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Abstract

We consider the random design regression with square loss. We propose a method that
aggregates empirical minimizers (ERM) over appropriately chosen random subsets and reduces
to ERM in the extreme case, and we establish exact oracle inequalities for its risk. We show that,
under the ε−p growth of the empirical ε-entropy, the excess risk of the proposed method attains

the rate n−
2

2+p for p ∈ (0,2] and n−1/p for p > 2. We provide lower bounds to show that these rates
are optimal. Furthermore, for p ∈ (0,2], the excess risk rate matches the behavior of the minimax
risk of function estimation in regression problems under the well-specified model. This yields a
surprising conclusion that the rates of statistical estimation in well-specified models (minimax
risk) and in misspecified models (minimax regret) are equivalent in the regime p ∈ (0,2]. In
other words, for p ∈ (0,2] the problem of statistical learning enjoys the same minim! ax rate
as the problem of statistical estimation. Our oracle inequalities also imply the log(n)/n rates
for Vapnik-Chervonenkis type classes without the typical convexity assumption on the class; we
show that these rates are optimal. Finally, for a slightly modified method, we derive a bound
on the excess risk of s-sparse convex aggregation improving that of Lounici [30] and we show
that it yields the optimal rate.

1 Introduction

Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be an i.i.d. sample from distribution PXY of a pair of random
variables (X,Y ), X ∈ X , Y ∈ Y where X is any set and Y is a subset of R. We consider the
problem of prediction of Y given X. For any function f ∶ X → Y called the predictor, we define the
prediction risk under squared loss:

L(f) = EXY [(f(X) − Y )2]

where EXY is the expectation with respect to PXY . Let now F be a class of functions from X to
Y and assume that the aim is to mimic the best predictor in this class. This means that we want
to find an estimator f̂ based the sample Dn and having a small excess risk

L(f̂) − inf
f∈F

L(f) (1)

in expectation or with high probability. The minimizer of L(f) over all measurable functions is
the regression function η(x) = EXY [Y ∣X = x] and it is straightforward to see that for the expected
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excess risk we have

EL(f̂) − inf
f∈F

L(f) = E ∥f̂ − η∥2 − inf
f∈F

∥f − η∥2 (2)

where E is the generic expectation sign, ∥f∥2 = ∫ f2(x)PX(dx), and PX denotes the marginal
distribution of X. The left-hand side of (2) has been studied within Statistical Learning Theory
characterizing the error of “agnostic learning” [44], [11], [23], while the object on the right-hand
side has been the topic of oracle inequalities in nonparametric statistics [32], [39], and in the
literature on aggregation [40], [36]. Upper bounds on the right-hand side of (2) are called exact
oracle inequalities, which refers to constant 1 in front of the infimum over F . However, some of
the key results in the literature were only obtained with a constant greater than 1, i.e., they yield
upper bounds for the difference

E ∥f̂ − η∥2 −C inf
f∈F

∥f − η∥2 (3)

with C > 1 and not for the excess risk. In this paper, we obtain exact oracle inequalities, which
allows us to consider the excess risk formulation of the problem as described above.

In what follows we assume that Y = [0,1]. For results in expectation, the extension to unbounded
Y with some condition on the tails of the distribution is straightforward. For high probability
statements, more care has to be taken, and the requirements on the tail behavior are more stringent.
To avoid this extra level of complication, we assume boundedness.

From the minimax point of view, the object studied in statistical learning theory can be written as
the minimax regret

Vn(F) = inf
f̂

sup
PXY ∈P

{EL(f̂) − inf
f∈F

L(f)} (4)

where P is the set of all distributions on X × Y and inf f̂ denotes the infimum over all estimators.
We observe that the study of this object leads to a distribution-free theory, as no model is assumed.
Instead, the goal is to achieve predictive performance competitive with a reference class F . In view
of (2), an equivalent way to write Vn(F) is

Vn(F) = inf
f̂

sup
PXY ∈P

{E ∥f̂ − η∥2 − inf
f∈F

∥f − η∥2} (5)

The expression in curly brackets in (5) can be viewed as a “distance” between the estimator f̂ and
the regression function η (which might lie outside of the specified set of models F) defined through
a comparison to the best possible performance within this set of models. Thus, the minimax regret
can be interpreted as a measure of performance of estimators for misspecified models. The study
of Vn(F) will be further referred to as the misspecified models setting.

A special instance of the minimax regret has been studied in the context aggregation of estimators,
with the aim to characterize optimal rates of aggregation, cf., e.g., [40, 36]. There, F is a subclass
of the linear span of M given functions f1, . . . , fM , for example, their convex hull or sparse linear
(convex) hull. Functions f1, . . . , fM are interpreted as some initial estimators of the regression
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function η based on another sample from the distribution of (X,Y ). This sample is supposed
to be independent from Dn and is considered as frozen when dealing with the minimax regret.
The aim of aggregation is to construct an estimator f̂ , called the aggregate, that mimics the best
linear combination of f1, . . . , fM with coefficients of the combination lying in a given set in RM .
Our results below apply to this setting as well and we will provide their consequences for some
important examples of aggregation.

In the nonparametric regression setting, it is typically assumed that the model is well-specified
specified, i.e., we have Yi = f(Xi)+ξi where the random errors ξi satisfy E(ξi∣Xi) = 0 and f belongs
to a given functional class F . Then f = η and the infimum on the right-hand side of (2) is zero.
The value of reference characterizing the best estimation in this problem is the minimax risk

Wn(F) = inf
f̂

sup
f∈F

Ef∥f̂ − f∥2 (6)

where Ef is the expectation w.r.t. the distribution of the sample Dn when E(Y ∣X) = f(X) for a
fixed marginal distribution PX and a fixed conditional distribution of ξ = Y − f(X) given X. It is
not difficult to see that

Wn(F) ≤ Vn(F),

yet the minimax risk and the minimax regret are quite different and it is not clear whether the
two quantities can be of the same order for particular F . The main message of this paper is to
show that this is indeed the case, under an assumption on the behavior of the empirical entropy of
F satisfied in many interesting examples. We also show that this assumption is tight in the sense
that the minimax regret and the minimax risk can have different rates of convergence when it is
violated.

Observe a certain duality between Wn(F) and Vn(F). In the former, the assumption about the
reality is placed on the way data are generated. In the latter, no such assumption is made, yet the
assumption is placed in the term that is being subtracted off. As we describe in Section 5, the study
of these two quantities represents two parallel developments: the former has been a subject mostly
studied within nonparametric statistics, while the second – within statistical learning theory. We
aim to bring out a connection between these two objects.

The paper is organized as follows. In Section 3 we present our estimation procedure and the upper
bounds on its risk. These include the main oracle inequality in Theorem 1 and its consequences
given in Theorems 2-4. In Section 5, we compare the results to those in the literature. Section 6 is
devoted to proving Theorems 2-4. The main part of the proof of Theorem 1 is in Section 8, with
some technical results further postponed to Section 10. Lower bounds are proved in Section 9.

2 Notation

Set Z = X × Y. For S = {z1, . . . , zn} ∈ Zn and a class G of real-valued functions on Z, consider the
Rademacher average on G:

R̂n(G, S) = Eσ [sup
g∈G

1

n

n

∑
i=1

σig(zi)]
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where Eσ denotes the expectation with respect to the joint distribution of i.i.d. random variables
σ1, . . . , σn taking values 1 and −1 with probabilities 1/2. Let

Rn(G) = sup
S∈Zn

R̂n(G, S).

For any ε > 0,1 ≤ p <∞, S = {z1, . . . , zn} ∈ Zn, we will denote byNp(F , ε, S) the empirical ε-covering
number of the class F with respect to the Lp pseudonorm

( 1

n

n

∑
i=1

∣f(zi)∣p)
1/p

,

and by N∞(F , ε) the ε-covering number of the class F with respect to the supremum norm.

Given r > 0, we denote by G[r, S] the set of functions in G with empirical average at most r on S:

G[r, S] = {g ∈ G ∶ 1

n

n

∑
i=1

g(zi) ≤ r} .

We write `○f for the function (x, y)↦ (f(x)−y)2 and `○F for the class of functions {` ○ f ∶ f ∈ F}.
Thus,

(` ○F)[r, S] = {` ○ f ∶ f ∈ F , 1

n

n

∑
i=1

(` ○ f)(xi, yi) ≤ r}

for S = {z1, . . . , zn} with zi = (xi, yi). The minimum risk on the class of functions F is denoted by

L∗ = inf
f∈F

L(f).

The set {1, . . . ,N} is denoted by [N]. Let ⌈x⌉ denote the minimal integer strictly greater than x,
and ∣F ∣ the cardinality of F . Notation C will be used for absolute positive constants that can vary
on different occasions.

3 Main Results

In this section we introduce the estimator studied along the paper, state the main oracle inequality
for its risk and provide corollaries for the minimax risk and minimax regret. The estimation
procedure comprises three steps. The first step is to construct a random ε-net on F with respect
to the empirical `2 metric and to form the induced partition of F . The second step is to compute
empirical risk minimizers (in our case, the least squares estimators) over each cell of this random
partition. Finally, the third step is to aggregate these minimizers using a suitable aggregation
procedure. If the radius ε of the initial net is taken to be large enough, the method reduces to
a single empirical risk minimization (ERM) procedure over the class F . While such an ERM
procedure is known (or in some cases suspected) to be suboptimal, the proposed method enjoys
optimal rates.
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To ease the notation, assume that we have a sample D3n of size 3n and we divide it into three
parts: D3n = S ∪ S′ ∪ S′′, where the subsamples S,S′, S′′ are each of size n. Fix ε > 0. Let

dS(f, g) =
¿
ÁÁÀ 1

n
∑

(x,y)∈S

(f(x) − g(x))2

be the empirical `2 pseudometric associated with the subsample S of cardinality n, and

N = N2(F , ε, S).

