which is independent of F. This completes the proof. O

(6.4) - 6.1) =

The following simple example captures the above ideas without obscuring
them with the mathematical details of a formal proof.

EXAMPLE. Suppose, as in the first example in Section 2, that s = 2, n; = n,
=2, wi(u) = I[4 < u = 9], and wy(u) = 1. That is, we have a random sample of
size 2 from the cdf F truncated to [4, 9], and a random sample of size 2 from F.
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Suppose further that the NPMLE exists and is given by p(1) = %, p(5) = p(6) =
P(8) = ¥ (cf. end of the first example in Section 2). Then, the only possible data
sets that could have resulted in the above NPMLE are (¢, 3’) or (¢, n”) or (¢, )
where t = (1, 5, 6, 8) and

(6.5) ro (0011, _(0101) o, (0110
: "=\1100/° " T\1010/)" " 1001/
Now, the matrix w;(¢;) is given by

_fo111
(6.6) {w,-(t;)}—(l 11 1),

and a substitution in (6.3) immediately verifies that the conditional probability
for each of the possible data sets of (6.5) is V4, independently of F.

REMARK. The above example shows that the sufficient statistic
(ny, ---, ng, (t, D)) is a function of the sufficient statistic (¢, n) but not
conversely. The reader can compare the dimensions of the two sufficient sta-
tistics, 2h + s vs. h(s + 1), to see that when s = 2 the use of (n,, - - -, n,, (¢, p))
could result in a substantial reduction in dimension, by comparison to the use of

(t, n).

7. General sample spaces. Since up until now we have never used the
assumption that F'is a univariate distribution in any important way (the ordering
ty < --- < t; has been assumed only for convenience of notation), the reader
could easily verify that the methodology herein, and in particular Theorems 1,
1/, 2, 3, the graphical criterion of Appendix A, the algorithm (4.1) all remain
correct and applicable when the y;’s, i =1, ---, s, j =1, ---, n;, are random
elements in a general sample space, say Q. In particular, if @ = R™, the Euclidean
m-space, then y; = (y{’, -+, y™), and the problem becomes: Given s random
samples, with the ith sample, y,1, - - -, ¥in, (n; = 1), being from the cdf

1) #m)
MWWMFWWI'KfWWwﬂMMWWWW

find a NPMLE of the unknown, m dimensional, cdf F. Here, w;(u®, .- -, u‘™)
are known, nonnegative, real, weight functions (which are strictly positive on a
set of positive F measure) satisfying 0 < W;(F) < oc.

The solution is, of course, the same as described in earlier sections, with
ty, -+, tabeing t; = (¢, - -+, t1™), -, ta= (@D, .-+, t) and py, - - -, px being,
as usual, p(t;), - - -, p(ts). The reader may find it instructive to go back to Table
1 of Section 5 and convince himself that the fact that the ¢/’s are real numbers is
irrelevant to the derivation of p(t;), and that the above statement is correct.

As will become apparent from the multivariate example of Section 8, the
majority of applications of our methodology is expected to arise in multivariate
situations.
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8. More on applications and some additional remarks.

(i) Other methods. In order to find the NPMLE of F, our analysis suggests
other possible approaches:

(a) Geometric programming techniques, which would usually involve formu-
lating and solving the dual problem (Duffin, Peterson and Zener, 1967,
Chapter III). See the remark following (3.12) in this connection.

(b) Try the following iterative scheme (suggested by (3.15)): If p°¢ =
(p%Y, -- -, p5'9) is our current estimate of p then define
Qj = rj/(nswsj + Zi niwijWi_l(pOId))’ ] = 1’ ) h,
and

p;xew = Qj/zg=1 Qk, ] = 1’ " :, h.

() Try the following iterative scheme (suggested by (3.7)). Let A°¢ =
(A9, .., A2) be the current estimate of (Vi(p), - --, Vi_1(p)), then
define

TiWy
nawy + st nawg {439’

(intermediate substitutions of A}* for A are also possible).

