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Abstract

In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering

true underlying structures. Similar investigations have been carried out before, but they typically relied on

approximate learning algorithms to learn the network structures. The suboptimal structures found by the

approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an

optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard

Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the

choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from

their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world

data. We use real-world data to generate our gold-standard structures, so our experimental design more closely

approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by

several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC))

consistently outperforms other scoring functions such as Akaike’s information criterion (AIC), Bayesian Dirichlet

equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying

Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world

applications rather than from random processes used in previous studies and learning algorithms to select high-

scoring structures rather than selecting random models. Other findings of our study support existing work, e.g.,

large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to

the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing

algorithm and observed similar results as the optimal algorithm.

Introduction
Bayesian networks are compact graphical models for

representing uncertain relationships among the random

variables in a domain. Often, the relationships are

unknown and must be learned from data. A popular

approach called score-based learning [1] is to assign a

score to each Bayesian network structure according to a

scoring function and find the structure that optimizes the

score. There are many scoring functions for Bayesian net-

works, such as minimum description length (MDL) [2] (or

equivalently, Bayesian information criterion (BIC) [3]),

Akaike’s information criterion (AIC) [4], Bayesian Dirich-

let equivalence score (BDeu) [5,6], factorized normalized

maximum likelihood (fNML) [7], and others [8,9].

The score-based approach to learning Bayesian net-

works has been shown to be NP-hard [10]; both the run-

ning time and memory usage of exact learning are

exponential in the number of variables in the worst case.

Therefore, early research mainly focused on developing

approximation methods [1,11-14]. Recently, however,

optimal learning algorithms such as dynamic program-

ming [15-17], branch and bound [18], admissible heuris-

tic search [19-21], and mathematical programming

[22,23] have been developed to learn optimal Bayesian

networks with several dozens of variables.
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Because of the different theoretical underpinnings of

these scoring functions, they typically result in different

“optimal” networks. Once a scoring function has been

selected, though, all optimal algorithms learn equivalent

networks; they only differ in running time and memory

usage. A major mystery surrounding Bayesian network

learning is which scoring function to use given that

there are so many choices. Several empirical investiga-

tions have been carried out on the performance of var-

ious scoring functions in learning Bayesian networks, e.

g. [24-26]. These studies, however, have drawbacks in

their evaluations because they used local search methods

such as K-2 [1] and Greedy Thick Thinning algorithm

[27] to select network structures, or even used randomly

generated network structures [26]. These suboptimal

structures may affect the reliability of their conclusions

regarding the model selection capability of the scoring

functions. Furthermore, these studies often generate

random synthetic networks as the test cases; experimen-

tal data thus generated may not share similar properties

as real-world data.

In this study, we use an optimal dynamic programming

algorithm [16] to learn Bayesian network structures; any

other optimal algorithm would yield the same results,

however, because only the choice of scoring function

affects the learned networks. We study the capability of

four scoring functions, MDL, AIC, BDeu, and fNML, to

recover the underlying Bayesian network structures. We

generated artificial datasets from a set of gold standard

Bayesian networks created based on real-world data,

learned optimal Bayesian networks for them using differ-

ent scoring functions, and compared the learned models

with the gold standard models based on various evalua-

tion measures. For comparison, we also included the

results of a greedy hill climbing algorithm.

Our results offer new insights into the scoring functions

in addition to confirming some other common beliefs. In

contrast to the results of existing work, a major finding of

our study suggests that the MDL/BIC score consistently

outperforms AIC, BDeu, and fNML in recovering the

underlying Bayesian network structures across various

sample sizes. Other findings of our study support existing

work. Our results confirm that the structural Hamming

distance gives a more reliable measure of the distance

between Bayesian net-work structures. We also observed

that a parameter selection greatly affects the BDeu score.

Finally, it is confirmed that fNML has good performance

when the sample sizes are relatively small. Our results

using the greedy hill climbing algorithm are similar to

those of the optimal learning algorithm, although with

higher variances, so our conclusions also hold for the

greedy algorithm.

The remainder of this paper is structured as follows.

We first review several prior empirical studies of scoring

functions. We then provide an overview of Bayesian net-

work and structure learning. After that, we introduce

four scoring functions which we will compare. We fol-

low that with a description of the experimental design

of this study. Finally, we present the empirical results

and discuss our findings.

Prior work
Several researchers have empirically evaluated the various

scoring functions for learning Bayesian networks. In [26],

Van Allen and Greiner compared the performance of

three different model selection criteria, AIC, BIC, and

cross-validation, in finding the right balance between the

complexity of the model and the goodness of fit to the

training data. First, they randomly generated the gold stan-

dard Bayesian network structures as well as the probability

parameters. Second, they generated datasets with different

sample sizes from the networks. For each dataset, they

again randomly constructed a set of hypothesis structures

and evaluated their quality based on the scoring functions.

They found that AIC and cross-validation perform better

in avoiding over-fitting in the model selection. While BIC

may still work for large sample sizes, it can perform arbi-

trarily worse than other functions for small datasets. How-

ever, they did not use a learning algorithm to try to find

good hypothesis structures; they also randomly generated

their gold standard networks. It is unclear whether their

results stem from the scoring functions or their random

model selection technique, or whether the results can be

generalized to real-world datasets.

In Yang and Chang’s study [24], they compared the per-

formance of five different scoring functions: uniform prior

score metric (UPSM), conditional uniform prior score

metrics (CUPSM), Dirichlet prior score metric (DPSM),

BDe, and BIC. They restricted their experimental evalua-

tions on random networks with three or five nodes as well

as a benchmark network called Alarm. Then they gener-

ated random datasets from the networks. They used a K2-

like search method [1] to learn Bayesian networks. Their

greedy structure learning algorithm assumes an ordering

over the variables. Then, it greedily adds parents consis-

tent with that ordering to maximize the likelihood of the

structure and data set. Because of the ordering assumption

and the greedy approach to adding parents, it does not

guarantee finding the globally optimal structure. For eva-

luation, they use the cross-entropy (KL-Divergence) to

measure the difference between the learned networks and

the true networks. Their results indicated that UPSM,

CUPSM, DPSM and BIC are able to correctly identify the

true networks. Meanwhile, BDe and DPSM’s performance

are very sensitive to the a value. They may fail to find the

true network if the a value is not set properly. This study

shares the shortcoming of Van Allen and Greiner’s study:

their gold standard networks are randomly generated, so
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they may not accurately reflect real-world datasets.