Let ĉ1, . . . , ĉN be an ε-net on F with respect to dS(⋅, ⋅). We assume without loss of generality that
it is proper, i.e., ĉi ∈ F for i = 1, . . . ,N . Let F̂S1 , . . . , F̂SN be the following partition of F induced by
ĉi’s:

F̂Si = F̂Si (ε) = {f ∈ F ∶ i ∈ argmin
j=1,...,N

dS(f, ĉj)}

with ties broken in an arbitrary way. Now, for each F̂Si , define the least squares estimators over
the subsets F̂Si with respect to the second subsample S′:

f̂S,S
′

i ∈ argmin
f∈F̂S

i

1

n
∑

(x,y)∈S′
(f(x) − y)2.

Finally, at the third step we use the subsample S′′ to aggregate the estimators {f̂S,S
′

1 , . . . , f̂S,S
′

N }.

We call a function f̃(x,D3n) with values in Y a sharp MS-aggregate1 if it has the following property.

There exists a constant C > 0 such that, for any δ > 0,

L (f̃) ≤ min
i=1,...,N

L (f̂S,S
′

i ) +C log(N/δ)
n

(7)

with probability at least 1 − δ over the sample S′′, conditionally on S ∪ S′.

Note that, in (7), the subsamples S,S′ are fixed, so that the estimators f̂S,S
′

i ≜ gi can be considered

as fixed (non-random) functions, and f̃ as a function of S′′ only. There exist several examples of
sharp MS-aggregates of fixed functions g1, . . . , gN [2, 28]. They are realized as mixtures:

f̃ =
N

∑
i=1

θigi =
N

∑
i=1

θif̂
S,S′

i ,

where θi are random weights measurable with respect to S′′.

The next theorem contains the main oracle inequality for the aggregate f̃ constructed by this three-
step procedure. To state the result, we will need some definitions. Consider the class of functions
G = {(f − g)2 ∶ f, g ∈ F}. Let φn ∶ [0,∞)↦ R be a function that satisfies

sup
S∈Zn

R̂n(G[r, S], S) ≤ φn(r) (8)

1Here, MS-aggregate is an abbreviation for model selection type aggregate. The word sharp indicates that (7) is
an oracle inequality with leading constant 1.
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for all r > 0 and assume that φn is non-negative, non-decreasing, and φn(r)/
√
r is non-increasing.

Let r∗ = r∗(G) denote an upper bound on the largest solution of φn(r) = r. Define

β = log(N2(F , ε, S)/δ) + log logn

n
, and γ =

√
ε2 + r∗ + β.

Theorem 1. Let 0 ≤ f ≤ 1 for all f ∈ F , and let f̃ be a sharp MS-aggregate defined by the above
three-stage procedure. Fix ε > 0. Then there exists an absolute constant C such that for any δ > 0,
with probability at least 1 − 3δ,

L(f̃) ≤ inf
f∈F

L(f) +C(β +Ξ(n, ε, S′)), (9)

where

Ξ(n, ε, S′) = min{ γ
√
r∗ + 1√

n
∫

γ

0

√
logN2(F , ρ, S′)dρ , (10)

√
L∗

√
log3(n)R2

n(F) + β } . (11)

Furthermore, if F is a convex subset of a d-dimensional linear subspace of L2(PX) then, with
probability at least 1 − 3δ, inequality (9) holds with the remainder term

Ξ(n, ε, S′) = min{ d

n
, γ

√
r∗ + 1√

n
∫

γ

0

√
logN2(F , ρ, S′)dρ , (12)

√
L∗

√
log3(n)R2

n(F) + β } .

Remarks.

1. The term Ξ(n, ε, S′) in Theorem 1 is a bound on the rate of convergence of the ERM f̂S,S
′

i

over the cell F̂Si . It is the minimum of three possible rates, the first of which (10) we prove in
Section 8 (the main crux of this paper), the second (11) is due to [38], while the third term
d/n present only for convex d-dimensional F is due to [23]. If, in particular instances, there
exists a sharper bound for the rate of ERM, as it will be the case in some examples below,
one can readily use this bound instead of the expressions for Ξ(n, ε, S′) given in Theorem 1.

2. The partitions F̂Si defined above can be viewed as a default option. In some situations,
we may better taylor the partitions to the geometry of F . For instance, in the aggregation
context (cf. Theorem 4 below), F is union of convex sets. We choose each convex set as an
element of the partition, and use the rate for ERM over individual convex sets instead of the
overall rate Ξ(n, ε, S′). In this case, the partition is non-random. It is also important to note
that in Theorem 1 we can use the localization radius r∗ = r∗(Ĝi) for Ĝi = {(f −g)2 ∶ f, g ∈ F̂Si }
instead of the larger quantity r∗(G). Inspection of the proof shows that the oracle inequality
(9) generalizes to

L(f̃) ≤ min
i=1,...,N

inf
f∈F̂S

i

{L(f) +C(β +Ξi(n, ε, S′))}, (13)

where Ξi(n, ε, S′) is defined in the same way as Ξ(n, ε, S′) with the only difference that r∗(G)
is replaced by r∗(Ĝi).
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The oracle inequality (9) of Theorem 1 depends on three quantities that should be specified: the
empirical entropy numbers logN2(F , ⋅, ⋅), the optimal localization radius r∗ and the Rademacher
complexity Rn(F). The crucial role in determining the rate belongs to the empirical entropies. We
further replace in (9)-(12) these random entropies by their upper bound

H2(F , ρ) = sup
S∈Zn

logN2(F , ρ, S).

The next theorem is a corollary of Theorem 1 in the case of polynomial growth of the empirical
entropy. It gives upper bounds on the minimax regret and on the minimax risk derived from (9).

Theorem 2. Assume that Y = [0,1] and the empirical entropy satisfies H2(F , ρ) ≤ Aρ−p, ∀ρ > 0,
for some constants A < ∞, p > 0. Let f̃ be a sharp MS-aggregate defined by the above three-stage
procedure with the covering radius ε > 0. Then there exist constants Cp > 0 depending only on A
and p such that the following holds.

(i) Let 0 ≤ f ≤ 1 for all f ∈ F . For the estimator f̃ constructed with

ε = n−
1

2+p if p ∈ (0,2],
ε ≥ n−

p−1

p2 if p ∈ (2,∞),

we have

Vn(F) ≤ sup
PXY ∈P

{E ∥f̃ − η∥2 − inf
f∈F

∥f − η∥2 } ≤
⎧⎪⎪⎨⎪⎪⎩

Cpn
−

2
2+p if p ∈ (0,2],

Cpn
−

1
p if p ∈ (2,∞).

(14)

(ii) If the model is well-specified, then for the estimator f̃ with ε = n−
1

2+p we have

Wn(F) ≤ sup
f∈F

E ∥f̃ − f∥2 ≤ Cpn−
2

2+p , ∀ p > 0. (15)

Proof of Theorem 2 is given in Section 6. An interesting consequence of this theorem is that the
minimax risk Wn(F) achieves faster convergence than the minimax regret Vn(F) for p > 2, i.e., for
classes F of very high complexity. Theorem 2 provides only an upper bound. However, it turns
out to be tight as shown in Section 9.

Observe also that in both cases, p ∈ (0,2] and p ∈ (2,∞), we can use the same value ε = n−1/(2+p)

to obtain the rates given in (14). We remark that this ε satisfies the bias-variance balance relation

nε2 ≍H2(F , ε).

We will further comment on this choice in Section 5.

We now turn to the consequences of Theorem 1 for low complexity classes F , such as Vapnik-
Chervonenkis (VC) classes and intersections of balls in finite-dimensional spaces. They roughly
correspond to the case ”p ≈ 0”, and the rates for the minimax risk Wn(F) are the same as for the
minimax regret Vn(F).
Assume first that the empirical covering numbers of F exhibit the growth

sup
S∈Zn

N2(F , ρ, S) ≤ (A/ρ)v, (16)
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∀ρ > 0, with some constants A < ∞, v > 0. Such classes F are called VC-type classes. Examples
include the VC-subgraph classes with VC-dimension v, i.e., classes of functions f whose subgraphs
Cf = {(x, t) ∈ X ×R ∶ f(x) ≥ t} form a Vapnik-Chervonenkis class with VC-dimension v.

Theorem 3. (Bounds for VC-type classes). Assume that Y = [0,1] and the empirical covering
numbers satisfy (16). Let 0 ≤ f ≤ 1 for all f ∈ F , and let f̃ be a sharp MS-aggregate defined by the

above three-stage procedure with ε = n− 1
2 . If n ≥ v, there exists a constant C > 0 depending only on

A such that

Vn(F) ≤ sup
PXY ∈P

{E ∥f̃ − η∥2 − inf
f∈F

∥f − η∥2 } ≤ C v(1 + log(n/v))
n

. (17)

The rate of convergence of the excess risk as in (17) for VC-type classes has been obtained previously
under the assumption that L∗ = 0 or for convex classes F (see discussion in Section 5 below).
Theorem 3 does not rely on either of these assumptions.

In Section 9.1 we show that the bound of Theorem 3 is tight: there exists a function class such
that, for any estimator, there exists a distribution on which the estimator differs from the regression

function by at least C
v(1+log(n/v))

n with positive fixed probability. So, the extra logarithmic term
in the rate is necessary, even when the model is well-specified.