APV =3 i=1,...,s—1

I have not tried to prove any convergence properties for (b) and (c) above
because (4.1) seems simple, numerically efficient, and has the monotone conver-
gence property demonstrated by C. L. Mallows (1985). As a remark, I would add
that from a purely mathematical standpoint it is quite interesting to note that
the h equations with A unknowns (3.15) plus the additional equation ¥, p; = 1
can be replaced with as few as s — 1 equations with s — 1 unknowns (3.7), and
this is regardless of how large A is. Indeed the iterative scheme (4.1) is designed
to take advantage of this fact, because in many applications one should expect
to have h > s,

(i) NPMLE for s = 1. In this case, it is easily verified that the NPMLE is
Dj « m;/(mwy;), j =1, - - -, h. Furthermore, denoting n = n,, w = w,, W= W (F),
and assuming that F has a bounded density £, that w is positive on the support
of F, and that W and

W_, = j: 3 w(y)"f(y) dy

are finite, we get the following results using standard limit theorems:
W(EF) = (07" iy w(y)™) ' — W(F), wp.l (F),
and
Vn((W/W) — 1) —; Normal(0, W_, W — 1).
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When the observations are univariate we also have,
V(F - F) —, Z,
where Z is a pinned Gaussian process with mean zero and covariance function

c(s, t)

_ [foe w) ) dy . ( f;mwmw@»
= W, Wl W (1 — F(t)) + F(s){ F(t) — W ,

s=<1{.

The method of proof is similar to that of Theorem 3.2 in Vardi (1982).

(iii) Incorporating censored samples. (For simplicity, we assume here that
the observations are univariate.) Suppose that in addition to the original infor-
mation &, mj, -+, 15, J = 1, -+, h, we are also given nonnegative integers,
N1js +*+» N4, Where n} is the multiplicity of observations from F; for which it is
only known that their values are at least t;, j = 1, ---, h. (This is often called
“arbitrary censoring” model.) The probability of the data is then

wilt;) dF (t,-)>"""<f 5 wiw) dF(u))”ﬂ

(8.1) Pr(data) = TJ%, { i=1 (

Wi(F) Wi(F)
Unlike the situation in (2.1) it is not clear that the maximum of (8.1) can be
attained with a cdf F that assigns positive mass only to the set ti, ---, &.

Nevertheless for any set of points 7 = {7y, - -, 75} which includes {t;, - - -, t},
the cdf F¥ (depends on 7) which maximizes (8.1), over all possible cdf’s that assign
positive mass only to 7, can be obtained using (4.1) and the EM algorithm (e.g.
Dempster, Laird and Rubin, 1977) as follows: start with an initial estimate p°¢
satisfying 3%, p?4;) = 1,p(r;) >0, j =1, - - -, h. Proceed to compute (E-step)
F(r;) = the expected conditional multiplicities of observations from the “complete
data” (in the language of the EM paper) at the point 7;, given our current estimate
p°(s;), j=1, ---, h, and the data. Then proceed to the M-step, in which you use
(4.1) to solve

f'(?’j)wi(fj) —
(ns + ndwy(r) + 252t (me + nh)wi(r) AR
(nf=3;nk, k=1, ---,s) for Ay, - -, A,s. Denote the solution by V™ and set

Ai_IZJ}Ll 1, i=1,--',3‘—‘1,

H)) j=1, ... k.
(ns + ndw(r;) + it (e + ni)wi(r) (V)™ ’ o

The scheme is then iterated (until we get numerical convergence) by substituting
p™ for p° at the end of each iteration and returning to the E-step.

() o

(iv) On the asymptotics. (For simplicity, we assume here that the observa-
tions are univariate.) The merit of an estimator is usually judged by its asymptotic
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behavior. In Vardi (1982) I prove that for the case s = 2, wi(u) = u (length
biasing) and w.(u) = 1, the asymptotic behavior of the NPMLE is similar to that
of the empirical distribution function of a random sample from a cdf. The same
technique can be used to derive the asymptotic behavior of the NPLME when
s = 2 and wy(-) is any arbitrary weight function. In particular, under the
assumptions that F is absolutely continuous with respect to the Lebesgue meas-
ure, and N = n; + n, approaches infinity such that N “In, rethains fixed and
positive, we get that (W, (F) — Wy(F)) converges almost surely (F) to zero,
VN(W,(F) — W,(F)) converges weakly to a normal distribution with mean zero
and variance o2, and VN(F — F) converges in distribution to a pinned Gaussian
process with mean zero and covariance c(s, t). The derivation of ¢ and c(s, t) is
similar to the derivation of the variance and covariance terms in (3.3) and (3.6)
of Vardi (1982).