Furthermore, their K2-like search method requires

an ordering of the variables; in real-world applications, an

ordering is often not known a priori. Therefore, it is again

unclear how their results generalize to real-world

situations.

Another related empirical work by de Jongh and

Druzdzel [25] investigates structural evaluation measures

for Bayesian networks rather than scoring functions.

They generated random datasets with different sizes

from four benchmark Bayesian networks. Then for each

combination of the network and sample size, they ran a

local search algorithm called Greedy Thick Thinning

[27] to learn Bayesian network structures and calculated

the distances between the learned networks and the

gold standard networks based on structural Hamming

distance, Hamming distance, and other measures. They

concluded that the structural Hamming distance is espe-

cially useful when looking for the causal structures.

All of these studies have drawbacks in their empirical

evaluations. In particular, the conclusions of Van Allen

and Greiner are drawn based on randomly generated

network structures. Therefore, it is unclear how reliable

their conclusions are regarding the model selection cap-

ability of the scoring functions. Additionally, the two

studies which evaluate scoring functions rely on ran-

domly generated gold standard networks; these may not

accurately reflect real-world datasets. The work of de

Jongh and Druzdzel only investigates structural evalua-

tion measures using a single scoring function; other

scoring functions may behave differently. The current

study is designed to address these concerns.

Bayesian networks
A Bayesian network encodes a joint probability distribu-

tion over a set of random variables V = {X1, ..., Xn}. We

consider only discrete variables in this work. Formally, a

Bayesian network B is a pair {G, Θ}, where G is a direc-

ted acyclic graph (DAG) in which each node corre-

sponds to one of the random variables. The edges or

lack of them encode the conditional independence rela-

tionships among the variables. The parents of Xi are

denoted P Ai; Xi is independent of its non-descendant

variables given its parents. Θ specifies the conditional

probability distributions P (Xi|P Ai) for each Xi. Thus,

the joint probability distribution of all of the variables is

given as

P(V) =

n∏

i=1

P(xi|PAi)

Given a dataset D = {D1, ..., DN }, where Di is an

instantiation of all the variables in V, Bayesian network

structure learning is the problem of learning a network

structure from D. Assuming D is complete and discrete,

Θ is maximized using frequency counts from the data

[7]. Consequently, finding the optimal Bayesian network

reduces to finding the optimal structure.

Score-based learning is a commonly used technique to

identify the optimal structure. In this approach, a scor-

ing function is used to measure the goodness of fit of a

structure to the data. The goal of the learning problem

is then to find the optimally scoring structure. The

score typically approximates the probability of the struc-

ture given the data and represents a tradeoff between

how well the network fits the data and how complex the

network is. In this work, we assume the scoring function

is decomposable [6]. That is, the score for a network

structure B can be calculated as the sum of scores for

the individual variables, where the score for a variable is

calculated based solely on the variable and its parents.

Therefore,

Score(B|D) =

n∑

i=1

Score(Xi|PAi, D),

and the learning problem is to find B*, where

B∗ = arg max
B

Score(B|D).

A Bayesian network structure can represent a set of

joint probability distributions. Two network structures

are said to belong to the same equivalence class if they

represent the same set of probability distributions [28].

A scoring function which assigns the same score to net-

works in the same equivalence class is score equivalent

[6].

Unfortunately, the number of possible structures is

super-exponential in the number of variables; learning

an optimal Bayesian network from D is shown to be

NP-hard [10]. Solving the learning problem exactly

becomes impractical if the number of variables is too

large. Consequently, much early work focused on

approximate algorithms, such as greedy hill climbing

approaches [1,11], tabu search with random restarts

[13], limiting the number of parents or parameters for

each variable [14], searching in the space of equivalence

classes of network structures [29], and the optimal rein-

sertion algorithm (OR) [12]. These algorithms use local

search to find “good” networks; however, they offer no

guarantee to find the one that optimizes the scoring

function. Recently, exact algorithms for learning optimal

Bayesian networks have been developed based on

dynamic programming [15-17,30,31], branch and bound

[18], linear and integer programming (LP) [22,23], and

heuristic search [19-21]. These algorithms have enabled

us to learn optimal Bayesian networks for datasets with

dozens of variables.
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Given a scoring function, all optimal learning algo-

rithms learn equivalent networks; hence, the choice of

which optimal algorithm is used does not affect the

learned network. Consequently, these algorithms make

it possible for us to study the behavior of different scor-

ing functions in structure learning without needing to

consider the confounding factors resulting from the

choice of structure learning algorithms.

Scoring functions
Many scoring functions are in the form of a penalized

log-likelihood (LL) functions. The LL is the log prob-

ability of D given B. Under the standard i.i.d assump-

tion, the likelihood of the data given a structure can be

calculated as

LL(D|B) =

N∑

j

log P(Dj|B)

=

n∑

i

N∑

j

log P(Dij|PAij),

where Dij is the instantiation of Xi in data point Dj, and

PAij is the instantiation of Xi’s parents in Dj. Adding an

arc to a network never decreases the likelihood of the net-

work. Intuitively, the extra arc is simply ignored if it does

not add any more information. The extra arcs pose at least

two problems, though. First, they may lead to overfitting of

the training data and result in poor performance on test-

ing data. Second, densely connected networks increase the

running time when using the networks for downstream

analysis, such as inference and prediction.