The next theorem deals with classes of functions

F = FΘ ≜ {fθ =
M

∑
i=1

θjfj ∶ θ = (θ1, . . . , θM) ∈ Θ}

where {f1, . . . , fM} is a given collection of M functions on X with values in Y, and Θ ⊆ RM is
a given set of possible mixing coefficients θ. Such classes arise in the context of aggregation, cf.,
e.g., [40], [36], where the main problem is to study the behavior of the minimax regret Vn(FΘ)
based on the geometry of Θ. For the case of fixed rather than random design, we refer to [36] for
a comprehensive treatment. Here, we deal with the random design case and consider several basic
examples of sets Θ defined in terms of `p-balls

Bp(r) = {θ ∈ RM ∶ ∣θ∣p ≤ r}, 0 ≤ p <∞, r > 0,

where ∣θ∣0 denotes the number of non-zero components of θ, and ∣θ∣p = (∑Mj=1 ∣θj ∣p)
1/p

for 0 < p <∞.
We will also consider the probability simplex

ΛM = {θ ∈ RM ∶
M

∑
j=1

θj = 1, θj ≥ 0, j = 1 . . . ,M}.

Then, model selection type aggregation (or MS-aggregation) consists in constructing an estimator
f̃ that mimics the best function among f1, . . . , fM , i.e., the function that attains the minimum
minj=1,...,M ∥fj − η∥2. In this case, FΘ = {f1, . . . , fM} or equivalently Θ = ΘMS ≜ {e1, . . . ,eM} =
ΛM ∩ B0(1), where e1, . . . ,eM are the canonical basis vectors in RM . Convex aggregation (or C-
aggregation) consists in constructing an estimator f̃ that mimics the best function in the convex
hull F = conv(f1, . . . , fM), i.e., the function that attains the minimum minθ∈ΛM

∥fθ − η∥2. In this
case, F = FΘ with Θ = ΘC ≜ ΛM . Finally, given an integer 1 ≤ s ≤ M , the s-sparse convex
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aggregation consists in mimicking the best convex combination of at most s among the functions
f1, . . . , fM . This corresponds to the set ΘC(s) = ΛM ∩ B0(s). Note that MS-aggregation and
convex aggregation are particular cases of s-sparse aggregation: ΘMS = ΘC(1) and ΘC = ΘC(M).
For the aggregation setting, we modify the definition of cells F̂Si as discussed in Remark 2. Con-
sider the partition ΘC(s) = ⋃sm=1⋃ν∈Im Fν,m where Im is the set of all subsets ν of {1, . . . ,M} of
cardinality ∣ν∣ =m, and Fν,m is the convex hull of fj ’s with indices j ∈ ν. We use the deterministic
cells

{F1, . . . ,FN} = {Fν,m, m = 1, . . . , s, ν ∈ Im}

instead of random ones F̂Si . Note that the subsample S is not involved in this construction. We
keep all the other ingredients of the estimation procedure as described at the beginning of this
section, and we denote the resulting estimator f̃ . Then, using the subsample S, we complete the
construction by aggregating only two estimators, f̃ and the ERM on ΛM . The resulting aggregate
is denoted by f̃∗.

Theorem 4. (Bounds for aggregation). Let Y = [0,1] and 0 ≤ fj ≤ 1 for j = 1, . . . ,M . Then
there exists an absolute constant C > 0 such that

Vn(FΘC(s)) ≤ sup
PXY ∈P

{E ∥f̃∗ − η∥2 − inf
θ∈ΘC(s)

∥fθ − η∥2 } ≤ Cψn,M(s) (18)

where

ψn,M(s) = s

n
log (eM

s
) ∧

¿
ÁÁÀ 1

n
log(eM√

n
).

for s ∈ {1, . . . ,M}.

This theorem improves upon the rate of s-sparse aggregation given in Lounici [30] by removing a
redundant (s/n) logn term present there. Note that [30] considers the random design regression
model with gaussian errors. Theorem 4 is distribution-free and deals with bounded errors as all
the results of this paper and it can be readily extended to the sub-exponential case. By an easy
modification of the minimax lower bound given in [30], we get that ψn,M(s) is the optimal rate for
the minimax regret on FΘC(s) in our setting. Analogous result for gaussian regression with fixed
design is proved in [36].

4 ERM in partitions versus ERM and aggregation of centers

The estimation procedure we propose here has three steps. The first is to find an empirical ε-net
on the first part of the sample and partition the function class based on the centers (the cover
functions) using the empirical distance on the first sample. In the next step, using the second
sample we find empirical risk minimizers within each partition. Finally, we use the third sample
to aggregate over the ERM’s within each of the partitions. The estimation procedure for the well-
specified case proposed by Yang and Barron [46] consists of steps one and three, but not two. This
method directly aggregates centers of the partitions, ie. the covers obtained from the first sample
split. While this procedure works for the well-specified case, one cannot expect this to directly
work for the misspecified case. The step of finding ERM’s in each partition and aggregating over
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the ERM’s is rather crucial. The reason the procedure of aggregating over the centers works for
the well specified case is because for the the partition F̂Si (ε) that contains the regression function
η, i.e., η ∈ F̂Si (ε), we have that

∥ĉi − η∥2 − inf
f∈F

∥f − η∥2 = ∥ĉi − η∥2

≤ 2 d2
S(ĉi, η) + Õ(R2

n(F))
≤ 2ε2 + Õ(R2

n(F))

Hence trading off the ε2 with the logN2(F , ε, S)/n from aggregation procedure gives the optimal
rate for the well-specified case (the Rademacher squared term is a lower order term). The reason
why aggregating over the centers of the partitions fail for the misspecified case is because without
the assumption that the regression function is in the function class, even for the partition F̂Si (ε)
containing the minimizer argminf∈F ∥f − η∥2, we can at best only have

∥ĉi − η∥2 − inf
f∈F

∥f − η∥2 ≤ 8 ∥ĉi − η∥ ≤ 8
√

2d2
S(ĉi, f∗) + Õ(R2

n(F))

≤ 8
√

2ε2 + Õ(R2
n(F)) ≤ 8

√
2ε + Õ(Rn(F)) (19)

Hence aggregating over the centers we get the tradeoff of ε with the logN2(F , ε, S)/n which can
only give the sub-optimal rate of n−1/(p+1)+O(Rn(F)). This indicates that the ERM over partitions
step is rather crucial in getting the right rates.

In summary, we have three estimation procedures we can consider. First, simple Empirical Risk
Minimization (ERM) procedure, second aggregating over cover centers ([46]) and, finally, the pro-
posed procedure of aggregating over ERM’s within each of the partitions. Due to Equation (19),
for classes other than finite function class (when centers coincide with all the M function in the
function class F) we always pay an additive factor of Õ(Rn(F)) for the procedure of aggregating
over centers for the misspecified model. Hence, other than for the finite case, the procedure of
aggregating over cover centers always has worse rate than ERM. The following table summarizes
the rates for misspecified case (statistical learning).

Regime Proposed Method Aggregating centers [46] ERM

(Finite) ∣F ∣ =M logM
n

logM
n

√
logM
n

(parametric) V C(F) = d d log(n)
n

√
d log(n)

n

√
d
n

logN2(F , ε) = ε−p,
p ∈ (0,2) n

−
2

2+p n−
1
2 n−

1
2

p ∈ [2,∞) n
−

1
p n

−
1

p+1 n
−

1
p

Table 1: Summary of Rates for Misspecified case

Notice that in the above we see that for finite class case the proposed method and aggregation
over centers are optimal whereas ERM has a suboptimal rate. For the parametric case, while the
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proposed method is optimal, both ERM and aggregating over centers is suboptimal. When the
log covering number grows polynomially as ε−p, for the case when p ≥ 2 both ERM and proposed
method enjoy similar guarantees of rates of order n−1/p while the aggregation over centers only gets
a sub-optimal rate of n−1/(p+1). The case of p ∈ (0,2), the proposed method is optimal and achieves
a rate of n−2/(2+p) while both aggregation over centers and ERM procedures only achieve a rate of
n−1/2.

Turning to the well-specified case, both the proposed method and the procedure of aggregating
over centers both achieve the optimal rates of n−2/(2+p) while ERM is suboptimal in general.

5 Historical Remarks and Comparison to Previous Work

The literature on nonparametric estimation from the statistics community and on excess risk bounds
from statistical learning theory is vast, and we will only attempt to briefly describe the results most
relevant to this paper.

The role of entropy and capacity [20] in establishing rates of estimation has been recognized for a
long time, since the work of Le Cam [25], Ibragimov and Khas’minskii [17] and Birgé [6]. Other early
work on this subject involving estimation on ε-nets is due to Devroye [10] and Devroye et al. [11].
The common point is that optimal rate is obtained as a solution to the bias-variance balancing
equation nε2 = H(ε), with a conveniently chosen non-random entropy H(⋅). Van de Geer [41]
invokes the empirical entropy rather than the non-random entropy to derive rates of estimation
in regression problems. he entropy of the set. In particular, th! Yang and Barron [46] present a
general approach to obtain lower bounds from global (rather than local) capacity properties of the
parameter set. Once again, the optimal rate is shown to be a solution to the bias-variance balancing
equation described above, with a generic notion of a metric on the parameter space. Under the
assumption that the regression errors are gaussian, [46] also provides an achievability result, a
procedure inspired by information-theoretic considerations. This procedure is quite different from
empirical risk minimization: it averages the predictive distributions corresponding to a covering of
the parameter space.