The asymptotics for the case s = 2, and arbifrary weight functions, needs
further study. One possible way to proceed is to adapt the method in Vardi (1982)
to this situation as follows: Suppose F has a density f, the w;’s are such that the
union of the supports of the F;s is the support of F (otherwise the problem
should be reformulated as estimating F restricted to the union of the supports of
the F;s) and the n/s approach o, such that A\; = n;/(n, + --- + n,) > 0 remains
fixed, i =1, - - -, s. Using the strong law of large numbers (SLLN), the limiting
form of (3.7) becomes

(8'2) H;k(Al’ "'yAs—1)=1’ l=1, '--,S—'l,

where

" a7 Zhen Metwn(y) WalF) )

(8'3) Hl (Aly ’ As-—l) = Al Iw wt(y) z=1 Akwk(y)AI:I f(y) dy,

here A,=1andi=1, ---, s — 1. The almost sure convergence of Fto F, and
other standard asymptotic properties of ¥ can then be deduced after proving the
following hypothesis: (8.2) has a unique solution whenever the w;’s are such that
in the limit, as the n;’s — o, condition (2.10) holds with probability one. The
reason why this hypothesis is relevant to the derivation of the asymptotic
behavior of F is that,

(8'4) Ai = W(F)/WS(F)’ l= 17 ey 8 17

is always a solution of (8.2), and so if the w/’s are such that (8.2) has a unique
solution, the solution of (3.7) approaches (8.4) w.p.1 (F). This, plus a similar
argument for the limiting version of (3.17), lead to the almost sure convergence
of W,-(ﬁ‘) to Wi(F),i=1, ..., s, and subsequently to the almost sure convergence
of F(t) to F(¢t), and other convergence results of the type given in Vardi (1982).

The above hypothesis can be further simplified. Define a graph G* with s
vértices, and an edge from vertex i to vertex i’, i «» i’, if and only if,

®5) | _w(wil)f(y) dy > 0.
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Since

2]

ni' Y wyne; —> We(F)™! j: ) wi(y)w:(y)f(y) dy, wpl (F),

an immediate application of the SLLN to the criterion of Appendix A gives the
following.

LEMMA. Under the assumption that the n;/'s — o and the \;'s remain constant,
condition (2.10) is satisfied with probability one (F) if, and only if, the graph G* is
connected (i.e. any two vertices are connected by a path).

This reduces the hypothesis above to the following, equivalent hypothesis:
(8.2) has a unique solution whenever the w;'s are such that G* is connected.

We leave the problem of proving this hypothesis open. Once it is proved,
however, the asymptotic properties of F could be derived along lines similar to
Vardi (1982).

(v) More on applications. It is often the case that, due to technological
advances, new measuring equipment have larger measuring range and so data
collected using new equipment would be truncated into a bigger interval than
data collected using old equipment. This gives rise to examples of the type
described in the introduction, for which the conditions of Theorem 1 would
typically hold, so that a NPMLE would exist. As an example of the above,
Professor M. Alvo (University of Ottawa, personal communication) pointed out
to me that in water quality studies, past experiments recorded the amount of
phosphorus in water down to a level of .05 milligram/liter while more recent
experiments measure it down to .03 milligram/liter. Also in experiments that
involve human hearing (and other aspects of human perception) it is often
natural to associate a weight function with each person that participates in the
experiment, and so the data collected from such an experiment would be of the
type we discussed.