A penalized LL function aims to address the overfitting

problem by adding a penalty term which penalizes com-

plex networks. Therefore, even though the complex net-

works may have a very good LL score, a high penalty

term may reduce the score to be below that of a less

complex network. Here, we focus on decomposable

penalized LL (DPLL) scores, which are always of the form

DPLL(B, D) = LL(D|B) −

n∑

i=1

Penalty(Xi, B, D).

There are several well-known DPLL scoring functions

for learning Bayesian networks. In this study, we con-

sider MDL, AIC, BDeu and fNML. These scoring func-

tions only differ in the penalty terms, so we will focus

on discussing the penalty terms in the following discus-

sions. In terms of memory and runtime, all of the scor-

ing functions incur similar overhead [32].

Minimum description length (MDL)

The MDL [3] scoring metric for Bayesian networks was

defined in [2,33]. MDL approaches scoring Bayesian

networks as an information theoretic task. The basic

idea is to minimally encode D in two parts: the network

structure and the unexplained data. The model can be

encoded by storing the conditional probability tables of

all variables. This requireslog N
2

∗ p bits, where log N
2

is the

expected space required to store one probability value

and p is the number of individual probability values for

all variables. The unexplained part of the data can be

explained with LL(D|B) bits. Therefore, we can write the

MDL penalty term as

PenaltyMDL(Xi, B, D) =
log N ∗ pi

2
,

where pi is the number of parameters for Xi. For

MDL, the penalty term reflects that more complex mod-

els will require longer encodings. The penalty term for

MDL is larger than that of most other scoring functions,

so optimal MDL networks tend to be sparser than opti-

mal networks of other scoring functions. As hinted at

by its name, an optimal MDL network minimizes rather

than maximizes the scoring function. To interpret the

penalty as a subtraction, the scores must be multiplied

by -1. The Bayesian information criterion (BIC) [3] is a

scoring function whose calculation is equivalent to MDL

for Bayesian networks, but it is derived based on the

asymptotic behavior of the models, that is, BIC is based

on having a sufficiently large amount of data. Also, BIC

does not require the -1 multiplication.

Akaike’s information criterion (AIC)

Bozdogan [34] defined the AIC [4] scoring metric for

Bayesian networks. It, like BIC, is another scoring func-

tion based on the asymptotic behavior of models with

sufficiently large datasets. In terms of the equation, the

penalty for AIC differs from that of MDL by the log N

term. So the AIC penalty term is

PenaltyAIC(Xi, B, D) = pi.

Because its penalty term is less than that of MDL, AIC

tends to favor more complex networks than MDL.

Bayesian Dirichlet with score equivalence and uniform

priors (BDeu)

The Bayesian Dirichlet (BD) scoring function was first

proposed by Cooper and Herskovits [1]. It computes the

joint probability of a network for a given dataset. How-

ever, the BD metric requires a user to specify a para-

meter for all possible variable-parents combinations.

Furthermore, it does not assign the same score to

equivalent structures, so it is not score equivalent. To

address the problems, a single “hyperparameter” called

the equivalent sample size was introduced, referred to as

a [6]. All of the needed parameters can be calculated
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from a and a prior distribution over network structures.

This score, called BDe, is score equivalent. Furthermore,

if one assumes all network structures are equally likely,

that is, the prior distribution over network structures is

uniform, a is the only input necessary for this scoring

function. BDe with this additional uniformity assump-

tion is called BDeu [6]. Somewhat independently, the

BDeu scoring function was also proposed earlier by

Buntine [5]. BDeu is also a decomposable penalized LL

scoring function whose penalty term is

PenaltyBDeu(Xi, B, D) =

qi∑

j

ri∑

k

log
P(Dijk|Dij)

P(Dijk|Dij, αij)
,

where qi is the number of possible values of PAi, ri is

the number of possible values for Xi, Dijk is the number

of times Xi = k and PAi = j in D, and aij is a parameter

calculated based on the user-specified a. The original

derivations [5,6] include a more detailed description.

The density of the optimal network structure learned

with BDeu is correlated with a; low a values typically

result in sparser networks than higher a values. Recent

studies [35] have shown the behavior of BDeu is very

sensitive to a. If the density of the network to be

learned is unknown, selecting an appropriate a is

difficult.

Factorized normalized maximum likelihood (fNML)

Silander et al. developed the fNML score function to

address the problem of a selection in BDeu based on

the normalized maximum likelihood function (NML)

[7]. NML is a penalized LL scoring function in which

regret is the penalty term. Regret is calculated as

∑

D′

P(D′|B),

where the sum ranges over all possible datasets of size

N. Kontkanen and Myllymäki [36] showed how to effi-

ciently calculate regret for a single variable. By calculating

regret for each variable in the dataset, the NML becomes

decomposable, or factorized. fNML is given by

Penalty fNML(Xi, B, D) =

qi∑

k

log Cri

Nij
,

where Cri

Nij
are the regrets. fNML is not score

equivalent.

Methods
Our empirical evaluation of the scoring functions con-

sisted of four phases. First, we created a set of Bayesian

networks from real datasets as the gold standard net-

works. Next, we generated a variety of datasets from

each of those gold standard networks by logic sampling.

After that, we learned optimal Bayesian networks from

the sampled datasets using both an optimal algorithm

and a greedy hill climbing algorithm. Finally, we calcu-

lated a number of evaluation metrics by comparing the

learned networks with the gold standard networks.

Creating gold standard networks

We need a set of gold standard Bayesian networks as

the basis for our empirical evaluations. It is possible to

use randomly generated Bayesian networks like several

existing studies did, but we want to use models that

resemble Bayesian networks that are created for real-

world applications. There are many benchmark Baye-

sian networks available, such as Alarm, CPCS, Hepar,

etc., but these benchmark models contain too many

variables and are intractable for the current optimal

learning algorithms. Therefore, we chose to create the

gold standard networks by learning optimal Bayesian

networks for a set of UCI machine learning datasets

[37] with fewer than 25 variables. This section

describes our data processing method for the reprodu-

cibility of the results.