In all these works, it is assumed that the unknown density, regression function, or parameter
belongs to the given class, i.e., the model is correctly specified. In parallel to these developments,
a line of work on pattern recognition that can be traced to Aizerman, Braverman and Rozonoer
[1] and Vapnik and Chervonenkis [44] focused on a different objective, which is characteristic for
the statistical learning. Without assuming a form of the distribution that encodes the relationship
between the predictors and outputs, the goal is formulated as that of performing as well as the
best function within a given set of rules, with the excess risk as the measure of performance (rather
than distance to the true underlying function). Thus, no assumption is placed on the underlying
distribution. In this form, the problem can be cast as a special case of stochastic optimization
and can be solved either via recurrent (e.g. gradient descent) meth! ods or via empirical risk
minimization. The latter approach leads to the question of uniform convergence of averages to
expectations, also called the uniform Glivenko-Cantelli property. This property is, once again,
closely related to entropy of the class, and sufficient conditions have been extensively studied (see
[14, 33, 13, 15, 12] and references therein).

For “parametric” classes with a polynomial growth of covering numbers, uniform convergence of
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averages to expectations has been shown by Vapnik and Chervonenkis [42, 43, 44]. In the context
of classification, they also obtained a faster rate showing O(1/n) convergence when the minimal
risk L∗ = 0. For regression problems, similar fast rate has been obtained in [34, 16]. Lee, Bartlett
and Williamson [29] showed O(log(n)/n) rates for the excess risk without the assumption L∗ = 0.
Instead, they assumed that the class F is convex and has finite pseudo-dimension. Additionally, it
was shown that the n−1/2 rate cannot be improved if the class is non-convex and the estimator is
a selector (that is, forced to take values in F). In particular, the excess risk of ERM and of any
selector on a finite class F the cannot decrease faster than

√
(log ∣F ∣)/n [18]. Optimality of ERM

for certain problems is still an open question.

Independently of this work on the excess risk in the distribution-free setting of statistical learning,
Nemirovskii [32] proposed to study the problem of aggregation, or mimicking the best function in the
given class, for regression models. Nemirovskii [32] outlined three problems: model selection, convex
aggregation, and linear aggregation. The notion of optimal rates of aggregation is introduced in [40],
along with the derivation of the optimal rates for the three problems. In the following decade, much
work has been done on understanding these and related aggregation problems [45, 19, 18, 30, 36].
For recent developments and a survey we refer to [27, 37].

In parallel with these developments, the study of the excess risk blossomed with the introduction
of Rademacher and local Rademacher averages in [21, 24, 3, 8, 4, 22]. These techniques provided
a good understanding of the behavior of the ERM method. In particular, if F is a convex subset
of d-dimensional space, Koltchinskii [22, 23] obtained the exact inequality with the correct rate
d/n for ERM. However, the convexity assumption appears to be crucial; without this assumption
Koltchinskii [23, Theorem 5.2] obtains for ERM only a non-exact inequality with factor C > 1 in
front of the infimum (see (3)).

Among a few of the estimators considered in the literature for general classes F , empirical risk
minimization on F has been one of the most studied. As mentioned above, ERM and other selector
methods are suboptimal when the class F is finite. Given the optimality of rates for ERM when
F is convex, it was conjectured that the correct rates for a finite F will be attained by an ERM
on the convex hull of F . This was disproved by Lecué and Mendelson [28]. For the regression
setting, the approach that was found to achieve the optimal rate for the excess risk in expectation
is through exponential weights with averaging of the trajectory. However, Audibert [2] showed that,
for the regression with random design, exponential weighting is deviation suboptimal and proposed
an alternative method which involved finding an ERM on a star connecting an overall ERM and
the other ∣F ∣ − 1 functions. Thus, the optimal mixt! ure uses two functions. In [28], the authors
also exhibited a deviation optimal method which involves sample splitting. The first part of the
sample is used to localize a convex subset around ERM and the second – to find an ERM within
this subset.

We close this short summary with a connection to a different literature. In the context of prediction
of deterministic individual sequences with logarithmic loss, Cesa-Bianchi and Lugosi [9] considered
regret with respect to rich classes of “experts”. They showed that mixture of densities is suboptimal
and proposed a two-level method where the rich set of distributions is divided into small balls, the
optimal algorithm is run on these balls, and then the overall output is an aggregate of these outputs.
They derived a bound where the upper bound of the Dudley integral is the radius of the balls. This
method served as an inspiration for the present work.
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6 Proofs of Theorems 2-4

Theorems 2, 3 and 4 follow from Theorem 1, Lemma 8 and the control of the critical radius r∗

given in the following lemma.

Lemma 5. The following critical radii r∗ = r∗(G) satisfy the conditions stated before Theorem 1.

• For any class F ,

r∗ = C log3(n)R2
n(F). (20)

• If the empirical covering numbers exhibit the polynomial growth supS∈ZnN2(F , ρ, S) ≤ (Aρ )
v

for some constants A <∞ and v > 0, n ≥ v, then

r∗ = C v(1 + log(n/v))
n

.

• If F is a finite class,

r∗ = C log ∣F ∣
n

.

We will also use the following bound on the Rademacher average in terms of the empirical entropy
[? ]:

R̂n(F , S) ≤ inf
α≥0

{4α + 12√
n
∫

1

α

√
logN2(F , ρ, S)dρ} . (21)

6.1 Proof of Theorem 2

Assume without loss of generality that A = 1, i.e., supS∈Zn logN2(F , ρ, S) ≤ ρ−p for some p > 0. We
consider separately the cases p ∈ (0,2] and p > 2.

The regime p ∈ (0,2]. If p ∈ (0,2), the bound (21) with α = 0 yields

R̂n(F , S) ≤
12√

n(1 − p/2)

and thus R2
n(F) ≤ c/n with c = 144/(1− p/2)2. This and (20) imply that r∗ ≤ C log3(n)/n for some

absolute constant C. Next,

β ≤ C (ε−p + log logn + log(1/δ))
n

and

γ2 ≤ C (ε2 + (logn)3

n
+ ε

−p + log(1/δ)
n

) . (22)

So

γ
√
r∗ ≤ C(logn)3/2 ⎛

⎝
ε√
n
+ (logn)3/2

n
+
ε−p/2 +

√
log(1/δ)
n

⎞
⎠
.
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These inequalities together with (9) and (10) yield that, with probability at least 1 − 3δ,

L (f̃) −L∗ ≤ C (ε
−p

n
+ log(1/δ)

n
+ γ

√
r∗ + γ

1−p/2

√
n

) . (23)

The value of ε minimizing the right hand side in (22) and in (23) is given by solving ε2 ≍ 1/(εpn),
so ε = n−1/(2+p) provides the correct rate. Notably, the logarithmic factor arising from r∗ only
appears together with the lower order terms and the summand γ

√
r∗ does not affect the rate. By

choosing ε = n−1/(2+p) we guarantee that the right hand side of (23) is Cn
−

2
2+p ignoring the terms

with log(1/δ) that disappear when passing from the bound in probability to that in expectation.

Thus, the expected excess risk is bounded by Cn
−

2
2+p , which proves (14) for p ∈ (0,2).

For p = 2, the bounds on the Rademacher complexity and on r∗ involve an extra logarithmic factor,
which does not affect the final rate as it goes with lower order terms.

The regime p ∈ (2,∞). For p ∈ (2,∞), there is a difference between the rates under well-specified
models (15) and misspecified models (14), so we consider the two cases separately.

1. Proof of (14) for p ∈ (2,∞). Here, the rate is governed by the Rademacher complexity of the
function class. Using (21) we bound Rn(F) as follows:

Rn(F) ≤ inf
α≥0

{4α + 12√
n
∫

1

α
ρ−p/2dρ} ≤ inf

α≥0
{4α + 24√

n(p − 2)α
−(p−2)/2} .

Balancing α = n−1/2α−(p−2)/2 yields α = n−1/p and

Rn(F) ≤ Cn−1/p. (24)

Thus, Lemma 8 implies
EL(f̂S,S

′

i ) − inf
f∈F̂S

i

L(f) ≤ Cn−1/p .

The aggregation step (7) adds to this bound the term logN2(F , ε, S)/n ≤ 1/(εpn), so that

EL(f̃) − inf
f∈F

L(f) ≤ C(n−1/p + 1/(εpn)) .

We conclude that for the case p > 2 we can use any ε ≥ n−(p−1)/p2 to obtain the overall rate n−1/p.

2. Proof of (15) for p ∈ (2,∞). Now consider the case when η ∈ F . We show that the method
introduced in this paper enjoys optimal rates for any p > 0. Given S, let i∗ be the index of the
partition containing the regression function: η ∈ F̂Si∗ . By definition, for any f ∈ F̂Si∗ , dS(f, η) ≤ ε.
Consider the set G = {g = (f − η)2 ∶ f ∈ F}. By Theorem 14 applied to this class, with probability
at least 1 − 4δ for all g ∈ G

Pg ≤ 2Png +C(r∗ + β′)

for β′ = log(1/δ)+6 log logn
n and some constant C. In other words,

P (f − η)2 ≤ 2Pn(f − η)2 +C(r∗ + β′) .

14



Under this event, for any f ∈ F̂Si∗ ,

∥f − η∥2 ≤ 2ε2 +C(r∗ + β′)

and hence (intersecting with the event of Eq. (7))

L (f̃) ≤ inf
i∈[N]

L (f̂S,S
′

i ) + C log(N/δ)
n

= inf
i∈[N]

∥f̂S,S
′

i − η∥2 +L(η) + C log(N/δ)
n

≤ L(η) + C(ε−p + log(1/δ))
n

+ 2ε2 +C(r∗ + β′)

with probability at least 1 − 5δ. The expression in the last line of this display has the best rate for
ε = n−1/(2+p). From (24) and (20) we get that r∗ ≤ C log3(n)n−2/p. Thus, r∗ + β′ is of smaller order
than the other terms when ε = n−1/(2+p). Taking into account that L (f̃)−L(η) = ∥f −η∥2 we obtain

the overall rate of n
−

2
2+p for E∥f − η∥2 uniformly over η ∈ F as claimed.