In estimating heights on the basis of historical samples of military, naval and
merchant marine, Wachter and Trussel (1982) noted that the samples suffer
from undercounts of short people, and since “independence between selection
probability and height or any other specifiable relationship between them cannot
be assumed,” the authors developed two original estimation methods, relying in
part on the well accepted Gaussian model for heights, for ages after terminal
heights are attained. It seems to me that by trying various plausible weight
functions w(-), which represent the selection probability mechanism, one can
apply the methodology I present in this paper to the heights data in a model free
framework. This might be advantageous when incorporating data of adolescent
heights for whom the Gaussian assumption may be violated (Section 5, Wachter
and Trussell), and it also allows experimentation with different selection mech-
anisms for the various samples. This would be done; of course, by choosing the
weight function w(-) of the military sample (say) to be different than the weight
function of the merchant marine sample (say).
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The following multivariate example, suggested to me by W. S. DeSarbo,
demonstrates a class of applications frequently occurring in marketing research.
Suppose we are interested in estimating the distribution of Y, the annual
amount of money an individual spends on a particular product, say, and let Y@
denote a “proxy” variable, such as the individual’s annual income. Then, it is
often the case that the data available to us are made up of several samples, and
in each sample a different selection mechanism, which depends on the values of
the proxy variables, is used. To be specific, suppose we have three samples
(s = 3), and that in the first sample the selection rule was independent of the
values of the attribute of interest, Y, or the values of the proxy variable Y@,
in the second sample the selection rule was such that individuals with annual
income, Y®, of less than $10,000 were excluded from the sampled population;
and in the third sample individuals with annual income, Y?, of more than
$30,000 were excluded from the sampled population. The problem is to find the
NPMLE of the cdf of Y. The way to solve this problem is the following: First,
we identify the weight function associated with each sample; this gives
wiw®, u® = 1, wu®, u® = Iu® = 10,000], and ws@®, u®) =
I[u® = 30,000]. Second, we check (using the graphical criterion of Appendix A)
whether there exists a unique NPMLE, F 12w, u?), for the joint distribution
of (Y®, Y®), and suppose the answer is positive. We then proceed to derive F ,
using Theorem 2 and the algorithm (4.1). The NPMLE of the cdf of Y is then
given by Fi(u®) = F 5(u®, «).

The case of unknown weight functions. In many applications (e.g. Williams,
1978, Wachter and Trussel, 1982, and more) the exact sampling rules are
unknown, which means that the weight functions are not specified in advance.
In such situations, there are three main routes to proceed: (a) We can estimate
the weight functions by conducting a separate study. (b) We can assume a
parametric form for the weight functions and estimate the parameters from our
data. (c) We can postulate a reasonable model for the true, unknown, sampling
mechanism which incorporates a prior distribution on the weight functions. Of
course, combinations of the above such as assuming a parametric form for the
weight functions and then assuming a prior distribution for the parameters are
also possible. Whichever of these approaches we take, our technique is needed as
part of the estimation procedure. If (a) is chosen and & = (&4, - - -, W,) are the
estimated weight functions, we’ll base our estimate of F on the estimated weight
function, that is F' = F;. Of course, this estimate has greater variance than if the
weight functions were known but that should only be expected. If (b) is chosen,
so that the weight functions are w;(0, t) for some known form of w; but unknown
parameter 6, an iterative technique which incorporates the algorithm (4.1) can
then be used to derive the joint maximum likelihood estimate, @, F()), of § and F.
It’s possible, however, that further smoothness assumptions will have to be
imposed on F in order to make the combined estimation problem identifiable.
(In connection with this parametric approach, note that the exponential family
of distributions has the general form of weighted distributions.) If (c) is chosen
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and G(w) = G(w,, ---, w,) is the prior distribution over the weight functions,
then

(8:6) Fe) = f Fo(t) dG(w),

where F, is the NPMLE for known weight functions w = (ws, - --, w,), is the
Bayes EDF based on our data. Note that since the F,(t)’s put zero mass outside
of t,, ---, ty irrespective of the weight functions w = (wy, ---, w,), the Bayes
EDF (8.6) is easily obtained by computing the probability mass that F, assigns
to ti, - - -, t for each w and then averaging over all w’s with the weights dG(w).