The raw UCI datasets contain both continuous and

discrete data, as well as missing values. Table 1

describes the detailed information for all the datasets

used in this study. Continuous values were discretized

using the minimum description length (MDL) discreti-

zation technique [38]. MDL discretization recursively

partitions a dataset S with a single variable A by seg-

menting it into two distinct sets based on a boundary

value T. The entropy between the two sets is minimal.

The entropy between the two sets is defined as

E =
|S1|

|S2|
Ent(S1) +

|S2|

|S1|
Ent(S2),

where S1 and S2 are the segments of S based on parti-

tioning at T and Ent(·) is the entropy of the single set.

The recursion stops when the information gain of

adding another partition does not exceed the cost of

encoding the two new separate classes, given as

Gain >
log2(|S| − 1)

|S|
+

�(A, T; S)

|S|
,

�(A, T; S) = log2(3k − 2) + k × Ent(S)

− k1 × Ent(S1) − k2 × Ent(S2)

where ki is the number of distinct values of A in Si.

Although the MDL discretization technique has the

same theoretical basis as the MDL scoring function, it is

otherwise unrelated. That is, using the MDL discretiza-

tion does not favor the MDL scoring function over the

others in any way.

We used a k nearest neighbors (kNN) algorithm to

impute missing values [39]. The kNN algorithm

Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14

http://www.biomedcentral.com/1471-2105/13/S15/S14

Page 5 of 16



computes a missing value Xp for record Di by finding

the k closest Djs (out of those records which are not

missing any values) to Di (using Euclidean distance, for

example), excluding Xp. If Xp is a continuous variable,

the value of Xp is averaged for each of the Djs, and that

value is assigned to Xp for Di. If categorical, it is

replaced by a majority vote among the k closest neigh-

bors for Xp. We set k = 5.

After processing the datasets, we applied an optimal

learning algorithm based on the MDL scoring function

[17] to learn optimal Bayesian networks. Again, the use

of MDL score here does not affect the conclusions of

this study, as other scoring functions yielded similar

results. We used the maximum likelihood estimation

method to learn the parameters of the networks. We

took the learned networks as the gold standard net-

works and generated datasets from them.

Generating datasets from gold standard networks

After we created the gold standard networks, we gener-

ated datasets for each of these Bayesian networks with

different numbers of data points ranging from 200 and

1000 (with increments equal to 200) and from 1,000

and 10,000 (with increments equal to 1,000), for a total

of 18 sample sizes for each gold standard network. Each

data point in a dataset corresponds to one random sam-

ple drawn from the joint probability distribution of a

Bayesian network using logic sampling [40]. The basic

idea is to sample the value for each variable according

to the conditional probability distribution of the variable

given its parents. The sampling is performed in a topo-

logical order of all the variables in order that all the par-

ents already have sampled values before the child

variable is sampled.

Learning from the sampled datasets

After generating datasets from the gold standard net-

works, we learned optimal networks for all the datasets

by using the aforementioned scoring metrics. MDL, AIC

and fNML are parameterless, so we learned one network

for each combination of scoring function and dataset.

All optimal learning algorithms would learn an equiva-

lent network, so our choice of optimal learning algo-

rithm does not affect the learned network. We tried the

following a values, 0.1, 0.5, 1, 5, 10, 20, 50, 80, 100, for

the hyperparameter a of BDeu and learned a network

for each combination of a value and dataset. Thus, in

total, we learned 12 “optimal” networks for each dataset

and sample size. For comparison, we also tested a

greedy hill climbing algorithm with random restarts and

a tabu list in the same experiments.

Evaluating the learned networks

We used several structural evaluation metrics to com-

pare the performance of the different scoring functions.

Three of the evaluation metrics operate directly on the

gold standard and learned DAG structures: accuracy,

sensitivity, and average hamming distance (AHD). The

formulas for those metrics are

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

AHD =
FP + FN

n
,

where a TP is an edge in the correct direction in the

learned network, a TN is an edge in neither the learned

Table 1 Summary of gold standard networks

Dataset Domain Instances Nodes Edges Average In-degree

Statlog (Australian Credit Approval) Industry 690 15 33 2.20

Breast Cancer Biology 699 10 20 2.00

Car Evaluation Industry 1,728 7 9 1.29

Cleveland Heart Disease Biology 303 14 22 1.57

Credit Approval Industry 690 16 35 2.19

Diabetes Biology 768 9 13 1.44

Glass Identification Industry 214 10 17 1.70

Statlog (Heart) Biology 270 14 21 1.50

Hepatitis Biology 155 20 36 1.80

Iris Biology 150 5 8 1.60

Nursery Industry 12,960 9 14 1.56

Statlog (Vehicle Silhouettes) Industry 846 19 40 2.11

Congressional Voting Records Political 436 17 46 2.71

This table describes all of the datasets we used in this study. Dataset gives the name of the dataset in the UCI machine learning repository. Domain gives a

rough indication of the domain of the dataset. Instances gives the number of instances in the original dataset. Nodes gives the number of variables in the dataset

(and the number of nodes in the corresponding Bayesian network). Edges gives the number of edges in the optimal Bayesian network learned from the original

dataset. This is the gold standard network used throughout the rest of the evaluation. Average In - degree gives the average number of parents of each variable

in the learned Bayesian network.
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nor the gold standard network, a FP is an edge in the

learned network but not in the gold standard network,

and a FN is an edge in the gold standard but not in the

learned network. Note that an edge in the wrong direc-

tion in the learned network counts as both a FP and a

FN.

We also used an evaluation metric called structural

Hamming distance (SHD). As mentioned earlier, multi-

ple structures with edges in different directions may

belong to the same equivalence class. Intuitively, the dis-

tance between Bayesian networks in the same equiva-

lence class should be zero. To accommodate this, SHD

first identifies the equivalence class to which a Bayesian

network belongs using an algorithm given by Chickering

[28]. An equivalence class is represented by a partially

directed graph (PDAG) in which some edges are direc-

ted and some undirected. The undirected edges can be

orientated arbitrary as long as no new V structure in

which multiple variables share a child is introduced.