6.2 Proof of Theorem 3

As shown in Lemma 5,

r∗ = C v(1 + log(n/v))
n

.

Here, we can replace (1 + log(n/v)) by log(n/v) if n ≥ av for a > 0 large enough (it is easy to
see that it suffices to consider this case). Choosing ε = n−1/2, we get β ≤ Cv log(n/δ)/n, and

γ ≤ C
√

v log(n/(vδ))
n . The overall rate in expectation is then O (v log(n/v)

n ) .

6.3 Proof of Theorem 4

As shown in [26], the rate of ERM for the simplex in Rs is

O
⎛
⎝
s

n
∧
√

log(es/√n)
n

⎞
⎠
.

The same result yields that the rate is not worse than

√
log(eM/√n)

n

since we add in the aggregation procedure the ERM on the convex hull of all the M functions fj .

Since the number of such subsets is N = ∑sj=1 (Mj ) ≤ ( eM
s

)s, we obtain the overall rate of the order

⎡⎢⎢⎢⎢⎣

s log(eM/s)
n

∨
⎛
⎝
s

n
∧
√

log(es/√n)
n

⎞
⎠

⎤⎥⎥⎥⎥⎦
∧
√

log(eM/√n)
n

=
⎛
⎝
s log(eM/s)

n
∧
√

log(eM/√n)
n

⎞
⎠
.
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7 Adapting to Approximation Error Rate of Function Class

Often in statistical learning problems the choice of function class F is not prefixed and is in fact
a design choice. The art of picking the right function class F to use depends on how best we can
trade-off statistical learning rate for the function class with its approximation rate of how well it
approximates the bays optimal predictor η. In the Theorem 2 we have shown that our estimator

has the rate of n
−

2
2+p when the regression function η is in the function class F and achieves the rate

n−1/p if not. A natural question one can ask is, what if η ∉ F but then the approximation error rate
inff∈F ∥η − f∥2 is small. In this case one would like to get rates varying from n−1/p all the way to

n−2/(2+p) based on how small the approximation error rate is.

Let us start with defining the approximation error as ∆2 ∶= inff∈F ∥f − η∥2. Further define f∗ =
argminf∈F ∥f − η∥2. Note that for any ε, for the the partition F̂Si (ε) that contains f∗ we have that

∥f̂S,S
′

i − η∥
2
− ∥f∗ − η∥2 ≤ 2 ∥f̂S,S

′

i − f∗∥
2
+ ∥f∗ − η∥2

≤ 4 d2
S(f̂

S,S′

i , f∗) + ∥f∗ − η∥2 +C log3(n)R2
n(F)

≤ 4ε2 +∆2 + Õ ( 1

n2/p
)

where the second inequality above is by using Theorem 14 along with Lemma 5 to bound ∥f̂S,S
′

i − f∗∥
2

in terms of twice the empirical distance d2
S(f̂

S,S′

i , f∗) (on similar lines as the inclusion lemma 10).
Of course we also have by simple Rademacher bound (see Corollary 9) that

∥f̂S,S
′

i − η∥
2
− ∥f∗ − η∥2 ≤ CRn(F̂Si (ε)) ≤ O (n−1/p)

Hence for the choice of ε = n−1/(2+p), we can conclude that for the partition i, containing f∗,

∥f̂S,S
′

i − η∥
2
− ∥f∗ − η∥2 ≤ O (min (n−

2
2+p +∆2, n−1/p))

Hence for the choice of ε = n−1/(2+p), if approximation error is ∆, the bound for the excess risk is
given by

∥f̂ − η∥2 − inf
f∈F

∥f − η∥2 ≤ logN2(F , ε, S)
n

+O (min(n−
2

2+p +∆2,
1

n1/p
))

≤ n−
2

2+p +O (min(n−
2

2+p +∆2,
1

n1/p
))

Hence overall the above bound can be read as,

∥f̂ − η∥2 − argmin
f∈F

∥f − η∥2 ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O (n−
2

2+p ) if ∆2 ≤ n−2/(2+p)

O (∆2) if n−2/(2+p) ≤ ∆2 ≤ n−1/p

O (n−1/p) otherwise

Hence we see a smooth transition in terms of approximation error rate in the regime ∆2 ∈ (n−2/(2+p), n−1/p).
Notice that the estimator is still the same proposed algorithm with choice of ε fixed at n−1/(2+p),
however the estimation procedure automatically adapts to get the rates above.
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8 Proof of Theorem 1

We break down the proof of Theorem 1 into several subsections.

8.1 The general scheme

Proposition 6. Suppose 0 ≤ f ≤ 1 for all f ∈ F . Then for any ε > 0, with probability at least 1− 2δ

L (f̃) ≤ L∗ +C log(N2(F , ε, S)/δ)
n

+Ξ(n, ε, S′) (25)

where Ξ(n, ε, S′) is such that with probability at least 1 − δ,

L(f̂S,S
′

i∗ ) −L(f∗) ≤ Ξ(n, ε, S′) (26)

for i∗ ∈ [N] such that f∗ ∈ F̂Si∗.

The proof of the Proposition is immediate.

8.2 Excess Risk of ERM

The first component of the analysis is a risk bound for the empirical minimizer over a function
class. While similar bounds appeared elsewhere (e.g. [5, 38]), we prove them here for completeness
with explicit constants. The proof of this Lemma is deferred to page 27.

Lemma 7 ([38, 7]). Let ĝ be an empirical minimizer over a class G,

ĝ = argmin
g∈G

Png .

Suppose 0 ≤ g ≤ 1. For any x > 0, with probability at least 1 − 9e−x,

P ĝ ≤ Pg∗ +
√
Pg∗

√
20r∗ + 17r0 + 114r∗ + 53r0

where r0 = (x + 6 log logn)/n and r∗ = r∗(G).

Lemma 8. Let ` ○F = {(x, y) ↦ (f(x) − y)2 ∶ f ∈ F}, Y = [0,1] and F is a class of functions frm
X to Y. Then, for any x > 0, with probability at least 1− 2e−x, the empirical risk minimizer f̂ERM

on F satisfies

E(f̂ERM(x) − y)2 −E(f∗(x) − y)2 ≤ c′2Rn(F) + c
′

3x

n

where c′2 = 1408 and c′3 = 830.

Using these lemmata, we obtain the following Corollary:
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Corollary 9. For any x > 0, with probability at least 1 − 11Ne−x, for all i ∈ [N],

L (f̂S,S
′

i ) ≤ L∗i +min{c′2R̂n(` ○ F̂Si , S′) + c′3r0,
√
L∗i

√
20τ + 17r0 + 114τ + 53r0}

where r0 = (x + 6 log logn)/n and τ = 12 ⋅ 422 log3(64n)R2
n(F).

Proof. Recall that each f̂S,S
′

i is an empirical minimizer over the respective set F̂Si . Let E1 be the
event (with respect to the draw of S′, conditionally on S) under which Lemma 7 and Lemma 8

(applied to f̂S,S
′

i ) hold simultaneously for all i ∈ [N]. We have P (E1) ≥ 1 − 11Ne−x. That is, with
probability at least 1 − 11Ne−x, for all i ∈ [N],

L (f̂S,S
′

i ) ≤ L∗i + c′2R̂n(` ○ F̂Si , S′) + c′3r0 (27)

where L∗i = argminf∈F̂S
i
L(f). Under the same event E1, we also have an alternative optimistic

bound in terms of the minimal risk, as implied by Lemma 7: for all i ∈ [N],

L (f̂S,S
′

i ) ≤ L∗i +
√
L∗i

√
20τ + 17r0 + 114τ + 53r0 .

where τ = r∗(` ○ F) can be taken to be τ = 12 ⋅ 212 log3(64n)R2
n(F) as shown in [38]. Combining

with (27), the result follows.

8.3 An Inclusion Lemma

We now aim to get a handle on the empirical Rademacher complexity

R̂n(` ○ F̂Si , S′) = Eσ
⎡⎢⎢⎢⎢⎣

sup
f∈F̂S

i

1

n
∑

(x,y)∈S′
σi(f(x) − y)2

⎤⎥⎥⎥⎥⎦
.

The difficulty lies in the fact that the set F̂Si is defined with respect to dS while the empirical
Rademacher complexity is evaluated on an independent sample S′. To this end, define

F̂S,S
′

i (γ) = {f ∈ F ∶ dS′(f, ĉi) ≤ γ}

where the pseudometric dS′ is taken with respect to the set S′ while the ε-net {ĉi} is constructed

with respect to S. We will relate F̂S,S
′

i (γ) and F̂Si (ε) for an appropriate choice of γ.