Another important class of selection bias problems, for which our methodology
can be adapted, arise in estimating the behavioral relationships in regression
models based on several, nonrandomly selected, samples. See J. J. Heckman
(1979) and the references thereof for a treatment of such a problem, in a
parametric framework, under the normal distribution assumption.

More applications related to our methodology can be found, among other
places, in Cox (1969), Tuma (1982), Turnbull (1976), Vardi (1982), Patil and Rao
(1977), and in the interesting examples of selection bias described in Williams
(1978).
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APPENDIX A
A Graphical Criterion for Checking Whether a Unique NPMLE Exists

The following criterion, suggested by F. K. Hwang, for testing the existence
and uniqueness of a NPMLE replaces checking condition (2.10) for each subset
Bof {1, - - -, s} with checking whether a certain directed graph with s vertices is
strongly connected (for which efficient algorithms exist). Thus, for large values
of s this method is numerically efficient. For small values of s this method has
the advantage that the strong connectivity of the graph could be checked by
visually inspecting the graph.

Define a directed graph G with s vertices and a directed edge from vertex i to
vertex i’, i — i, if and only if, there exist a j such that w; > 0 and »n;; > 0. (Note
that this condition is equivalent to ¥; w;n; > 0.) G is called strongly connected
if for any two vertices x and x’ there exists a directed path from x to x’, and a
directed path from x’ to x.

THEOREM. Condition (2.10) holds for each proper subset B of {1, ---, s} if,
and only'if, G is strongly connected.
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PrROOF. Recall that for each subset B of {1, ---, s}, Dp is a subset of
{t1, -+ -, tp} which is defined by Dg = {t;; w; > 0 for some i € B}, and suppose
that G is strongly connected. Then for any subset B of vertices there always
exists an edge from a vertex in B to a vertex not in B, say from x in B to x’ not
in B. The existence of the edge x — x’ implies the existence of a j such that w,;
> 0 and 7., > 0. Since ¢; € Dg, 7,/; contributed to the left-hand side of (2.10), but
not to the right-hand side (because x” & B). Since every 7; in the right-hand side
of (2.10) is also in the left-hand side, a strict inequality must hold and (2.10) is
proved.

Conversely, suppose G is not strongly connected. Then there exists a subset B
of vertices such that there exists no edge from B to outside B. This means that
there exists no j such that w; > 0 and 5;;; > 0 for some : € B and i’ & B. In other
words, there exists no »; contributing to the left-hand side of (2.10) but not to
the right-hand side. Hence in (2.10) we have equality rather than strict inequality.
This completes the proof. [0

REMARK. Since reversing the direction of all the edges does not effect the
strong connectivity of a directed graph, replacing the above definition of i — i’
with ‘@ — i’ iff ¥; wy;n; > 0” would result in the same criterion.

APPENDIX B
Some Complementary Proofs

A proof of the equivalence between (3.2-3.3) and (3.11-3.12).

Clearly (3.2-3.3) is equivalent to
B minimize Q(g, w) = 11, 7" IT; uP
subject to
X wsg =1,
(B.2) 2 wig; = Wi, z:=1,...,s_1,
>0, i=1---,8—1,
¢G>0, j=1,.--, h

Since the constraint region (B.2) is strictly contained in (3.12), it is enough to
show that if (¢’, u’) satisfies (3.12) then there exists (g¢”, u”) satisfying (B.2)
such that

Q(g", u") = Q(g’, u).
Let { = 3 ; wsjq/ and note that from (3.12) 0 < { < 1. Define
g/ = {T'qf, ul =3I, wiqf.
Then (q”, u”) satisfies (B.2) and, again from (3.12),

u! = 7Y wygl < Tl
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Thus
Q(g”, u”) = (i Q(g’, u') = {QUg’, W) = Q(g’, u'),

as desired. O

A Proof of “Argument II” (cf. the proof of Theorem 1), which states that if the
solution of (2.2-2.3) is nonunique, then condition (2.10) is not satisfied.