SHD then counts the number of directed and undir-

ected edge additions, deletions, reversals and changes in

direction to transform one PDAG into the other as the

distance between two corresponding Bayesian networks.

Tsamardinos et al. [41] provide a more formal algorithm

for computing the SHD metric.

Results
In this section, we present the results of our empirical

study. We first compared the evaluation metrics in order

to select one metric for further analysis. We next looked

into the effect of the hyperparameter a on the BDeu

score. We then compared the capability of the scoring

functions in recovering the Bayesian network structures

from the sampled datasets generated from the gold stan-

dard Bayesian networks. After that, we compared the

effect of sample sizes on the performance of the scoring

functions in learning from the datasets when using both

an optimal learning algorithm and a greedy hill climbing

algorithm.

Comparison of evaluation metrics

We first compared the robustness of the evaluation mea-

sures as the sample size increases in the datasets. Theore-

tically, as the number of data points increases, the bias

introduced by the penalty term in a scoring function has

decreasing effect, and the learned model should gradually

converge to the equivalence class of the true underlying

model [29]. Figures 1 and 2 show the convergence results

for the scoring functions on the optimal networks

learned for the Statlog (Australian CreditApproval) and

Cleveland Heart Disease datasets respectively. We con-

sider an evaluation measure to have converged when add-

ing more data points does not change the value of the

metric. Our results show that the SHD metric converges

for most of scoring functions with a small number of

data points. In contrast, AHD, accuracy and sensitivity

still fluctuate when there is a large number of samples.

We only show the results on two datasets, but the results

on the other datasets are similar. SHD exhibits better

convergence behavior because it operates on the equiva-

lence classes of networks rather than directly on the spe-

cific DAGs in question. As a simple example, suppose

the gold standard network is X ® Y, but the learned net-

work is X ¬ Y. The two networks represent the same

conditional independencies, and SHD gives a distance of

0. However AHD, accuracy, and sensitivity all consider

the arc incorrect because the arcs are oriented in differ-

ent directions. We therefore only use SHD for the rest of

our analysis.

BDeu parameterizations

We also investigated the effect of the hyperparameter a

on BDeu. We focused on both the convergence behavior

and the effect of a on recovering the gold standard net-

works. The results are shown in Figure 3 and Table 2.

While some a values give good recovery results, it is

clear that selecting either too low or too high of an a

can dramatically impact the quality of the learned net-

works. BDeu was similarly impacted by a on other data-

sets as shown in the Additional File 1 S1.xls (sheet =

results . optimal). On some of the networks, a

poorly chosen a value may prevent convergence of the

algorithms even when the sample size is large. As men-

tioned earlier, low as tend to result in sparser networks

than higher as. Unfortunately, if the density of the gold

standard network is unknown, selecting a is difficult.

Consequently, BDeu is only a good scoring function if

an expert can appropriately estimate a. Otherwise, the

learned network is either too sparse (if a is too low) or

too dense (if a is too high). This analysis supports pre-

viously published results [35].

Gold standard network recovery

We studied the capability of each scoring function in

recovering the gold standard network based on the SHD

metric. In the case of BDeu, we show the behavior of

the best performing a value. Figure 4 shows that most

of the scoring functions can recover the gold standard

network on four of the datasets given a large enough

sample size and appropriate parameters (a for BDeu).

Other datasets exhibit similar behavior as shown in

Table 3 and the Additional file 1 S1.xls (sheet =

results . optimal). In particular, we consider the

minimum distance of each scoring function and dataset.

A minimum distance of 0 means that the gold standard

network was recovered for the dataset. Small distances

indicate that the scoring function guided the learning

algorithm to find close to optimal networks.

Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14
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In contrast to the results reported by several previous

studies, we found that MDL was able to recover the

gold standard network more quickly than other scoring

functions. We observe these differences both because

we use an optimal learning algorithm and because we

use gold standard networks representing real-world

datasets. Given an appropriate a value, BDeu also con-

verged to the gold standard networks within the sample

sizes we tested. In some of the datasets, fNML con-

verged to the gold standard network very quickly, but

sometimes it converged to a different network. In con-

trast, AIC’s behavior was much more erratic. It found

the gold standard network on 8 of the datasets. But

because of its high standard deviation, we infer it never

completely converged. Figure 4 supports this conclusion.

In light of these results, we conclude that MDL is a

good scoring function because it often converges to the

gold standard network. BDeu also exhibits good beha-

vior if a suitable a is known before learning.

Convergence behavior

Next, we studied the convergence behavior of each scoring

function. We did not consider whether the scoring func-

tion converged to the gold standard network; rather, we

only focused on whether the scoring function converged

to any network. In essence, this part of our study investi-

gates the effect of the size of a dataset on the scoring func-

tions. We again consult Figure 4 and Table 3 but this time

look for convergence of the scoring functions; that is, we

look to see at what point increasing sampling size does

not change SHD anymore. As the figure shows, most of

the scoring functions converged. To look for convergence

in the table, we consider the mean, minimum, maximum,

and standard deviation for the SHD statistics. We expect

that if the scoring function converged quickly, its standard

deviation will be small. This loose interpretation is robust

in that it allows us to conclude that a scoring function

converged even if SHD changes slightly from one sample

size to the next.

Figure 1 Comparing the evaluation measures for the optimal networks learned from the Austra datasets with different sizes. In this

figure, we compare the performance of the four evaluation metrics (SHD, AHD, accuracy, and sensitivity) for the Australian Credit Approval

dataset. The y-axis label indicates which evaluation metric that graph displays. We display the results for a = 1 for BDeu for all measures because

it had the best convergence behavior for this dataset. We used the behavior of each of the curves to evaluate the convergence of the

corresponding scoring function. We consider a scoring function to have converged for an evaluation metric when increasing the dataset size

does not change the value for that scoring function and evaluation metric. Thus, we look for “flat lines” in the graphs.

Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14
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As previously shown [7], fNML converges with fewer

samples than the other scoring functions. Because the

mean SHD is typically small, we conclude that the net-

work to which it converges is often close to the gold

standard network. MDL converged somewhat more

slowly, but often converged to the gold standard network.

BDeu with an optimal a value tends to converge quickly

to a network close to the gold standard networks; how-

ever, with a sub-optimal a value, BDeu often neither con-

verges nor comes close to the gold standard networks as

shown in Table 2. Because AIC has a very low penalty

term, more data encourages it to add more edges. Thus,

it tends to overfit the data on large sample sizes and

rarely converges. The SHD of AIC does tend to decrease

as the sampling size increases, but that trend is somewhat

inconsistent. Based on these results, fNML seems to be a

good scoring function when data is limited, while MDL is

superior when more data is present.

Comparison to greedy hill climbing

Finally, we compared the network recovery and conver-

gence ability of a greedy hill climbing learning algorithm

to those from the optimal algorithm. We performed this

analysis because, as mentioned, optimal learning algo-

rithms are limited to datasets with several dozens of

variables. While some biological datasets (such as the

Breast Cancer, Cleveland Heart Database, Diabetes, Sta-

tlog (Heart), Hepatitis and Iris datasets included in this

study) are within this limit, many others, such as gene

expression datasets, include hundreds or thousands of

variables. Greedy hill climbing algorithms have been

shown to scale to datasets of this size [14]. This part of

our study verifies that our conclusions on scoring func-

tions apply to this algorithm, as well.

We first evaluated the network recovery ability of the

scoring functions on the greedy hill climbing algorithm.

Table 4 shows that, much like the optimal learning algo-

rithms, the hill climbing algorithm typically either adds

extra edges or misses necessary edges. On the other

hand, as the small values in the Reverse and Compelled

columns show, the directionality of the edges is typically

correct. The Total SHD follows a similar trend among

the greedy hill climbing and optimal algorithms. That is,

scoring functions that performed well for the optimal

Figure 2 Comparing the evaluation measures for the optimal networks learned from the Cleve datasets with different sizes. In this

figure, we compare the performance of the four evaluation metrics (SHD, AHD, accuracy and sensitivity) for the Cleve dataset.

Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14
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algorithm also performed well for the hill climbing algo-

rithm. We observed similar results on the other datasets

as shown in the Additional file 1 S1.xls (sheet =

results . greedy). These results confirm that the

scoring functions have a similar impact on structure

recovery regardless of whether an optimal or greedy

algorithm is used. In almost all cases, though, the opti-

mal algorithm finds a structure closer to the true gold

standard networks, so its Total distance is always lower.

This highlights the benefit of using optimal algorithms

when possible.

We then evaluated the convergence behavior of the

scoring function on the greedy hill climbing algorithm.

As shown in Figure 5, the picture is not as clear as the

convergence behavior of the optimal algorithm in Figure

4. Nevertheless, we still see similar trends. Of the scoring

functions, fNML typically converges the quickest, though

often to a worse network than MDL. On the Breast Can-

cer and Car Evaluation datasets, MDL converges to the

gold standard network, except for a few perturbations

caused by the uncertainty of the greedy search algorithm.

BDeu also converges except for a few spikes, but it typi-

cally converges to a worse network than MDL. As with

the optimal algorithm, AIC does not converge. These

results also mirror those of the behavior we observed in

the optimal algorithm, though a bit noisier. They again

suggest that the conclusions we drew from the optimal

algorithms apply to the greedy algorithm, albeit with

some noise. We also see that the optimal algorithm gives

more consistent behavior, both in terms of quality and

consistent convergence, and should be used when

possible.

Conclusion
In this work, we have empirically investigated the ability

of four Bayesian network scoring functions (MDL, AIC,

BDeu and fNML) to recover the generating distribution

of a dataset; a gold standard Bayesian network represents

Figure 3 The effect of the hyperparameter a on the BDeu score. This figure plots the SHD between the networks learned by BDeu and the

gold standard networks for six values of a for the Breast, Glass, Diabetes, and Hepatitis datasets. We used the behavior of each curve to evaluate

both the convergence and the recovery ability of each value of a. We evaluate the recovery ability by considering both the smallest SHD for the

scoring function, the size of the dataset which gives that SHD, and whether the scoring function converged to the smallest SHD, some other

SHD or did not converge.

Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14
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Table 2 Summary of the effect of different a values on the performance of BDeu

a = 0.1 a = 0.5 a = 1

GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD

Austra 0 2.44 14 4.38 0 2.11 14 4.32 0 1.94* 14 4.02

Breast 0 0.83 8 2.18 0 0.61 5 1.50 0 0.61 5 1.50

Car 0 1.44 5 2.28 0 0.89 5 1.91 0 0.89 5 1.91

Cleve 1 1.83 11 2.43 1 1.50 7 1.54 1 1.44* 7 1.46

Crx 3 5.72* 18 4.56 3 6.06 19 5.46 3 5.72 18 4.91

Diabetes 1 1.72 6 1.71 1 1.22* 4 0.73 1 1.28 4 0.75

Glass 1 1.83 7 2.01 1 1.00* 1 0.00 1 1.00* 1 0.00

Heart 0 0.00* 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Hepatitis 3 3.72* 13 2.37 3 4.22 12 2.62 6 7.06 13 2.01