Lemma 10. Fix x > 0, ε > 0. Let r∗ = r∗(G) for G = {(f − g)2 ∶ f, g ∈ F}. Define r0 = (x +
6 log logn)/n and γ2 ∶= 4ε2 + 284r∗ + 118r0. Then with probability at least 1 − 8Ne−x over the draw
of S ∪ S′, for any i ∈ [N], we have the inclusion

F̂Si (ε) ⊆ F̂
S,S′

i (γ)

and hence

R̂n (` ○ F̂Si (ε), S′) ≤ R̂n (` ○ F̂S,S
′

i (γ), S′) ,
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Proof of Lemma 10. The proof requires relating empirical squared distance dS(f, g)2 to its ex-
pected version E(f(x) − g(x))2, and then back to the empirical squared distance dS′(f, g)2 on an
independent sample. This amounts to working with the class {(f − g)2 ∶ f, g ∈ F}, which we may
treat as a class `○H along with the assumption that y’s are identically zero. Now, suppose there is
a φn such that R̂n(G[r, S], S) ≤ φn(r) and let r∗ = r∗(G) be an upper bound on the largest solution
φn(r) = r. We now appeal to Theorem 14. With probability at least 1 − 4e−x, for any f, g ∈ F

P (f − g)2 ≤ 2Pn(f − g)2 + 106r∗ + 48r0

and
Pn(f − g)2 ≤ 2P (f − g)2 + 72r∗ + 22r0

where r0 = (x+ 6 log logn)/n. Let Pn and P ′

n denote the empirical average over a sample S and S′,
respectively. Then with probability at least 1 − 8e−x, for all f, g ∈ F

P ′

n(f − g)2 ≤ 4Pn(f − g)2 + 284r∗ + 118r0 .

Taking a union bound over i ∈ [N] completes the proof.

8.4 Controlling the Rademacher Complexity

The next result gives an upper bound on the Rademacher Complexity of the set ` ○ F̂S,S
′

i (γ).

Lemma 11. Let r∗ = r∗(G) for G = {(f − g)2 ∶ f, g ∈ F}, and suppose γ2 ≥ r∗. Then

R̂ (` ○ F̂S,S
′

i (γ), S′) ≤ γ
√
r∗ + 20√

n
∫

γ

0

√
logN2(F , ρ, dS′)dρ

Proof. We reason conditionally on S ∪ S′. We have,

R̂ (` ○ F̂S,S
′

i (γ), S′)

= Eσ sup
f∈F̂S,S′

i (γ)

1

n
∑

(xj ,yj)∈S′
σj(f(xj) − yj)2

= Eσ sup
f∈F̂S,S′

i (γ)

1

n
∑

(xj ,yj)∈S′
σj(f(xj) − ĉi(xj))2 + σj(ĉi(xj) − yj)2 + 2σj(f(xj) − ĉi(xj))(ĉi(xj) − yj)

≤ Eσ sup
f∈F̂S,S′

i (γ)

1

n
∑

(xj ,yj)∈S′
σj(f(xj) − ĉi(xj))2 + 2Eσ sup

f∈F̂S,S′

i (γ)

1

n
∑

(xj ,yj)∈S′
σj(f(xj) − ĉi(xj))(ĉi(xj) − yj)

(28)

Consider the first term. Conditioned on the set S, the centers ĉi are fixed and we may view the set
F̂S,S

′

i (γ) as giving rise to the set of γ2-approximate empirical minimizers

G′i =
⎧⎪⎪⎨⎪⎪⎩
(f − ĉi)2 ∶ f ∈ F , 1

n
∑

(xj ,yj)∈S′
(f(xj) − ĉi(xj))2

⎫⎪⎪⎬⎪⎪⎭
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For simplicity, we assume that ĉi ∈ F (all the results hold in the case of an improper cover as well),
and thus G′i ⊆ G[γ2, S′] where G = {(f − g)2 ∶ f, g ∈ F}. Then the first term in (28) is

Eσ sup
f∈F̂S,S′

i (γ)

1

n
∑

(xj ,yj)∈S′
σj(f(xj) − ĉi(xj))2 ≤ R̂n(G[γ2, S′], S′) ≤ φn(γ2) ≤ γ

√
r∗

where the last inequality follows from the fact that γ2 > r∗ by our assumption and φn(r)/
√
r is

non-increasing.

We now turn to the Rademacher complexity of the cross-product term in (28). Define

GS,S
′

i = {gf(x, y) = (f(x) − ĉi(x))(ĉi(x) − y) ∶ f ∈ F̂S,S
′

i (γ)}

First, observe that for any gf ∈ GS,S
′

i ,

1

n
∑

(x,y)∈S′
gf(x, y)2 = 1

n
∑

(x,y)∈S′
(f(x) − ĉi(x))2(ĉi(x) − y)2 ≤ γ2

under the boundedness assumption. Next, let M = N2(F̂S,S
′

i , δ, dS′) be a covering number with

respect to dS′(f, g) and suppose C = {h1
i , . . . , h

M
i } is such a δ-cover. Pick any f ∈ F̂S,S

′

i and let h ∈ C
be a cover center δ-close to f in the above sense. Then

1

n
∑

(x,y)∈S′
(gf(x, y) − gh(x, y))2 = 1

n
∑

(x,y)∈S′
[(f(x) − ĉi(x))(ĉi(x) − y) − (h(x) − ĉi(x))(ĉi(x) − y)]2

= 1

n
∑

(x,y)∈S′
(f(x) − h(x))2(ĉi(x) − y)2

≤ δ2

implying N2(GS,S
′

i , δ, dS′) ≤ N2(F̂S,S
′

i , δ, dS′). Hence,

R̂n(GS,S
′

i ) ≤ 10√
n
∫

γ

0

√
logN2(F̂S,S

′

i , ρ, dS′)dρ ≤
10√
n
∫

γ

0

√
logN2(F , ρ, dS′)dρ (29)

Putting together the results,

R̂ (` ○ F̂S,S
′

i (γ), S′) ≤ γ
√
r∗ + 20√

n
∫

γ

0

√
logN2(F , ρ, dS′)dρ

8.5 Concluding the Proof

Putting together Corollary 9, Lemma 10, and Lemma 11, with probability at least 1−19Ne−x over
the draw of S ∪ S′, for any i ∈ [N],

L (f̂S,S
′

i ) ≤ L∗i +min{c′2 (γ
√
r∗ + 20√

n
∫

γ

0

√
logN2(F , ρ, dS′)dρ) + c′3r0,

√
L∗i

√
20τ + 17r0 + 114τ + 53r0}
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where r0 = (x + 6 log logn)/n. We now re-write this inequality by setting 19Ne−x = δ/2. With
probability at least 1 − δ/2, for all i ∈ [N]

L (f̂S,S
′

i ) ≤ L∗i +min{c′2 (γ
√
r∗ + 20√

n
∫

γ

0

√
logN2(F , ρ, dS′)dρ) + c′3β,

√
L∗i

√
20τ + 17β + 114τ + 53β}

where β = (log(38N/δ) + 6 log logn)/n and τ = 12 ⋅ 212 log3(64n)R2
n(F).

Next, we appeal to Example 1 in [23], which implies that for any i ∈ [N] with probability at least
1 − ce−x,

L(f̂S,S
′

i ) −L(f∗i ) ≤
K(d + x)

n

where d is the dimensionality of the linear space to which F belongs. Taking a union bound over
i ∈ [N] and letting δ/2 = cNe−x, we obtain the desired statement.

This concludes the proof of Theorem 1.

9 Lower Bounds

9.1 Lower bound for VC subgraph classes

In this section we exhibit a VC subgraph class F with VC-dimension at most d such that

Wn(F) ≥ Cd(1 + log(n/d))
n

where C > 0 is a numerical constant. We will, in fact, prove a more general lower bound, for the
risk in probability rather than in expectation.

In this section, X = {x1, x2, . . . ,} is an infinite countable set of elements and F is the following set
of binary-valued functions on X :

F = {f ∶ f(x) = a1{x ∈W} , for some W ⊂ X with Card(W ) ≤ d},

where a > 0, 1{⋅} denotes the indicator function and Card(W ) is the cardinality of W . It is easy
to check that F is a VC subgraph class with VC-dimension at most d.

Theorem 12. Let d be any integer such that n ≥ d, and a = 3/4. Let the random pair (X,Y ) take
values in X × {0,1}. Then there exist a marginal distribution PX and numerical constants c, c′ > 0
such that

inf
f̂

sup
η∈F

Pη (∥f̂ − η∥
2 ≥ cd(1 + log(n/d))

n
) ≥ c′,

where Pη denotes the distribution of the n-sample Dn when E(Y ∣X = x) = η(x).

Proof. Fix some 0 < α < 1 and set k = ⌈d/α⌉. Let C be the set of all binary sequences ω ∈ {0,1}k with
at most d non-zero components. By the d-selection lemma (see, e.g., Lemma 4 in [35]), for k ≥ 2d
there exists of a subset C′ of C with the following properties: (a) log(Card(C′)) ≥ (d/4) log(k/(6d))
and (b) ρH(ω,ω′) ≥ d for any ω,ω′ ∈ C′. Here, ρH(⋅, ⋅) denotes the Hamming distance. To any ω ∈ C′
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we associate a function fω on X defined by fω(xi) = ωi for i = 1, . . . , k and fω(xi) = 0, i ≥ k + 1,
where ωi is the ith component of ω.

Let PX be the distribution on X which is uniform on {x1, . . . , xk}, putting probability 1/k on each
of these xj and probability 0 on all xj with j ≥ k+1. Denote by Pω the joint distribution of (X,Y )
having this marginal PX and Y ∈ {0,1} with the conditional distribution E(Y ∣X = x) = P (Y =
1∣X = x) = 1/2 + fω(x)/4 ≜ ηω(x) for all x ∈ X .

Consider now a set of functions F ′ = {ηω ∶ ω ∈ C′} ⊂ F . Observe that, by construction,

∥ηω − ηω′∥2 = ρH(ω,ω′)/(16k) ≥ α/32, ∀ ω,ω′ ∈ C′. (30)

On the other hand, the Kullback-Leibler divergence between Pω and Pω′ has the form

K(Pω,Pω′) = nE(ηω(X) log
ηω(X)
ηω′(X) + (1 − ηω(X)) log

(1 − ηω(X))
(1 − ηω′(X))) .