First we note that since the problem (2.2-2.3) is equivalent to (3.2-3.3) which
in turn is equivalent to (3.13-3.14), the assumption that (2.2-2.3) has two
solutions, say p’ and p”, p’ # p”, implies that (3.13-3.14) also has two solutions,
say (oa’, 8’) and (o”, 87), (a’, 8’) # (a”, B”). By taking log in (3.13), and using
the equivalence of (2.2-2.3) and (3.13-3.14), this implies that the problem

(B.3) minimize go(a, B) = Yy rja; + 2?:% niB;
subject to

8la) = Y wse™ = 1,
gla, By=Ywye ¥ <1, i=1,...,s—1,

has two different solutions, say («’, 8’) and («”, 8”). Since the constraint region
(B.4) is convex and g, of (B.3) is linear, any convex combination of the two

solutions, say,
(a(0), B(8)) = 0(c’, B') + (1 — )", 8"), 0=0=1,

is also a solution of (B.3~-B.4). Now, since («(f), 8(#)) is a minimizer of
(B.3-B.4) it follows [from the same argument given in the beginning of this
Appendix, which established the equivalence of (B.1-B.2) and (3.11-3.12)] that
(B.4) is satisfied with equalities. Namely,

(B.5) g&la(0) =1, 0=s0=<1,
(B.6) gi(a(0),806)) =1, 0<s6=<1, i=1,.-.-,5s—1.

(B.4)

DEFINITION. For i, i’ €{l, ..., s} we say that i communicates with i’ iff
either D); N D,y # @ or there exists a subset {i;, - - -, i,,} of {1, - - -, s} such that

DinD,#@ D;,ND,#@, ---,D; ND; # 2.

CLAIM (to be proved below). If i communicates with s, then 8/ = 8/ and
af = af for j € D;.

Since, by assumption, (a’, 8’) 5« (a”, 8”) it follows from the above claim that
not all i’s communicate with s and so let B be the largest subset of {1, - - -, s} such
that none of its elements communicate with s. From the definition of B, no
observation from y;, i € B, could belong to Dy and so

ZjeﬁB ry= YieB Ni.

Thus condition (2.10) is not satisfied and the result follows. It remains therefore
to prove the claim.
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ProOF OF THE CLAIM. First note that from (B.5)
Yieb, wge @ =1, 0=0=<1.
Since e* is strictly convex in x, a;(#) must be constant for all 0 < § < 1 and so
(B.7) al =af for j€ED,
Suppose now that i communicates directly with s, so that
DinD,#@.
We get from (B.6)
(B.8)  Xjennn, wyexp[—(a;(0) + B:(0))] + T,en,np; wyexp[—(a;(8) + 8:(6))] = 1.
Combining (B.7) with (B.8) we get, after some simple a}lgebra,
2jebnp, wiexp[—af — B + (B! — B:)8]
(B.9)  + Zjesns; wyexpl—a — 87 + (af — af + B! — B{)0] =1,
0=<0=<1.

Analytic continuation then implies that (B.9) holds for —» < § < o, which in
turn implies that ’

B.10) B! —-pi=0 and af —a/ +87 -8 =0, jED;n D,

Combining (B.10) and (B.7) we conclude that if i communicates with s then

(B.11) Bl = B!
and
(B.12) af =af for j€D;uU D,

An induction proof, based on the above argument, shows that if ; communicates
with s via {i;, - - -, i,,} then

(B.13) Bl =8/, 8=8---, B =8
and
(B.14) of = af for jeE (UL f),-k) U D; U D,.

This proves the claim and finishes the proof of “Argument II”, which is part of
the proof of Theorem 1.0

From the proof of Argument II we get the following.

COROLLARY. Let G, be a graph with s vertices where i <> i’ iff ¥; wjwy; >
0, i,i" €11, - - -, s}, and suppose G,,, is connected. Then, if (2.2-2.3) has a solution
it must be unique. ‘

Proor. If G, is connected, all i’s in {1, - .., s} communicate with s, and so
it follows from the above claim that the solution must be unique.
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