Iris 1 1.83 7 1.72 1 1.44 6 1.34 1 1.33* 4 0.97

Nursery 1 4.94 8 2.75 0 4.39 8 2.77 0 4.06 8 2.92

Vehicle 0 0.67 9 2.14 0 0.22 4 0.94 0 0.22* 4 0.94

Voting 0 1.61 23 5.38 0 1.39 22 5.17 0 1.28* 19 4.47

a = 5 a = 10 a = 20

GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD

Austra 0 3.61 18 5.81 1 13.94 21 3.81 14 15.39 25 3.11

Breast 0 0.22* 4 0.94 0 0.56 10 2.36 0 1.33 11 2.93

Car 0 0.28* 5 1.18 0 0.28 5 1.18 0 0.33 5 1.19

Cleve 4 6.61 13 2.85 9 12.56 19 2.18 20 21.56 25 1.10

Crx 5 13.72 21 5.49 13 16.83 20 1.86 18 20.17 29 2.90

Diabetes 3 3.22 6 0.73 5 5.33 10 1.19 9 9.11 11 0.47

Glass 7 7.89 8 0.32 12 14.67 15 0.84 18 19.83 20 0.51

Heart 1 1.00 1 0.00 1 1.44 2 0.51 2 2.22 4 0.55

Hepatitis 25 30.22 33 1.99 39 41.78 44 1.31 50 53.56 60 2.25

Iris 3 3.22 5 0.55 5 5.22 8 0.73 9 9.61 14 1.38

Nursery 0 3.17 8 2.64 0 2.50 8 2.48 0 2.39* 9 2.57

Vehicle 0 0.44 5 1.20 1 2.39 10 2.03 5 6.72 15 2.47

Voting 0 1.61 22 5.14 0 3.89 30 7.06 0 7.06 38 9.05

a = 50 a = 80 a = 100

GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD

Austra 16 19.67 33 4.35 18 22.50 42 5.99 19 24.17 42 5.86

Breast 2 7.44 14 3.35 7 11.67 16 3.36 7 13.72 20 3.72

Car 0 0.67 8 1.88 0 1.50 8 1.76 0 1.94 8 1.66

Cleve 26 27.50 34 1.95 27 29.72 41 3.27 28 30.50 42 3.49

Crx 19 25.39 37 4.41 24 29.28 40 4.08 27 31.78 44 4.35

Diabetes 13 14.89 16 1.13 14 16.33 18 1.37 14 15.67 18 1.50

Glass 18 18.11 20 0.47 18 21.61 26 2.06 20 24.44 26 2.04

Heart 4 4.11 5 0.32 4 4.61 5 0.50 4 4.94 5 0.24

Hepatitis 59 61.50 72 3.03 61 64.28 75 3.92 61 65.28 78 4.86

Iris 13 15.06 18 1.35 14 16.78 18 1.11 14 15.83 18 1.47

Nursery 0 2.11 11 2.78 0 2.33 10 2.81 0 2.61 11 3.13

Vehicle 14 18.44 30 3.88 19 23.50 36 4.08 22 27.44 39 4.15

Voting 6 22.28 43 9.78 16 30.00 52 8.60 23 34.50 56 8.21

This table shows SHD statistics about the networks learned using the sampled datasets for the BDeu scoring function for all of the a values that we analyzed.

GoldNet gives the name of the network. We have used abbreviated names from Table 1, but the order of the datasets is the same in both tables. Min, Mean, Max

and STD give the particular statistic for SHD for all sample sizes for the given network and a value. The a value with the lowest mean for each dataset is shown

in bold and marked with “*”.
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Figure 4 Plot of structural Hamming distance of the networks learned by optimal learning algorithm from datasets with different

sample sizes. This figure plots the SHD of the networks learned by each of the scoring functions for the Breast, Crx, Car, and Diabetes datasets.

We display the results for a = 0.5 for BDeu for all datasets because it had the best behavior in terms of SHD.

Table 3 A comparison of the performance of four scoring functions in recovering the true underlying Bayesian

network structures

AIC MDL fNML BDeu

GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD Min Mean Max STD

Austra 3 10.72 21 5.02 0 1.50* 13 3.49 11 12.44 31 4.78 0 1.94 14 4.02

Breast 0 1.28 6 1.64 0 0.61 5 1.50 0 0.39 4 1.14 0 0.22* 4 0.94

Car 0 1.00 7 1.91 0 1.67 5 2.43 5 5.94 6 0.24 0 0.28* 5 1.18

Cleve 2 10.44 22 3.94 0 0.44* 5 1.34 0 0.94 12 2.82 1 1.44 7 1.46

Crx 9 15.28 24 4.20 3 4.67* 18 3.79 13 14.44 34 4.94 3 5.72 18 4.56

Diabetes 0 2.00 5 1.41 0 0.22* 3 0.73 0 0.22* 3 0.73 1 1.22 4 0.73

Glass 0 0.00* 0 0.00 0 0.00* 0 0.00 0 0.06 1 0.24 1 1.00 1 0.00

Heart 0 0.00* 0 0.00 0 0.00* 0 0.00 0 0.00* 0 0.00 0 0.00* 0 0.00

Hepatitis 17 21.83 31 4.13 0 0.44* 6 1.46 0 2.94 24 5.95 3 3.72 13 2.37

Iris 0 1.78 5 1.80 0 0.33 3 0.97 0 0.17* 3 0.71 1 1.33 4 0.97

Nursery 0 3.61* 12 3.99 0 4.94 8 3.28 8 9.22 16 2.18 0 4.39 8 2.77

Vehicle 0 0.72 4 1.07 0 1.11 16 3.77 0 0.39 7 1.65 0 0.22* 4 0.94

Voting 8 14.61 32 6.15 0 1.11* 16 3.77 0 2.50 31 7.42 0 1.28 19 4.47

This table shows SHD statistics about the networks learned using the sampled datasets for all scoring functions that we analyzed. For BDeu, we used the value of

a that gave the lowest mean SHD. GoldNet gives the name of the network. We have used abbreviated names from Table 1, but the order of the datasets is the

same in both tables. Min, Mean, Max and STD give the particular statistic for SHD for all sample sizes for the given network and scoring function. The scoring

function with the lowest mean for each dataset is shown in bold.
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Table 4 A Comparison of Structural Error for the suboptimal learning algorithm and the optimal learning algorithm