Using the inequality − log(1 + u) ≤ −u + u2/2,∀u > −1, and the fact that 1/2 ≤ ηω(X) ≤ 3/4 for all
ω ∈ C′ we obtain that the expression under the expectation in the previous display is bounded by
2(ηω(X) − ηω′(X))2, which implies

K(Pω,Pω′) ≤
∥fω − fω′∥2

8
≤ nd

8k
≤ nα

8
, ∀ ω,ω′ ∈ C′. (31)

From (30), (31) and Theorem 2.7 in [39], the result of Theorem 12 follows if we show that

nα/8 ≤ log(Card(F ′) − 1)/16 (32)

with

α = C1
d

n
log

C2n

d

where C1,C2 > 0 are constants. Assume first that d ≥ 4. Then, using the inequalities log(Card(F ′)−
1) ≥ log(Card(C′)/2) ≥ (d/4) log(k/(6d)) − log 2 ≥ (d/4) log(1/(12α)) it is enough to show that

nα ≤ d
8

log
1

12α
.

Using that x ≥ 2 logx for x ≥ 0 it is easy to check that the inequality in the last display holds
if we choose, for example, C1 = 1/16,C2 = 1/(12C1). In the case d ≤ 3 it is enough to consider
α = (C1/n) log(C2n) and (32) is also satisfied for suitable C1,C2.

9.2 Lower Bound Under Entropy Conditions

Let `0 be the set of all real-valued sequences (fk, k = 1,2, . . . ). Denote by ej the unit vectors in
`0: ej = (1{k = j} , k = 1,2, . . . ), j = 1,2, . . . . For p > 0, consider the unit `p-ball Bp = {f ∈ ` ∶
∑∞

j=1 ∣fj ∣p ≤ 1}.

Theorem 13. Fix any p > 0. Let F = {f ∈ ` ∶ fj = 1/2 + gj , {gj} ∈ Bp} and let X = {e1,e2, . . .} be
the set of all unit vectors in `0. For any ε > 0 and any n ≥ (2/ε)p, we have

sup
S∈Zn

logN1(F , ε/16, S) ≥ 1

8
(2

ε
)
p

. (33)
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Furthermore, there exist positive constants C,C ′ depending only on p such that the minimax risk
satisfies, for any n ≥ 1,

Wn(F) ≥ Cn−2/(2+p), (34)

and the minimax regret satisfies, for any p ≥ 2 and any n ≥ 1,

Vn(F) ≥ C ′n−1/p. (35)

Proof. First, fix ε > 0. Let d = (2/ε)p and observe that the set of vectors

{( r1

d1/p
, . . . ,

rd
d1/p

,0, . . .) ∶ (r1, . . . , rd) ∈ {±1}d} ⊂ Bp

shatters the set {e1, . . . ,ed} at scale 2/d1/p = ε. Thus, the fat-shattering dimension fatε(Bp) ≥ d =
(2/ε)p. This yields (33) via an application of Theorem 2.6 in [31].

To prove (34) and (35), consider a subset F̄ = {f ∈ F ∶ fj = 1/2, ∀j > d} where d = ⌈(c∗n)p
′
/(2+p′)⌉

and c∗ > 0, p′ ≥ p are constants that will be chosen later. Let Ω = {0,1}d be the set of all binary
sequences of length d. Define PX as the distribution on X which is uniform on {e1, . . . ,ed}, putting
probability 1/d on each of these ej and probability 0 on all ej with j ≥ d+ 1. For any ω ∈ Ω, denote
by Pω the joint distribution of (X,Y ) having this marginal PX and Y ∈ {0,1} with the conditional
distribution defined by

E(Y ∣X = ei) = P (Y = 1∣X = ei) =
1

2
+ ωi

4d1/p′
≜ ηω(ei)

for i = 1, . . . , d, and arbitrary for i ≥ d + 1. The regression function corresponding to Pω is then

ηω = (ηω(e1), . . . , ηω(ed),
1

2
, . . .) = (1

2
+ ω1

4d1/p′
, . . . ,

1

2
+ ωd

4d1/p′
,
1

2
, . . .) .

It is easy to see that since ωi ∈ {0,1}, for any estimator f̂ = (f̂(e1), f̂(e2), . . . ) we have

∣f̂(ei) − ηω(ei)∣ ≥
1

2
∣1
2
+ ω̂i

4d1/p′
− ηω(ei)∣ =

∣ω̂i − ωi∣
8d1/p′

, i = 1,2, . . . ,

where ω̂i is the closest to 4d1/p′(f̂(ei) − 1/2) element of the set {0,1}. Therefore,

∥f̂ − ηω∥
2 ≥ 1

d

d

∑
i=1

∣ω̂i − ωi∣2
64d2/p′

= ρH(ω̂, ω)
64d1+2/p′

(36)

where ρH(⋅, ⋅) is the Hamming distance. From Assouad’s lemma (Theorem 2.12 (iv) in [39]) we find
that

max
ω∈Ω

EωρH(ω̂, ω) ≥ d
4

exp(−α) (37)

where α = max{χ2(Pω,Pω′) ∶ ω,ω′ ∈ Ω, ρH(ω,ω′) = 1} and χ2(Pω,Pω′) is the chi-squared di-
vergence between Pω and Pω′ . Here, Eω denotes the distribution of the n-sample Dn when
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(Xi, Yi) ∼ Pω for all i. Since 1/2 ≤ ηω(X) ≤ 3/4, the chi-squared divergence is bounded as fol-
lows:

χ2(Pω,Pω′) = nE((ηω(X) − ηω′(X))2 ( 1

ηω′(X) +
1

1 − ηω′(X)))

≤ 6nE(ηω(X) − ηω′(X))2 = 6n

d

d

∑
i=1

(ωi − ω′i)2

16d2/p′
≤ 3

8c∗

for all ω,ω′ ∈ Ω such that ρH(ω,ω′) = 1. Combining this result with (36) and (37) we find

inf
f̂

max
ω∈Ω

Eω ∥f̂ − ηω∥
2 ≥ exp(−3/(8c∗))

256d2/p′
. (38)

Now, to prove (34) it suffices to take here p′ = p. With this choice of p′, the set {ηω ∶ ω ∈ Ω} is

contained in F , so that Wn(F) ≥ inf f̂ maxω∈Ω Eω ∥f̂ − ηω∥
2

and (34) follows immediately from (38).

We now prove (35). Set p′ = 2(p − 1) , so that 2/(2 + p′) = 1/p. Introduce the vector

f∗ = (1

2
+ ω1

4d1/p
, . . . ,

1

2
+ ωd

4d1/p
,
1

2
, . . .)

Note that f∗ ∈ F̄ and

∥f∗ − ηω∥2 = 1

d

d

∑
i=1

( ri

d1/p
− ri

d1/p′
)

2

= (1 − 1

d1/p−1/p′
)

2 1

d2/p′
≤ 1

4d2/p′

assuming n is large enough (n ≥ n0(p) where n0(p) depends only on p and c∗). We then have

Vn(F) = inf
f̂

sup
PXY ∈P

{Eω ∥f̂ − η∥2 − inf
f∈F

∥f − η∥2}

≥ inf
f̂

max
ω∈Ω

⎧⎪⎪⎨⎪⎪⎩
Eω ∥f̂ − ηω∥

2 − inf
f∈F̄

∥f − ηω∥2
⎫⎪⎪⎬⎪⎪⎭

≥ inf
f̂

max
ω∈Ω

{Eω ∥f̂ − ηω∥
2 − ∥f∗ − ηω∥2}

≥ inf
f̂

max
ω∈Ω

Eω ∥f̂ − ηω∥
2 − 1

4d2/p′
.

Combining this with (38) and choosing c∗ > 0 small enough we obtain (35) for n ≥ n0. For n < n0(p)
the result trivially follows from the positivity of Vn(F).

10 Technical Results: Localization

The following is a modification of Theorem 6.1 in [7]. We include part of that Theorem verbatim
and make additional changes.
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Theorem 14 (Based on [7]). Let G be a class of non-negative functions almost surely bounded by b.
Let φn be a function that is non-negative, non-decreasing, and φn(r)/

√
r non-increasing, satisfying

R̂n(G[r, S], S) ≤ φn(r)

for all r > 0. Let r∗ = r∗(G) be an upper bound on the largest solution φn(r) = r. Then for all x > 0,
with probability at least 1 − 4e−x for all g ∈ G

Pg ≤ 2Png + 106r∗ + 48r0

and
Png ≤ 2Pg + 72r∗ + 22r0

and
Pg ≤ Png +

√
Png(

√
8r∗ +

√
4r0) + 108r∗ + 42r0

where r0 = b(x + 6 log logn)/n.

Proof of Theorem 14. Define δk = b2−k for k ≥ 0 and let Gk = {g ∈ G ∶ δk+1 ≤ Pg ≤ δk}. Denote
the empirical Rademacher averages of Gk by Rk. Observe that for g ∈ Gk, Pg2 ≤ bδk. Then Lemma
6.2 in [7] implies that with probability at least 1 − e−x for all k ≥ 0 and g ∈ Gk,

∣Png − Pg∣ ≤ 6Rk +
√

2bδk(x + x(δk))
n

+ 6b(x + x(δk))
n

(39)

where x(δ) = 2 log ( π
√

2
log2

2b
δ ). We now condition on this event. Let

Uk = δk + 6Rk +
√

2bδk(x + x(δk))
n

+ 6b(x + x(δk))
n

and observe that Png ≤ Uk. This implies that Rk ≤ φn(Uk). Putting together the terms,

Uk ≤ δk + 6φn(Uk) +
√

2bδk(x + x(δk))
n

+ 6b(x + x(δk))
n

Let k0 > 0 be the smallest integer such that δk0+1 ≥ b/n. For any k ≤ k0 and n ≥ 5, x(δk) ≤ 6 log logn
and

Uk ≤ δk + 6φn(Uk) + 7r0 .

We assume Uk > r∗, for otherwise we immediately obtain the theorem statement. The fact that
φn(r)/

√
r is non-increasing implies φn(r) ≤

√
r ⋅ r∗ for any r ≥ r∗. Hence,

Uk ≤ 6
√
Ukr∗ + 2δk + 7r0.

Solving the quadratic equation,

Uk ≤ 36r∗ + 4δk + 14r0 ≤ 36r∗ + 8Pg + 14r0
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because δk ≤ 2Pg. We thus have for all k ≤ k0 and g ∈ Gk

∣Pg − Png∣ ≤ 6φn(36r∗ + 8Pg + 14r0) +
√

4r0Pg + 6r0 (40)

≤ 6
√
r∗

√
36r∗ + 8Pg + 14r0 +

√
4r0Pg + 6r0 (41)

≤ 45r∗ +
√

8r∗Pg +
√

4r0Pg + 20r0 (42)

Solving the equation

Pg ≤ Png +
√
Pg(

√
8r∗ +

√
4r0) + 45r∗ + 20r0 (43)

yields
Pg ≤ 2Png + 106r∗ + 48r0 .

Alternatively, using (43) and the implication A ≤ B +C
√
A⇒ A ≤ B +C2 +

√
BC for non-negative

A,B and C, we obtain

Pg ≤ Png +
√
Png(

√
8r∗ +

√
4r0) + 108r∗ + 42r0, (44)

proving the last statement of the theorem. For the second statement, we solve the equation (40)
in terms of the variable

√
Pg:

Png ≤ Pg +
√
Pg(

√
8r∗ +

√
4r0) + 45r∗ + 20r0.

The roots are found to be

−
√

8r∗ +
√

4r0

2
±

¿
ÁÁÀ(

√
8r∗ +

√
4r0

2
)

2

+ (Png − 45r∗ − 20r0)

If Png < 45r∗ + 20r0, the statement of the theorem holds. Otherwise, we take the positive root and
conclude

√
Pg ≥ −

√
8r∗ +

√
4r0

2
+

¿
ÁÁÀ(

√
8r∗ +

√
4r0

2
)

2

+ (Png − 45r∗ − 20r0)

leading to

Png − 45r∗ − 20r0 ≤ 2Pg + (
√

8r∗ +
√

4r0

2
)

2

and thus
Png ≤ 2Pg + 49r∗ + 22r0 .

Now consider the case k ≥ k0. First, for any g ∈ Gk, Pg ≤ δk ≤ δk0 ≤ 4b/n. Hence G′ = {g ∈ G ∶ Pg <
4b/n} ⊇ Gk for any k ≥ k0. By Lemma 6.1 in [7], with probability at least 1 − 3e−x,

∣Png − Pg∣ ≤ 6Rn(G′) +
b

n
(
√

8x + 4x) ≤ 6Rn(G′) +
8bx

n

whenever x > 1/2. Now reason on this event. Defining

U ′ = 6Rn(G′) + Pg +
8bx

n
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we have Png ≤ U ′ for any g ∈ G′, and so

Rn(G′) ≤Rn({g ∈ G ∶ Png ≤ U ′) ≤ φn(U ′)

Since φn is sub-root,

U ′ ≤ 6φn(U ′) + Pg + 8bx

n
≤ 6

√
U ′

√
r∗ + Pg + 8bx

n

Solving for
√
U ′,

√
U ′ ≤ 6

√
r∗ +

√
Pg + 8bx

n

and thus
Png ≤ U ′ ≤ 2Pg + 72r∗ + 16r0

Proof of Lemma 7. By Theorem 14, for any φn satisfying Rn({g ∶ Png ≤ r}) ≤ φn(r) and appro-
priate growth conditions, for all x > 0, with probability at least 1 − 4e−x for all g ∈ G

Pg ≤ Png +
√
Png(

√
8r∗ +

√
4r0) + 108r∗ + 42r0, (45)

where r∗ is the largest solution of φn(r) = r. Under the above event, for g∗ = argming∈G Pg,

P ĝ ≤ Png∗ +
√
Png∗(

√
8r∗ +

√
4r0) + 108r∗ + 42r0

By Bernstein’s inequality, with probability at least 1 − e−x,

Png
∗ ≤ Pg∗ +

√
4xPg∗

n
+ 4x

n

which implies, in particular, Png
∗ ≤ 2Pg∗ + 5x

n . Together with the previous inequality, we obtain

P ĝ ≤ Pg∗ +
√

4xPg∗

n
+ 4x

n
+
√

2Pg∗ + 5x

n
(
√

8r∗ +
√

4r0) + 108r∗ + 42r0

Simplifying and over-bounding,

P ĝ ≤ Pg∗ +
√
Pg∗

√
20r∗ + 17r0 + 114r∗ + 53r0

Proof of Lemma 8. We apply Theorem 3.3 in [5] to G = ` ○F − ` ○ f∗. Observe that

Var(` ○ f − ` ○ f∗) ≤ E ((f(x) − y)2 − (f∗(x) − y)2)2 ≤ 2E ((f(x) − y)2 − (f∗(x) − y)2)

and thus the requirement of the theorem is satisfied with B = 2. Let us take φ(r) = ERn(G), a
constant which trivially satisfies the subroot property and has fixed point ERn(G). Then, for any
x > 0, with probability at least 1 − e−x, for any g ∈ G,

Pg ≤ Png + c′′1ERn(G) +
x(22 + c′′2)

n
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where c′′1 = 704 and c′′2 = 104. Choosing f̂ to be the minimizer of empirical risk, this implies

E(f̂(x) − y)2 −E(f∗(x) − y)2 ≤ c′′1ERn(` ○F) + x(22 + c′′2)
n

where we passed to the Rademacher averages of ` ○F . Now, by Lemma A.4 in [5], with probability
at least 1 − e−x,

ERn(` ○F) ≤ 2Rn(` ○F) + x
n

Combining, with probability at least 1 − 2e−x,

E(f̂(x) − y)2 −E(f∗(x) − y)2 ≤ 2c′′1Rn(` ○F) + x(22 + c′′2 + c′′1)
n

11 Proof of Lemma 5

To prove the first estimate for r∗ in lemma, we need a result for smooth losses, proved in [38] in
the context of supervised learning:

Lemma 15 ([38]). Let ` be an H-smooth non-negative loss. Let H be a class of functions from X
to Y. Then for any set S ∈ (X ×Y)n,

R̂n((` ○H)[r, S], S) ≤ 21
√

6Hr log3/2(64n)Rn(H) (46)

Proof of Lemma 5. We first claim that we may always take r∗ = 21168 log3(64n)R2
n(F). Since

the result of Lemma 15 holds for any distribution on X × Y, we may apply it for the class H =
{f − g ∶ f, g ∈ F} of differences, with Y being identically zero. Since the square loss `(y, y′) = y2 is
2-smooth, we obtain

R̂n(G[r, S], S) = R̂n((` ○H)[r, S], S) ≤ 21
√

12r log3/2(64n)Rn(H) ≤ 42
√

12r log3/2(64n)Rn(F).

Now define the right-hand side as the function φn(r). This immediately leads to a fixed-point

r∗ = 12 ⋅ 422 log3(64n)R2
n(F),

as claimed.

For the second part, fix some δ > 0 and let c1, . . . , cM be any minimal δ-cover of F with respect to
dS with M = N2(F , δ, S). Without loss of generality, assume 0 ≤ ci(x) ≤ 1 for all x ∈ X , i ∈ [M].
Take any g ∈ G and express it as (f ′ − f ′′)2 with f ′, f ′′ ∈ F . Let c′, c′′ be the elements of the cover
δ-close to f ′ and f ′′ respectively. Since

1

n

n

∑
i=1

[(f ′(xi) − f ′′(xi))2 − (c′(xi) − c′′(xi))2]2 ≤ 4
1

n

n

∑
i=1

(f ′(xi) − c′(xi) + f ′′(xi) − c′′(xi))2 ≤ 16δ2
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we have that N2(G, δ, S) ≤ N2(F , δ/4, S). Hence, the φn in (8) can be taken to be

R̂n(G[r, S], S) ≤
12√
n
∫

√

r

0

√
logN2(G, δ, S)dδ ≤

12√
n
∫

√

r

0

√
v log(4c/δ)dδ (47)

≤ 12 ⋅ 4c√v√
n

∫
√

r/4c

0

√
log 1/ρ dρ ≤ 24

√
vr

n
log1/2(4c/

√
r) ∶= φn(r)

We would like to find an upper bound r∗ on the fixed point of φn(r) = r. Observe that for

φ(x) = a logq(b/x)

with q ∈ (0,1], we may take x∗ = a logq(b/a) as an upper bound on the fixed point of φ whenever
b ≥ a > 0. That is, for n large enough,

r∗ = (24

√
v

n
log1/2 (c

√
n

6
√
v
))

2

= C v
n

log(n/v) (48)

for some constant C.

Finally, for a finite class F , the covering numbers are N2(F , ε, S) ≤ ∣F ∣ and, trivially,

r∗ = C log ∣F ∣
n

along the lines of (47).
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