Greedy Hill Climbing Optimal

GoldNet Size Score Add Delete Rev Mis Total Add Delete Rev Mis Total

Austr 200 AIC 16 14 1 1 32 11 6 2 2 21

200 MDL 9 17 0 0 26 0 8 1 4 13

200 fNML 11 16 0 1 28 20 7 0 4 31

200 0.1 7 17 0 1 25 0 10 0 4 14

200 0.5 9 17 0 0 26 1 9 1 3 14

200 1 9 17 0 0 26 1 9 1 3 14

200 5 11 12 2 2 27 5 6 1 6 18

200 10 14 14 0 2 30 8 7 2 4 21

600 AIC 18 15 1 0 34 7 1 0 0 8

600 MDL 13 15 1 0 29 0 2 0 0 2

600 fNML 13 15 2 0 30 1 3 0 7 11

600 0.1 11 15 1 1 28 0 4 0 1 5

600 0.5 12 15 1 1 29 0 3 0 1 4

600 1 12 15 1 1 29 0 3 0 1 4

600 5 14 14 1 4 33 1 2 0 0 3

600 10 15 15 0 3 33 4 3 1 9 17

1000 AIC 18 13 1 0 32 7 0 1 0 8

1000 MDL 15 15 1 0 31 0 0 0 0 0

1000 fNML 16 15 0 3 34 2 1 1 8 12

1000 0.1 15 15 1 0 31 0 0 0 0 0

1000 0.5 15 15 1 0 31 0 0 0 0 0

1000 1 15 15 1 0 31 0 0 0 0 0

1000 5 17 15 2 1 35 2 0 4 6 12

1000 10 18 15 2 1 36 4 1 1 8 14

Crx 200 AIC 20 14 0 2 36 9 2 4 3 18

200 MDL 9 16 0 3 28 1 8 0 9 18

200 fNML 16 15 1 1 33 19 5 6 4 34

200 0.1 6 16 0 3 25 1 11 0 6 18

200 0.5 10 16 0 3 29 1 8 0 9 18

200 1 9 15 0 4 28 1 7 0 10 18

200 5 13 14 1 2 30 5 6 3 5 19

200 10 19 14 2 0 35 9 4 3 3 19

600 AIC 21 14 0 0 35 8 1 2 0 11

600 MDL 14 16 0 0 30 1 3 1 0 5

600 fNML 14 14 0 4 32 3 3 1 7 14

600 0.1 11 15 0 1 27 2 6 2 1 11

600 0.5 13 15 0 0 28 1 3 1 0 5

600 1 13 15 0 0 28 1 3 1 0 5

600 5 17 13 2 3 35 6 2 2 7 17

600 10 18 13 0 3 34 8 3 2 6 19

1000 AIC 21 15 0 0 36 7 1 1 0 9

1000 MDL 14 15 1 0 30 1 2 1 1 5

1000 fNML 17 15 0 4 36 2 2 0 9 13

1000 0.1 14 15 0 0 29 1 3 1 1 6

1000 0.5 13 15 0 0 28 1 3 1 1 6

1000 1 13 15 0 0 28 1 3 1 1 6

1000 5 17 15 0 0 32 4 2 0 11 17

1000 10 18 14 2 4 38 6 2 1 8 17

This table gives detailed information about the structural differences between the learned and gold standard networks for the Statlog (Australian Credit Approval) and

Credit Approval datasets. It shows differences for both the greedy hill climbing and the optimal learning algorithm. GoldNet gives the name of the network. Size gives

the sample size. Score gives the scoring function. When only a number is shown, the scoring function is BDeu with that value for a. Add gives the number of edges that

were added to the learned network that were not in the gold standard network. Delete gives the number of edges that were not in the learned network which were in

the gold standard network. Rev gives the number of edges that were oriented in the wrong direction in the equivalence class of the learned network compared to that

of the gold standard network; that is, the number of edges that were reversed. Mis gives the number of edges that were either directed in the equivalence class of the

learned network and undirected in that of the gold standard network, or vice versa; that is, it gives the number of mis-directed edges.
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this distribution. We used an optimal structure learning

algorithm to ensure approximation algorithms did not

affect the learned networks. All optimal learning algo-

rithms would learn an equivalent network, so our choice

of optimal algorithm did not affect our results or conclu-

sions. Then, we controlled scoring function and sample

sizes to test their effect on the quality of the learned net-

works. We also considered four different evaluation

metrics: accuracy, sensitivity, AHD and SHD. In addition,

we evaluated a greedy hill climbing algorithm to ensure

that our conclusions are valid for algorithms which can

learn networks with hundreds or thousands of variables.

As a result of our investigation, we discovered that

SHD is more well-behaved than the other evaluation

metrics because it considers equivalence classes when

comparing structures rather than the specific DAGs.

Our most surprising result was that MDL was better

able to recover gold standard networks than other scor-

ing functions given sufficient data. As expected, BDeu’s

performance was highly dependent on the selected a

parameter, which can be difficult to estimate a priori.

We also confirmed that fNML converges even with few

samples. Throughout our analysis, we found AIC’s beha-

vior erratic and unpredictable. The greedy hill climbing

algorithm exhibited similar behavior, so we conclude

that our results hold for this algorithm, as well.

We plan to extend this work in several ways. We can

use synthetic networks to more carefully control the

properties of our gold standard networks. Unlike pre-

vious studies, though, we will not rely on random net-

work generation; instead, we will handcraft a variety of

networks to reflect a variety of real-world datasets. We

will also incorporate other scoring metrics, such as MIT

[8], and objectives, such as prediction [9], into our study.

Additional material

Additional file 1: Detailed empirical results and free software

packages. The file (S1.xls) contains detailed empirical results from testing

the various combinations of the scoring functions, sample sizes, and

learning algorithms (sheet = results . optimal, results .

greedy). It also contains a list of free software packages used in this

study (sheet = Software).

Figure 5 Plot of structural Hamming distance of the networks learned by the sub-optimal learning algorithm from datasets with

different sample sizes. This figure plots the SHD of the networks learned by each of the scoring functions for the Breast, Crx, Car, and Diabetes

datasets. We display the results for a = 0.5 for BDeu for all datasets because it had the best behavior in terms of SHD.
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